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ABSTRACT

Multiscale asymptotic methods are used to derive wave-activity equations
for planetary and synoptic scale eddies and their interactions with a zonal
mean flow. The eddies are assumed to be of small amplitude, and the
synoptic-scale zonal and meridional length scales are taken to be equal. Under
these assumptions, the zonal-mean and planetary-scale dynamics are plane-
tary geostrophic (i.e. dominated by vortex stretching), and the interaction be-
tween planetary and synoptic scale eddies occurs only through the zonal mean
flow or through diabatic processes. Planetary scale heat fluxes are shown to
enter the angular momentum budget through meridional mass redistribution.
After averaging over synoptic length and time scales, momentum fluxes dis-
appear from the synoptic-scale wave-activity equation whilst synoptic-scale
heat fluxes disappear from the baroclinicity equation, leaving planetary-scale
heat fluxes as the only adiabatic term coupling the baroclinic and barotropic
components of the zonal mean flow. In the special case of weak planetary
waves, the decoupling between the baroclinic and barotropic parts of the flow
is complete with momentum fluxes driving the barotropic zonal mean flow,
heat fluxes driving the wave activity, and diabatic processes driving baroclin-
icity. These results help explain the apparent decoupling between the baro-
clinic and barotropic components of flow variability recently identified in ob-
servations, and may provide a means of better understanding the link between

thermodynamic and dynamic aspects of climate variability and change.
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1. Introduction

The interaction between jet variability and eddies is a long-studied topic, but the interaction
is not yet understood well enough to identify causal mechanisms for variability or sources of
systematic errors in models. There are well-developed theoretical frameworks for the zonally
homogeneous case (e.g. annular-mode variability), however zonally asymmetric analyses includ-
ing planetary scale interactions are more complicated and only partial theories for this case exist
(Hoskins et al. 1983; Plumb 1985, 1986). Yet longitudinal variations and synoptic-planetary scale
interactions are important for the location and strength of the storm tracks and blocking episodes
(Hoskins et al. 1983; Luo 2005; Simpson et al. 2014). These phenomena strongly affect the re-
gional climate and its climate change. As the dynamical aspects of climate are not yet well under-
stood, there is low confidence in circulation patterns simulated by global and regional models and
their response to climate change (Shepherd 2014).

An important aspect of wave-mean flow interaction concerns barotropic and baroclinic processes
and their links through eddy momentum and heat fluxes. It has recently been shown from obser-
vations for the Southern and Northern Annular Modes in Thompson and Woodworth (2014) and
Thompson and Li (2015) that the zonal mean flow is affected only by momentum fluxes and not
by heat fluxes, while the opposite is true for a so-called baroclinic annular mode (BAM) that is
based on eddy kinetic energy (EKE). This decoupling goes against the usual Transformed Eulerian
Mean (TEM) perspective, first introduced by Andrews and Mclntyre (1976), within which both
heat and momentum fluxes affect the zonal mean flow tendency through the Eliassen-Palm (EP)
flux divergence. The decoupling was further investigated in Thompson and Barnes (2014), who

found an oscillating relationship between EKE and heat flux with time periods of 20-30 days. A
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similar relationship was found between wave activity and heat flux in Wang and Nakamura (2015,
2016).

To derive a theoretical framework for understanding planetary-synoptic scale interactions and
the apparent decoupling of the baroclinic and barotropic parts of the flow, we use multi-scale
asymptotic methods as introduced in Dolaptchiev and Klein (2009, 2013) (hereafter DK09 and
DK13, respectively). This approach is taken as such methods provide a self-consistent (albeit ide-
alised) framework for studying interactions between processes on different length and time scales,
starting from a minimal set of assumptions. While the derived theory using these methods may
not be quantitatively accurate for the atmosphere, it can still provide qualitative value, especially
when trying to determine the causal relationships that are so elusive in standard budget calcula-
tions. This is analogous to the use of the quasi-geostrophic approximation, which provides a clear
qualitative picture of the large scale flow and both planetary and synoptic scale eddies, however for
accurate representation of the flow (e.g. in weather prediction), the primitive equations are used.
Therefore, the aim of this work is to find a theoretical framework by which to better understand
the emergent properties of observations and model behavior, rather than developing a predictive
theory.

DK13 used a separation of length scales in the meridional and zonal directions, with an isotropic
scaling for the synoptic scales, as well as a temporal scale separation between the synoptic and
planetary waves. Isotropic scaling for the synoptic scales is standard in quasi-geostrophic (QG)
theory (Pedlosky 1987), and a meridional scale separation has been argued to be a useful and
physically realizable idealization of baroclinic instability (Haidvogel and Held 1980). These as-
sumptions allowed DK13 to study planetary and synoptic scale interactions. However, they did not
derive a wave activity equation or develop explicit equations for the interaction with a zonal mean

flow. These aspects are the focus of this paper. For simplicity, we derive the asymptotic equations
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for the case of small-amplitude eddies evolving in the presence of a zonal mean flow, which is an
important special case of the DK13 framework. As well as giving a theoretical description for the
interaction of a zonal mean flow with planetary and synoptic scale waves, this setting also allows
a study of the link between baroclinic and barotropic processes, and the relative importance of
planetary and synoptic scale waves for these processes.

The outline of the paper is as follows. Section 2 gives the equations and assumptions used to
derive the potential vorticity (section 3), wave activity and mean flow equations (section 4), and
the angular momentum budget for the zonal mean flow (section 5). The momentum, continuity,
thermodynamic and vorticity equations at different asymptotic orders, which are needed for the
derivations, are given in Appendix A. Further details on the derivations of the mean flow and
angular momentum equations, and the non-acceleration theorem, are given in Appendices B, C
and D. The zonally homogeneous case with weak planetary scale waves is discussed in section 6,

and conclusions are given in section 7.

2. The multiscale asymptotic model

a. Nondimensional compressible flow equations

The asymptotic system of equations is derived starting from the nondimensionalised compress-
ible flow equations in spherical coordinates with a small parameter ¢! (DK09). To obtain the
nondimensional equations the DK09 and DK13 scaling parameters” are used, based on the as-

sumption that the waves are not propagating faster than the speed of sound. In this process,

1/3

le is defined as (a*ng’l) (global atmospheric aspect ratio), where Q is Earth’s rotation rate, a* is Earth’s radius and g the Earth’s

gravitational acceleration. € is a constant within the range 1/8 to 1/6.

2Pressure Dref = 103 Pa, air density Pref = 1.25 kg m 3, characteristic flow velocity ey =10 m s~1, scale height ks = Dref/8Pres = 10 km,

gravitational acceleration g =~ 10 m s~2, and time scale tref = he/trer = 20 min.



93

94

95

96

97

98

99

100

101

102

103

104

105

the following nondimensional numbers appear (DKO09): Rossby3 (Rogg = uref/ 2QLpc with

Lo = € 2hy.), Mach (M = u,, f /\/Pre 7/ Prey), Froude (Fr = uy.r/+/ghs) and the ratio of density

and potential temperature scale heights \/hy./Hg. These are related to the small parameter € ac-
cording to vM ~ \/Fr ~ Rogc ~ \/hsc/Hp ~ € (DK09). This procedure yields the system (the

full derivation is given in DK09):

% P (Wt;nq) uw) +e(wcos¢ —vsing) = R;C—_(ng—i”u (a)
( >+8usm¢—_R;lgg+s (1b)

%—8 (%+E>_SMCOS¢——%43—Z—8_4+SW (I¢)

%‘;’ — S (1d)

L
po=p'/Y (1f)

where § denotes source-sink terms (S,,,,, are the frictional terms, while Sg¢ represents diabatic
effects), sin¢ = f is the nondimensional Coriolis parameter, p is nondimensional pressure, 0
is nondimensional potential temperature, p is nondimensional density, (u,v,w) represent the
nondimensional 3-D velocity field, R = e3r, r = e 3a+ z where z is altitude from the ground,
a=a*e’ /hsc is nondimensional Earth’s radius, ¢ is latitude, A is longitude,  is time, all parame-

ters are nondimensional, and

2—24_83—”14_@14_ i (2)
Dt 9t Rcos¢p AL R 9¢ Yoz

Note that the shallow-atmosphere limit R — a is used here unless otherwise stated (this approxi-

mation is used as it holds well to leading order). Expanding R, the material derivative (2) involves

3Note that the Rossby number (Ro) used in DK09 and DK13 is 8’2R0QG as they used the vertical instead of the horizontal length scale to define
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horizontal advection terms —a~'&%z(u{acos¢,}~19/dA +va=19/d¢) that become relevant at

5" and higher orders.

b. Assumptions for multiscale asymptotic methods

In order to derive the multiscale asymptotic version of the equations, some assumptions must be
made. In particular, we assume small-amplitude eddies in the presence of a zonal mean flow. This
approximation is made in order to gain qualitative insight into the behavior of the system, and to
allow connection with previous theories of wave, mean-flow interaction. This can be considered a
special case of DK13, with the eddies (but not the zonal mean flow) scaled down by one order of €.
The assumptions for the scale separation between the synoptic, planetary and mean flow in time,
height, latitude and longitude are given in Table 1 (following DK13), where the subscripts m, p
and s represent mean, planetary and synoptic scales, respectively. Note that ¢ > ¢, (similarly for
other coordinates) since the same meridional distance is a much larger number when measured on
synoptic scales compared to planetary or zonal mean scales. Here A, is not considered as the zonal
mean flow is uniform in longitude, 4, and ¢, represent variations of the flow on planetary scales
(those of order a*), A, and ¢, represent variations on synoptic scales (of order 1000 km), and the
time scales are well separated between the mean flow, planetary and synoptic scale eddies, where
ts is of order a day, #, is of order a week and t,, is a seasonal timescale. The time scales emerge
naturally from the equations; #,, is £ slower than 1, because the eddy fluxes driving the zonal mean
flow changes are quadratic in eddy amplitude. (In the finite-amplitude theory of DK13, there is
no distinction between the two timescales.) As this is the small-amplitude limit of the system,
we expect that in practice the zonal mean flow time scale would be shorter. Note that from the
above assumptions we see that there is a separation of scales in the meridional direction, which

has implications for the final results (see further discussion in sections 3, 4 and 6).
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Using these scales, we can write asymptotic series for all variables; an example for potential

temperature (which provides stratification) is (following DK09, DK13):
0(2,0,2.1) = 1+ €07 (¢p.1m,2) + 701 (X, 2) +£*0 (X, X, 2) + .. (3)

where the number in parentheses in superscript represents the order of the variable, X, =
(Ap, 9p,1p) and X = (Ay, @5, 25). Here the first order term has been omitted as hy./Hg o< AB /6y ~
£€2; to make this &/(&) would lead to stronger wind variations (of order 70 m s~!) (DK09), which
would require a different treatment. Note that here the leading order variation in potential temper-
ature (2 depends on ¢, and z, not only on z as is the case for the static stability parameter in QG
theory.

In order to have a well defined asymptotic expansion (3) the sublinear growth condition (DK13)
is required. This means that variables at any order grow slower than linearly in any of the synoptic
coordinates, which effectively means that any averaging over the synoptic scales (Xy) sets the
derivatives over synoptic scales to zero (for more details see DK13).

The full set of equations at different asymptotic orders using the assumptions from this section
is given in Appendix A. This includes the momentum, thermodynamic and continuity equations,
thermal wind, hydrostatic balance and the vorticity equation. These equations are used in the

following sections to derive potential vorticity, wave activity and mean flow equations.

3. Potential vorticity equation

To derive the potential vorticity (PV) equation, a vorticity equation has to be derived first. To
do so (see Appendix A for the full derivation), take V x &(£3) momentum equation (A6) and use

the €'(£*) continuity equation (A15), which yields

d f o
a_tsgm +ul® .y, () 5% (p(0>w(4)) +pv) =, (4)
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where V= ((acos ¢) 19 /dAs,a19/9¢;), u® = u®e, is horizontal velocity of the mean flow,
B=aldf/d¢,, ¢ =¢We, = v, xul) is relative vorticity, u") = ("), v()) is horizontal
(3)

velocity at first order, Sy = e,-V; xS, and w® is known from the & (€%) thermodynamic

equation (Al11)

() 9@
@ 1 [ae J6 (

—_ 0).v g3 L u®.v g® L u).v g2 _ g
56079z | o5, T on T v,0%) +u®.v,6® 1ul).v 0 S] (5)

where V), = ((acos¢p) 19 /dAp,a='9/d¢),). Substituting (5) into (4) gives

foof P 1968 96W o o ) 0 v e () .u g2 6
p<0>a_z<ae<z>/az S, o T V0T T VO w0 S,

P
500 +u® v g0 gy =5, (6)

The first term in brackets on the left-hand-side of (6) can be simplified. Firstly notice that p(O),
62 and f do not depend on ,, thus @ /dt, can be brought outside the brackets. The other terms in
the first term can be simplified using thermal wind balance (A9a, A9b). This leads to cancellation
of terms with du(® /9z, ou' /dz, or 8u§,1) /dz (with ug) and u!") as the horizontal velocities for
planetary and synoptic scales, respectively), which means that velocities can be taken out of the

d/dz derivative. This yields the potential vorticity equation

d o 1 d\ @ d o 19N\ @3, ), (\p_ PV
(a_ts‘f’um aCOSQ)paAs)qs + a_tp‘f’l/lm ClCOS(])pa_)Lp dp +(Vs +Vp )ﬁ—S @)
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where

0)g(4)
4) o @, f 9 [ p76
a5 Xp Xor2) = TV S0 92 (ae<2>/az ’ 5
f o [ pWel
qp (Xp,Z) p(O)Q_z (ae(z)/az ) (8b)
0 (50)g(2)
B(Optmz) = B+ 12 G (8¢)
s b p@aoz |\ 20@/9; |’
_Xs,[s,ys
ov_ f 9 psy 8d
SOFH rrieyra (8d)
0 (56 _ &
s e vy xsP L2 ’ (Se K (Se)
S - %r S u p(o) az 86(2)/8Z 9

SPV = stV +S§V, 19 — 4 s the zonal velocity of the zonal mean flow, here 6) and 6(*)
correspond to planetary and synoptic scale potential temperature, respectively, 0@ is the leading
order potential temperature of the mean flow, n(!) = p(!) /p(0) g(i=2.3:4) — g (i=234) /9, q§,3) is

planetary scale PV, q§4) is synoptic scale PV, ﬁ is the effective background PV gradient, { (1) =

f71V27™) is relative vorticity on the synoptic scale, and S*V, S*¥ and SP" represent the source-
sink terms for the full PV, synoptic scale PV and planetary scale PV, respectively. A similar
equation to (7) can be obtained by linearising (AS) in DK13, though without the planetary scale
PV as it is then absorbed in the background PV gradient as the zonal mean flow. Similarly, (9)
below can be linked to (44) in DK13.

Equation (7) can then be split into planetary and synoptic PV equations, by averaging over

synoptic scales: only the planetary scale terms remain, and the residual represents the synoptic

scale equation (DK13). This yields

d o 1 dN W, a_ pv
(ats+um aCOS(PpaAS)qS +VS ﬁ_SS (9)

10
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for synoptic scales, and

O oL 9N @ s oy
<3tp+um acos ¢y, 8),p)qp tvp ' B=5, (10

for planetary scales. The synoptic scale PV equation (9) closely resembles the QG PV equation,
with the main differences arising in the background PV gradient.

The background PV gradient 3 resembles the background PV gradient used in Charney’s baro-
clinic instability model (e.g. Hoskins and James 2014). However, in Charney’s model (and also
in the QG model) there is no dependence of the static stability N? (linked to background potential
temperature) on latitude (¢,), as there is here since 02 = 9(2)(¢p,tm,z). The QG background
PV gradient, on the other hand, includes the mean flow relative vorticity gradient (—(92u,(,9 ) /0 ¢5),
which is not present here due to the planetary scaling. This means that B represents planetary
geostrophy (e.g. Phillips 1963, DK09), but it is more realistic than in QG due to the dependence
of background PV gradient on latitude.

The planetary scale PV equation (10) also resembles the QG PV equation, however the planetary
scale PV (8b) only includes the stretching term (again due to the planetary scaling we chose).
Note that the planetary and synoptic scale PV equations are independent of each other in this
small amplitude limit, which implies no direct interaction between planetary and synoptic scales
— their interaction only occurs via source-sink terms, the mean flow, or at higher order. This
independence is not present in DK13’s finite amplitude theory where the synoptic and planetary
scale waves interact at leading order.

This analysis suggests that the QG approximation can be used locally for both planetary and
synoptic scale PV. Note, however, that this is only true in this small amplitude case (in the finite

amplitude theory of DK13 this approach is not applicable for the planetary scales).

11
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The potential vorticity equation can be written in a different form (the one used in DK13 for the
planetary scale), with a vertical advection term in the PV equation, starting from (6). Following

the derivations in DK09 and DK13, we get

(0)
p Ku(l) Vo +w(4)§) a + (i +ul) -Vs) ¢\ + (i +ul) -Vp) qﬁfé} — 52
Z ) )

89(2)/81 dty dt,
(11)
where
@ ¢Wae® f g9
952 = p0 9z T p© 9z
3 _ f 9603)
2= 50 97
@ f 06?)
po P 97 and
asy)
V2 _g f o
$* 300 /a7 oz
Here qu), qs%, qf,% ) , and SPV2 are the DK synoptic, planetary and mean flow PVs, and the corre-

sponding PV source term, respectively.

The PV equation (11) is closely related to the Ertel PV equation. However, it includes vertical
advection, which is problematic with respect to obtaining a QG wave activity equation. As shown
in (7) we can eliminate the vertical advection term by including it in the stretching term of the
synoptic or planetary scale PV. This is similar to the classical QG approximation of Charney and
Stern (1962), in which they point out that the QG PV equation is the QG approximation to the
PV equation, however the QG PV is not the QG approximation to the Ertel PV (because the QG
PV equation only includes horizontal advection). Notice that in (11) there is also the mean flow
PV, whereas equation (7) only has the background PV gradient that came from this mean flow

PV (but not via the direct meridional derivative of qf,% ), ie. B # 8q£,% ) /9dyp). This means that the

12
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QG approximation of PV would not work for the zonal mean flow, which is consistent with the

arguments above on the relation between the QG PV and the Ertel PV.

4. Wave activity equation and the equations for the mean flow

a. Wave activity equation

Wave activity is a quantity that is quadratic in amplitude and is conserved in the absence of
forcing and dissipation (e.g. Vallis 2006). To derive an equation for wave activity, known as the

) (3)

Eliassen-Palm (EP) relation, we multiply the PV equations (9) and (10) by q§4 and g, ', respec-

tively, and divide them by B (as done in e.g. Plumb 1985). This yields

d.s

7+V§’D-F5 = gva (12)
047, a
atpp +V,7 Fp =S, (13)
where
4 2
o — pOgY
S Zﬁ Y
2
_ pOgs)
14 ZB

are synoptic and planetary scale wave activities, respectively, S = SV p(O)q§4) / ﬁ and S) =

stY p(O)qg) /P are wave activity source-sink terms,

0 4)2 (1) p(4
F, = (”5?)%+£ <V§1)2—u§1)2——9() >’—p(°)v§”u§”,p(°)f s )

2 0012 /9z 002 /9z
(0) B3y (1) g(3)
(0 P 0T oy 07
Fp= (”’" D7 36702 P 5005z

are synoptic and planetary Eliassen-Palm (EP) fluxes, respectively, and V32 means that the gradi-

ent includes the vertical derivative.

13
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Note how the planetary scale EP flux does not have a meridional component (no momentum
flux), and that the synoptic scale EP flux closely resembles Plumb (1985)’s total flux B(T), with
the main difference, again, arising in [§ Also, ugl) is actually composed of ugl) = [u]gl) + u;k(l)
(with [.] as zonal mean and * as perturbation from zonal mean), which is another difference to
Plumb’s B(T) flux.

We can also relate these expressions to Hoskins et al. (1983)’s E-vector, where the difference
is in the zonal component of the E-vector, which lacks the wave activity advection ([u].</) and
potential temperature (o< —0*?) terms.

Nonetheless, the synoptic scale EP flux is similar to the QG form of EP flux (e.g. Edmon
et al. 1980), especially if zonally averaged. The planetary scale wave activity implies that the
momentum fluxes and hence barotropic processes at those scales are less important than heat
fluxes and baroclinic processes. Also, this emphasises the fact that planetary and synoptic scales
do not interact directly, but rather through other processes (source-sink terms or the mean flow)
as the two wave activity equations are at different orders and have no “cross” terms. The wave
activity equations are at different orders as the planetary (10) and synoptic (9) PV equations are
multiplied by q1(,3) and q§4), respectively, which are of different orders. This is because they have
different horizontal derivatives associated with them (g, has synoptic and g, has planetary).

Averaging over synoptic scales (A, @,;; denoted by overline and s) in (12) and over planetary

scales (4,,1,; denoted by overline and p) in (13) gives

- =SV~ —rod 14

9z 202/9z | — > i ()
- P

P v e0) —

v 0) p¥p _ wal ~ _ 14

2. \P 00170z | =S T (1)



248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

where r; , are effective damping coefficients. Note that the approximation SW“ Py, s, ps’p
does not follow from the equations themselves, but is a heuristic relation used as a device to help
us better understand the physical interpretation of the equations. These equations imply that under
these averages both synoptic and planetary scale wave activities change via heat flux terms on
timescales longer than 7 or 7, (as we averaged over those) - e.g. timescale €%t (between tp and t,,)
or t,,. Averaging only over the zonal and time dimensions, the synoptic scale wave activity would

still be influenced by the synoptic scale momentum fluxes.

b. Barotropic equation

As the wave activity equation represents the equation for the eddies, we need additional equa-
tions for the mean flow to get the influence from the eddies on the mean flow. The barotropic
pressure equation is derived (following DK13) from the & (85) momentum equation (A8) using
the relevant thermodynamic, hydrostatic, thermal wind, momentum and continuity equations av-
eraged not only over t;, Ay, @ and tp, lp, but also over z (denoted by overline and z). This yields
momentum equation (B6) (see Appendix B for more details), which can be used to derive the
barotropic pressure equation, taking d/d3, of (B6), eliminating the term o (\/VT P Z) /9%,

via (B5), multiplying it by f and recalling (A4):

d [ d 10 spi B d —myspa —s7p7z> d B
RV ) o) ( ) (2) __~N + =N — fN2=—-S§ arotropic
atm (aypfayp f yp fp 8)’p 1 f 1 f 2 barotrop

(16)

with

$,P,Z S,P,Z
Ny = i(P(O)vg)ug) +p(0)v§1)u§1)> _ tang, (p(o)vg)ug) +p(0)v§1)u§l)) ,

a
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——— =8P
Ssarsopic = 10T+ 40— | (p@ +pp2)) 2
95 f
0 ——s.p2 P O (0)@”7 * 1
+ (_~_E) P(O)S,(;) o —i—{ - _tanq)p} Su u0)p(0) _ P20 - cos 9p
IFp IV a f 106 /97

where the underlined terms represent eddy forcing of the mean flow, d/dy, =
(acosd,)'dcos,/d¢,, and 3/dy, = a~'d/d¢,. This evolution equation (16) for p(®
on the t,, scale is similar to DK13’s p(z) evolution on the 7, scale when no source terms are

considered. Using geostrophic balance for u(?), (16) can be rewritten as

op@ " g
P + (8)7 - ?) N1+ Ny = Sbarotropic' (17)
p

(2 By

) a7

This equation implies that although both the synoptic and planetary scale momentum fluxes
affect the barotropic part of the mean flow, only the planetary scale heat fluxes N, are relevant.

The zonal mean flow equations at different orders can be further written in TEM form (Andrews
and Mclntyre 1976; Edmon et al. 1980), from which a non-acceleration theorem can be derived
using the wave activity equations. This is addressed in Appendix D. Note that an evolution equa-
tion for p) can also be derived, however under the Ap, Ag,ts, @5,z average it only evolves through

diabatic and frictional processes (D9).

c¢. Baroclinic equation

The barotropic equation (17) shows how barotropic processes affect the zonal mean flow, how-
ever we are also interested in the baroclinic processes. Therefore, a baroclinic equation for the
zonal mean flow (i.e. equation for baroclinicity o du(®) /dz) is derived from the &(g”) thermo-
dynamic equation (A12), using the relevant continuity and momentum equations averaged over f,

As, tp, Ap (denoted with overline), and taking d /dy), of the resulting equation (B7b). The relevant
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= equations (and their derivations) are given in Appendix B, hence using (B10-B14) yields:

—;Ls’tszp
0 du© 0 0 [T el 0 [ ——Asilep
_2 0%~ (1) 5(0)9(3) 2 (D50 9@
o (fp & ) o v, (7070 )*ays(“p ’

—————Asls,D
AN N NPT )l”t“pae /9y, o
dyp |9z \'* /92 ! ax,,
lszP
2 |00@ o oo [ o [vul)
- 0) = == d =S aroclinic 18
8yp[ . /0 P 8)7s(3)7s( 7 Z barocl (18)
25 With
— s ls,p ——— sl — = Asits,p
S = 2| 2 (S g | PSS s 9e®
baroclinic ayp 3)7s f (2)/8Z f 8yp
_szJs,P _/’Lst’P
9 |y et 00@ 9 ZS£,3) 9 [ zsY
T L e Y E -y - D
dy, | 0 dz Iy \a f 9z | agep2 )/dz
——As ls,p ——Asls,D Asits,D
S T 2 L R AT TV wm\" )|

»»  Where the terms with z/a come from corrections to the shallow-atmosphere approximation of the

=s thermodynamic and continuity equations. Averaging (18) over the synoptic meridional scale (¢y)

289 giVeS
p) PR W T B B o e e PN B o e mvesone TP T (OB
_2 (0) 2%~ A D G CODNTI) P I I O BNV P A Ay
I (fp 9z )+ay,, [ay,, (V” pe ) 9z (V" A IO
Sl?zzroclinic

(19)

20 Which implies that baroclinicity is not affected by the synoptic scale heat fluxes (p(o)vgl) o) ), only
201 by baroclinic source terms (Spqroclinic) and planetary scale heat fluxes (p(0>v§,1)0<3>). The absence

=2 Of a synoptic scale heat flux contribution to the baroclinicity tendency is discussed in section 6.
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5. Angular momentum conservation

Apart from the mean flow equations (baroclinic and barotropic) and the eddy equations (wave
activity), angular momentum conservation provides additional information about the transfer of
angular momentum between the earth and the atmosphere, which has implications for the surface
easterlies in the tropics and westerlies in the midlatitudes (e.g. Holton 2004). Hence, it is important
to show that such a budget can be found also in the asymptotic model.

Generally, the angular momentum for the hydrostatic primitive equations takes the form (e.g.
Holton 2004)

M = aucos ¢ + a*Qcos’ o (20)

where a is the radius of the Earth, Q is the Earth’s rotation rate, ¢ is meridional coordinate, u is
zonal velocity, and M is angular momentum per unit mass.

In the asymptotic regime, a nondimensional version of angular momentum must be used. To
derive the nondimensional version of (20), define nondimensional terms (similarly as in section
2) u=u s, a= a‘e 3hy, Q= %Q* (2Q.f) and M = M*urefhsce_3, where u. s and hy were
defined in section 2, Q. is the Earth’s rotation rate (previously denoted Q), M o €73 as it needs
to be of the same order as other terms, and the asterisk (*) denotes nondimensional parameters.
Now divide (20) by u,, rhy- to get nondimensional angular momentum

hge 1 hge hg2Q2
e3M* = a*e 3 U T cos ¢+ (£73)2 (af) 2o Qr e el 02 . 1)
Uref hse 2 hge e f

Cancelling out a few terms, setting Q* to unity, recognising that* 7,.2Q,, f [Ure = Ro '~ ¢, and

omitting asterisks for simplicity, yields the nondimensional angular momentum

51

e°M = 8_3aucos¢ +e3™ Eaz cos? Q. (22)

4Here the Rossby number used is the same as the one defined in DK09, DK13: Ro '~ Rogg ~ €.
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Taking the total derivative (2) of M in (22) gives the nondimensional angular momentum equation

DM
32 3

= 8_
Dt

D
acosq)D—?—uvsin(p — e 2afvcos ¢ (23)

using @ /9t = €9/ ty,, w® = wl) = () =) = 0 (as derived in Appendix A), and all param-
eters are nondimensional. Notice that

dcos? ¢
¢

= —2cos¢sing,

which means that the factor 2 from this equation cancels out the factor 1/2 in M (22). Here

D
V= 8_3a—¢ =ev(D +82v(2) + ..
Dt

u= u(o) -i—eu(l) —|—£2u<2) 4 ...

The angular momentum equation and its conservation for the zonal mean flow (u©)) are derived

in Appendix C. The second order angular momentum equation is

DM Du(® )
pE = acos (Ppp(o) o (p(O)u(l)v(l) _|_p(0)u(0)v(2)) sin ¢,
—f(p(o)v(4) + p(Z)v(Z) + p(3)v(1))acos Oy, (24)

from which it is shown (Appendix C) that M is conserved (using the 5 order momentum equation

ASB) in the absence of source-sink terms and orography, yielding

///Vp@f)%dvp:o (25)

where V), is volume on planetary scales (A, §,,2).
The barotropic pressure equation (17) can now be rewritten using the angular momentum equa-

tion (Appendix C) as

$,P52

— —8,P.Z -—
<i _ E) { p_DM ,,z} ) (p<0>v§}>e<3> ”)
a5, f) lacos¢, Dty At At IV,
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where the overbar denotes average over #,1,,As,A,, @s,z. This shows that the two quantities are
directly linked.

Note that the surface pressure tendency 8@”“ /9ty in (17) and (26) reflects the response of
planetary angular momentum to an imposed torque, via mass redistribution, and is an essential
component of the angular momentum equation at planetary scales (Haynes and Shepherd 1989).
The present analysis has shown further that the planetary-scale meridional heat flux contributes to
this meridional mass redistribution. That the synoptic scale heat flux does not so contribute can be

anticipated from the scaling arguments of Haynes and Shepherd (1989).

6. The zonally homogeneous case

If there are no forced planetary scale waves in the system, then there is no justification for
separate A, and ¢, scales. If the zonal and synoptic scale (including ¢;) average is taken in such a

case, then the wave activity, barotropic and baroclinic equations become:

P} NOPS -
90 Y O )
22\ P qemaz | = (272)
P 0,07 5,@""" P . .
(W_g) e +(ay~ _§> NTP = Sparomropic 75, (27b)
P m m 14
P EOR W
_W (fp(O) SZ ) - Sbaroclinic ,p‘ (27C)

These equations imply that under synoptic scale averaging, and to leading order, the wave activity
is only affected by the heat fluxes through a quasi-steady balance, the barotropic part of the zonal
mean flow tendency is only affected by the momentum fluxes (in Nj), and the baroclinicity ten-
dency is only affected by source-sink terms. The latter can, however, be related to the source-sink
terms in the wave activity and barotropic pressure equations. The most surprising of these rela-

tions are (27a) and (27c), which depend crucially on the averaging over ¢. When the equations
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are not averaged over ¢, then momentum fluxes appear in the wave activity equation and heat
fluxes appear in the baroclinicity tendency equation.

These findings may help explain the empirical results of Thompson and Woodworth (2014), who
found that the barotropic and baroclinic parts of the Southern Hemisphere (SH) flow variability
were decoupled, with the barotropic part of the flow (characterised by the Southern Annular Mode
(SAM), based on zonal mean zonal wind) being only affected by the momentum fluxes, and the
baroclinic part of the flow (characterised by the baroclinic annular mode (BAM), based on EKE)
being only affected by the heat fluxes. We assume here that the wave activity is closely linked to
EKE. Indeed, Wang and Nakamura (2015, 2016) found that wave activity during the SH summer
is only affected by the heat fluxes under an average over a few latitudinal bands (approximately
10°), giving an equation similar to (27a). Here we put this view into a self-consistent mathematical
perspective.

In a separate study, Thompson and Barnes (2014) found an oscillating relationship between the
EKE and the heat fluxes with a timescale of 20-30 days. In their model, baroclinicity is affected
by synoptic scale heat fluxes, through the assumption that

92 [v*T*|

ayz _ _12 [V*T*],

where [ is meridional wave number, T is temperature, [.| represents zonal mean and asterisk (*)
represents perturbations therefrom. This relation is not present here due to the chosen scaling
and the averaging over synoptic scales. Equation (18) does in fact have the heat fluxes, acting
on synoptic scales, which due to the sublinear growth condition (DK13) disappear in (27c), as
mentioned above.

Pfeffer (1987, 1992) argued that heat fluxes (vertical EP fluxes) grow in the part of the domain

with low stratification parameter S. Pfeffer’s S can be related to € as S = (Lg/a*)? ~ €2, where
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Lg =~ €a* is Rossby deformation radius (a typical synoptic scale) and a* is Earth’s radius (a typical
planetary scale). Since here we consider the case with € < 1, we are then in a regime where § < 1
and hence the heat fluxes act to drive the residual meridional circulation rather than the zonal mean
flow, and the vertical derivative of the zonal mean flow (i.e. baroclinicity) is not related to EP flux
divergence to leading order (see equations (6)-(9) in Pfeffer 1992). This suggests a barotropic
response of the zonal mean flow to eddy fluxes after averaging over synoptic scales, which is
consistent with (27b) and (27c¢).

Zurita-Gotor (2017) showed further that there is a low frequency suppression of heat fluxes (at
periods longer than 20-30 days) and concluded that at longer timescales (considered here) the
meridional circulation and diabatic processes are more important for the baroclinicity than the

synoptic scale heat fluxes (consistent with (27c)).

7. Conclusions

In this paper we have provided a theoretical framework for planetary-synoptic-zonal mean flow
interactions in the small amplitude limit with a scale separation in the meridional direction, as well
as in the zonal direction, between planetary and synoptic scales. Thus the synoptic scale eddies
are assumed to be isotropic (which is the case also in QG theory). These assumptions allow us to
derive strong results, e.g. a lack of direct interaction between the planetary and synoptic waves,
and a lack of a direct link between the baroclinic and barotropic components of the flow when only
synoptic scale fluxes are considered.

We derived planetary and synoptic scale PV equations (9, 10), and equations for the eddies
(wave activity equations (14-15)), the barotropic part of the zonal mean flow (17) and the baro-
clinic part of the zonal mean flow (19). A crucial step in deriving these equations was finding a

form of the PV equation that eliminated the effect of vertical advection. The synoptic scale PV
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then resembled QG PV and the planetary PV resembled that of planetary geostrophy, i.e. with only
stretching vorticity representing PV on planetary scales (e.g. Phillips 1963). These equations pro-
vide an alternative view to the conventional Transformed Eulerian Mean (TEM) framework (first
introduced in Andrews and Mclntyre 1976), which combines all components into two equations
that are linked through the Eliassen-Palm flux.

The background PV gradient (8c) that emerged from the equations lacks the relative vorticity
term as in planetary geostrophy (Phillips 1963), implying the dominance of baroclinic processes
for eddy generation. Thus this PV gradient resembles that of Charney’s baroclinic instability
model (e.g. Hoskins and James 2014), but is more general as it includes variations in static stability
in both the vertical and meridional directions. The latter should be stressed as this is the main
difference to QG dynamics in this model.

In terms of the baroclinic life cycle (Simmons and Hoskins 1978), the barotropic pressure equa-
tion (17) would be relevant in the breaking region of the storm track and the baroclinic equation
(19) would be more relevant in the source region. We also showed that only the planetary scale
heat fluxes affect the baroclinicity (19), that both planetary and synoptic scale momentum fluxes,
as well as planetary scale heat fluxes, affect the barotropic zonal mean flow (17), and that the
planetary waves and synoptic scale eddies only interact via the zonal mean flow, the source-sink
terms or at higher order approximations. Since both the barotropic (17) and baroclinic (19) parts
of the zonal mean flow are affected by the planetary scale heat fluxes, the latter could provide
a link between upstream and downstream development of storm tracks. The barotropic equation
(17) was also directly linked to the angular momentum equation (26), which has not been noted in
previous work. This linkage revealed the importance of planetary scale heat fluxes (via meridional

mass transport) for the angular momentum budget (Haynes and Shepherd 1989).
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The importance of planetary scale waves was also noted in Kaspi and Schneider (2011, 2013),
who found that the termination of storm tracks downstream is related to stationary waves and the
baroclinicity associated with them. Stationary waves are especially important locally in contribut-
ing to heat fluxes, which enhance temperature gradients upstream, and reduce them downstream.

When considering only the synoptic scale eddies (when planetary scale eddies are weak, as
e.g. in aquaplanet simulations or in the Southern Hemisphere), we find that under synoptic scale
averaging the barotropic zonal mean flow (27b) is only affected by the momentum fluxes, the
baroclinicity (27c) is only affected by the source-sink terms, and wave activity (27a) is only related
to heat fluxes (as in Thompson and Woodworth 2014). This suggests that the baroclinicity is
primarily diabatically driven. Understanding the decoupling of the baroclinic and barotropic parts
of the flow (in the case of weak planetary scale waves) is addressed in a companion study (Boljka
et al. 2018), where it is shown that at timescales longer than synoptic the EKE is only affected by
the heat fluxes and not momentum fluxes, confirming relation (27a).

As well as helping to understand a variety of previous results in the literature, one potential
use of the theory presented here could be to help understand the barotropic response to climate
change, which is fundamentally thermally driven. In general, we need a better understanding of
the interaction between the baroclinic and barotropic parts of the flow, where planetary scale heat
fluxes and diabatic processes may play an important role.

This theoretical framework could be extended by allowing finite amplitude eddies (as in DK13)

and by relaxing the assumption of a separation of scales in latitude (e.g. Dolaptchiev 2008).
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a3 APPENDIX A

@ The Multiscale Asymptotic Version of the Primitive Equations

«s  Using the assumptions from section 2b the momentum, thermodynamic, continuity, hydrostatic
= and thermal wind balance equations at different orders (¢ (i)) can be derived following DK09,

440 DK13.

w1 Hydrostatic balance

«2  Up to 4th order:

L i=0,..,4. (A1)

«s  There is also a relationship between p and 0 as defined in (47) in (DK09):

o)

=00 . =234 (A2)
dz

« where () = p() /p (). This identity at the fourth order only holds if ﬁ of 0 is taken (and this
«s relationship will only be used in this case).

«s  Using (A2) and (A1) one gets a relationship between p, p and 0:
p = p _p©0gl) . ;=23 (A3)

«7 where an assumption is made that p(o) =exp(—z).
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449
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452

453
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457

458

459

460

Momentum equations

Below is the list of all momentum equations up to 5th order. Note that we derive the PV and wave
activity equations from the 3rd order momentum equation, and we obtain a barotropic equation
for the mean flow from the 5th order momentum equation.

O (&") - geostrophic balance for zonal mean wind:

0

ferxu® = fe, xull) = —v, 72 = — % z(%¢, (A4)

a—ypn
where subscript m refers to the mean flow - u(?) is related to the zonal mean zonal velocity. Note
that v(?) = 0.

7 (82) - geostrophic balance for 1st order wind (planetary and synoptic scale perturbations to

zonal mean):
ferxull) = — (v, 4 v,z9) (A5)

where ul!) = ug,l) + ugl) (with subscripts p and s referring to planetary and synoptic waves, re-

spectively), such that fe, x ul(gl) = —Vpn(3) and fe, x uﬁl) =-V,a¥,

0 (&%) - first nontrivial order, used to derive PV equations:

(1) (0),,(0)
a:;ts +u®. vl + fe, xul +e¢uua—m¢p N
(2)
_Vpﬂ(4)+%vpn(2)_vsﬂ(5)+sg3) (A6)

O (&*) - we require only the u-momentum equation:

ou®  gul) d 0
27 4T (1). ML 2 (0,02 0),,(1)
+ +u'"’-Vu —|—a~s (u u >+ <u u >+

ot dt) 7 9_,510
0),,(1
W0 90 20 _ gy Ovtang,
Iyp dz a
2 3 (p® 9 2 (o
_ 96 )2 g0, 9 (PP ) @
ax," o <p<°>” AT VUL (A7)



1 0(&3) - again we require only the u-momentum equation, used to derive the barotropic pressure

« equation (equation for the zonal mean zonal flow):

ou®  9u®  9u®
I o, | or,

0 0
(1). 2) 2). My 2 (,0),03) = (,0),2)
+u’ -V +u'Y -V 4 9%, (u u >+ &)Ep (u u >+

a7, @00 @ 20 40 00 @)

I 9z 9z
_u(O)v(zc)ltanq)p B u(l)v(lc)ltanfpp i cos g, — _aixpﬂ(e) aixp (%ﬂm)) n %aixpﬂ@)_
O.%Sn”) + aixs (%n(5)> +aixs <%n(4)> +55)
(A8)
« where in all equations By&,,‘s = % agp‘x, ay?p = ac ols 5 95;;?,, , a}?p S = 85,7,.? = Cols 5 afm, V), and V;

« are the horizontal gradients in a spherical coordinate system (with the above x and y coordinates,
ws tilde is used when V is used as curl or divergence), and ey and e, are the unit vectors in the

« latitudinal and vertical directions respectively.

w7 Thermal wind balance

ws  Using (AS) and (A2):

J 1960)

201

aZu F oy, (A9a)
d 1
dan_1 () Ly g
" fe,x(vpe +V,619). (A9b)

w Thermodynamic (0) equations

<  Below is the list of all needed thermodynamic equations. Note that all orders below &' (85) give
o nothing, thus the first order that appears below is 0'(£°).
472 6(85)3

B__"60 _9 A10
T IRNEE (A10)
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473 6(86>3

G e@ @ @
96 06 9 (u(0)0(3))+i~(u(0)9(4)>+v(l)%+w(4)ag—zzs(96) (ALD)

474 6)(87)3

204 960 96 9
o, o | mm 9%,

) 6@ 261 26
0)g(5) 2) 4) (5) _ ¢
+8)ZS (u 0 > +v 3, +w 7z +w 9z So (A12)

<u<o>9<4>) +u.v,60) +ull. v @

ws  Continuity equations

«  This is the set of all continuity equations (also the trivial ones as they give us information about
w7 vertical velocities).

0 1 2.
478 ﬁ(e ),ﬁ(e>&ﬁ<8 )

ow(d)

== =0 ; i=0,12 (A13)
0z

@ O(€%) (here note that w(®) = 0 from the thermodynamic equation (A10) and that V all =0 by

480 deﬁnition):

vV, u =0 (A14)
481 ﬁ(84):
Vo (up®) 47, (u@p©) 4 ai (w9 =0 (A15)
Z
482 6(85>3
v,. (u@) p<0)> Ly, <u<3) p(0>> n ai <W<5) p(0>> _0 (A16)
Z
483 ﬁ(86):
op®?  op (3),50) 4 y(Dp® 1 40O
ot, o +V”.<u priAwEp T A UTp >+
V.. (u<4> p© 4@ 4 4@ _y(0) p<o>§> +a% <W<4> p® 1,0 p<0>) _0  (Al7)
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484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

o(e"):

Z
oty + at, + ot

v, (u<4> PO 4@ p® 4 y1)pB) 4y 5@ _y(1) p<o>_>
a

V- (u®p® 4 p® 1 u®p®) 4 ullp 1 u®p®) —ul?pl0%)

a

+ai (W90 4w0p@ 4w Mp0) =0 (aL8)
Z

where terms with z/a come from corrections to the shallow-atmosphere approximation at higher

orders. Note that these terms vanish in the zonal mean and/or synoptic scale average.

Vorticity Equation

To derive the vorticity equation, take V x ¢(¢3) momentum equation (A6), and note that terms
with V; x V; and synoptic scale derivatives of terms (7, p, 6) that do not depend on synoptic

scales (up to 3" 4 order) are zero. This yields (following DK13):
d
5-¢0 4V, x (u<0> ~Vsu(1)) 'V, x (fe, X u(2>) =V x Vo +v,xS8Y  (A19)
s

where V; = ((acos¢,)'9/dAs,a'9/d¢;), V), = ((acos¢,)~'9/dA,,a'd/d¢,), the num-

bers in superscripts denote orders of variables, u = (u,v) is horizontal velocity, T = p/p, ¢ 1) =

V, x ul is relative vorticity, and as V and u) have only horizontal components ¢ ) = 4 (De,.
(3)

The source term S,; represents frictional processes. Note that V; x V,z*) = (0,0,V, - ( qu‘))).

Taking e,- of (A19) and applying the vector identities as in DK09 and DK13, we get:

%;(1) +u®.v,c0 4 v u® = v, (ful)) +¢, -V, x SO (A20)

where Sy = e, V; X s and V, - (fu))y = v, -u) + vVcos¢,/a with a~'cos¢, =
a='df/d¢, = B. Since u? is not known, we use the &'(¢*) continuity equation (A15) to ob-
tain the vorticity equation:

d f 9

ZeM g0y e S 7 (50,4 (1) —

5 S a0 vl - (pOw ) + By = s (A21)
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« where w® is known from the & (€°) thermodynamic equation (A11), which can be used to derive
s the potential vorticity equation. This vorticity equation resembles the QG vorticity equation (e.g.

+ Holton 2004), but now there are different scales represented in the equation.

133
S

s02 APPENDIX B

508 Derivation of the Mean Flow Equations

s« . Barotropic equation

ss This section shows the steps in deriving the barotropic pressure equation - combining the correct
s thermodynamic, hydrostatic, thermal wind, momentum and continuity equations (see Appendix A)
= with the &(&>) momentum equation (A8) averaged over #;, A, ¢, tp, Ap, z (denoted with overline).
ss INote that the vertical mean assumes w = 0 at the top and bottom boundaries. This section modifies

o the momentum (AS8) and thermodynamic (A12) equations, which can then be used to derive the

a

o barotropic equations in section 4b (following DK13).
sn  First average the flux forms of all equations mentioned:

se  Momentum Equations at 0(&3), O(e*), 0(&°):

v@ = _@;m, (Bla)
v3) = _Kiw, (B1b)
du®p@~ g 5,p2 5.0z
I (vu)u(l)p(m V240 0) )
_ta‘;"’P (Vmu(l) """ v<2>u<o>p<o>°””z> — pOy@
+pOw®™ cos g, = p®) ‘987;( i +pOsO ", (Blc)
p
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Continuity equations at &' (e*), 0(&°), 0(&%), O(&7):

% (V(l)p(o)s,p,z) 0, (B2a)
p
% (@) =0, (B2b)
4
% (V(Tp(o)s,p,z) 0, (B2c)
p
—zs,p,Z S,D, s >
8;0;: +ai~ <v§})p(3) pz+v<z)p(2>"”’z+v<4)p<0>"”’z> = 0. (B2d)
m p

Thermodynamic equations at &(&%), 0(&7):

—S,p,2 @sﬁ?z
arri_ Se
L I e o Pre A W v
" (v,, 0000 " L B0 ):Se 0@ (B3b)

oty Iy,

Hydrostatic balance at &'(£?)

o = 0@ 4 @, (B4)

Equations (Bla,B1b) show that v and v are related to source terms, thus in the equa-

tions below they will be replaced by them. Note that p(3) o [Ox,=f p(3)v§,l) (via (AS)). Taking

the hydrostatic balance equation (B4), using it to substitute p(z) in the continuity equation (B2d)

S,DP,%

and matching the dp(©)9(2) """ /9t,, term in the thermodynamic equation (B3b) yields

2 5Pt L3 8} L3 8} S
8p;) o (Vg)p“))@@) T e @0 N)
Im

S,P2
— pOs) @) 4 p0g@) St
=p0sy" | (p@ +p0612) : (BS)
Iy,



= Rewriting the momentum equation then gives:

S,

1 9u©p©)

L 9 (WW’Z> _ ltan op (mw,v

+ e
f It fa)’p foa
SO @P @, L 0@ L 9 S ) o)
pYv Py, fp Su +f8)7p fup
— Y 5,PZ _6571771
tangy (870 0 | _PUSy cos
f a f f06@) 9z

(B6)

=7 Lhe latter two equations are then used in section 4b to derive the barotropic pressure equation (16)

ses  OI (17)

20 b. Baroclinic equation

s This section shows the steps in deriving the baroclinic mean flow equation, which is derived

= through the ¢'(¢7) thermodynamic equation (A12) using the continuity and momentum equations

<2 averaged over f,, Ay, 1, A, (denoted with an overbar). The averaged equations are:
g p>Ap ged eq

=  Thermodynamic equations at ' (£°), 0'(¢7):

——t5,As,p
Wls,lmp - 5(96)
= 900)9z
—Sv)tﬁp
Ip0e" O (T oA et Ap
090 2,060
o +8)7p (vp p\Yo +v@po )
—t.Y72’S7 —_— —tS72'S I
+ai~ (V§1>p<0>9<4> R NOFTE RN p)
Vs a
_ 1. —thl&v Ao (2) —ISJ«S:
+ 9 (W@ ™ _ @ Z T L oo 00T e
dz a Jz 0

s Where terms with z/a come from corrections to the shallow-atmosphere approximation.

=  Continuity equations at 0'(¢*), 0(&>):

5 (PO ) 4 2 (e ) £ (W) o,
ayp 3)7s aZ
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% (v(2) p<0>”’“‘”’> + % (v(3‘>p<o>’“’“"’) +§Z <w<s‘)p<o>“"’“”p) —0. (B8b)
P s

Momentum equations at &(&3), 0(e*):

ZYY Svly,p
3)
_.hﬂnﬁp S
pP _ Su (B9a)
f )
_tS 7}LS-, —ts 72'5'7 —
s Asp Sb(,4) 3 0 ugl)vg) g w(4)ls’%7p ou'0
e Se 0 " . (B9b)
f a)’s f f dz

Here note that terms with vfnl) 00 or w* o), vg,l) and w'*) cannot simply be averaged over Ap and
1, - we need to average vg,l) 6G) or w* 93 together as also 6G) depends on planetary scales. This
means that, in order to replace the w® and vg,l) terms in equation (B7b), the /(&%) thermodynamic

equation and &'(£®) momentum equation have to first be multiplied by 6©) and then averaged over

As,ts, Ap,tp. For the 0 (€%) momentum equation this gives

AP 1 Asp
——tdp OGS 00 9"
03, P _ T ou n . (B10)
f f odx,
Multiplying equation (B10) by p(o) and taking d/d7; of it yields
—IS’AS’P Is A’Sap
0 ([t dap o [p©ed)st) 963"
— [ p0eB3)y(2) =_—— “ (0) g4 B11
35 (paTE ) = 7 P s, B1b
where u§]) =—f1on® /dys was used. However, it is more complicated for the thermodynamic
equation - here is a short derivation: First multiply the equation by 6G)
10607 960G 1 9 S
Z - 0)g(3) 2 (6B3),09#)
2o, T o +2axp<” 0) + 5 (00 %0)
2 2
10®,029Y 06,0207 _ g0 B12)
yp 0z 6
then average it over Ay, 75, A5, 1,
—t‘ha‘s‘)p
A, SWYL o) (3)5©)
9(3)w(4)t°’l“p = —9(3)\/(1)&’%’1989 [9yp , 85 (B13)

300z 9612 /az
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564

tS7 S

———1,A
We can derive an equation for w® p(©)""*” by integrating (B8b) over z and using (B9a) and (B9b).

This yields:
—lhlsvp
o s P Tmax d 0 v(l)u(l)

()@ — O | LB ) |dz+s Bl4

v 0 3375 8)7s f o w3 ( )
with

——t5,As,D ——t5,As,D —<ts,Ass D

¢ __/Zmax ERRG Séé) 8u(0)/8z_Sb(¢4) _d (0)51(43) J
=L e | P o e0®ja;  f 5, \P S ©

These equations are then used in section 4c to derive the final baroclinic equation for the mean

flow (18, 19).

APPENDIX C

Derivation of the Angular Momentum Equation

This Appendix shows the derivation of angular momentum conservation for the zonal mean flow
(u(O)) equation, following from the & (85 ) momentum equation (A8). Note that similar systems
can be derived for higher order velocities as well and at all asymptotic orders, but are omitted for
brevity.

Deriving an angular momentum equation for the mean flow means that something that corre-
sponds to the fifth order momentum equation (A8) must be used. This means that, for example,
Du /Dt has to be of fifth order, which overall makes the angular momentum equation (23) a second
order equation, thus the rest of the terms in the equation must follow that pattern.

Using these statements and noting that ¢ = ¢, the angular momentum equation (23) becomes

DM Du(®)
e e —— =¢e%acos 9,

o Sy (u(o) +eul) + 2u® + ) (ev(l) +en? 4 ...)sin ¢,

—S_Zf(v(o) + EV(I) + gzv(z) + ...)CICOS (Pp, (Cl)
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575

where v(9) = 0 because the zonal mean flow is geostrophic to leading order (A4). In this form,
angular momentum is not conserved. To get a conservative form of this equation, multiply (C1)

by p= p(o) _|_82p(2) +...

Du©
Dy,

DM
ezpﬁ = e2acos ¢, (p 0 +€2p@ + ...)

— (09 +e20@ 4+ ) + eu +2u@ 4 ) (evV) + 2P 4 )sing,

—e2f(p O +e2p@ 4 ) (ev!V) + 2P 4 Nacos, (C2)

and taking the same orders together, yields the second order angular momentum equation (omit €

everywhere)
b 0D 0,00, 4 50,0,@)
pﬁzacosq)pp D — (P u v 4+ p U ) sin g,
—f(p v 4 p@y2) 4 o3 1)gcos Bp. (C3)

Note that since an equation for the mean flow is derived, (24) can be averaged over synoptic
scales (f;, Ay, ¢5) and planetary time scale (,), which simplifies it. To get the angular conservation

equation, the continuity equations (A14-A16) are needed, which can be written together as

s,tp

0 (p(O)W(i+3))
dz

V- (pOu™) + =0 (C4)

where overline denotes average over (f,1), Ay, §5), and i = 0, 1,2 (where for i = 0, w3 = 0). This

equation can then be written in a shorter form as

—s.1p

VP (pOul) ) =0 (C5)

where

V3D, _ 1 d 1 dcos¢gp d
P \acos¢,dA, acos¢, d¢, 9z
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()

s now includes the vertical derivative and uy;, = (u(i) , v(i),w(i+3)) is the three-dimensional velocity

s field. Note that in general the continuity equation can be used to simplify expression (24), using

,DB_Dp_Dp
Dt Dt Dt
d(pB
_ _%’t ) 4 V3P (Bpusp) (C6)

s where B is an arbitrary scalar, and u3p is three-dimensional velocity; noting that mass is conserved
s for every order, the continuity equation for each order in general takes the form Dp /Dt = —pV3p -
s0 U, where dp/dt is mainly zero as p(o) only depends on the vertical coordinate.

=  Using (C6) for pDM /Dt,, and (C5, A8) for p(¥Du(? /Dy, gives

I(pM)""

—s 0
3 —|—V§’)D (Mpuzp)™” = acos ¢,
m

+acos g,V (“(”P(‘))ué?%””+u<1>p<0>u§13°””+u<o>p<o>u§i%m[p>

S,tp

~(pOu™ 4 pOUOE™ ) sing, — POV 1+ p@VD™ 1+ pEVD™ " acos g,

(C7)
s Note that the orders of separate terms on the right hand side are not given as they do not play
s an important role in the further derivation (for simplicity), however note that overall p_MS’tp and
= Mpusp " are of the second order.

«s  From (A8) multiplied by p(©) it follows that

0"
p<o>l;)”‘t e P R (P E RPN ) R
— st .
+ 5000 (B0 T Tp ") 405 2 (x@p@™")
a ox,
e o,lp
cosd, (6) a3’ 0 cos@, [zt pOnB) 90?2
_ o8Py 25! 016G 50
50@ /9,00 P Tox, [a0@a \" TP T Gy,

(C8)
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(4

where the last two terms come from the w(*) cos ¢, term using the thermodynamic equation (A11)

averaged over synoptic scales and t,, fv{)p®) = pB39x()/dx, (via (AS)), and fv(z)p(z)s’tp =

S\tp ( )51’17

7@p@ " 4+ p@sY) " (via (A6)). Notice that the first two terms on the right-hand-side of (C8)
resemble the terms involving sin ¢, and facos ¢, in (C7), and lead to a cancellation after combin-
ing (C7) and (C8). The terms that remain in the equation can all be integrated over a volume V),

5

(Ap, ¢p,2). Following Gauss’ theorem’, assuming no source-sink terms and assuming there is no

orography (for simplicity) yields angular momentum conservation

///Vp @dep 0. (C9)

The angular momentum equation can be linked to the barotropic pressure equation (17) using
(C7), dividing it first by acos ¢,, then integrating it over a longitude-height slice (over area A,
which effectively gives additional averaging over A4, and z) and using the divergence theorem again

which gives

1 8—(pM)s’P’Z+ O G 9p 00"
acos @, tm vy Y ot

2 (um p<0>v<1>°””z+u<0>p<0>v<z>“””z> — (O 4 0,0, @ A0

I3y a

— F(POV@™" 4 p@y@7 4 oG (C10)

Here the overbar denotes an average over f,1,, A, A,, ¢,z and note that v@ s proportional to a

source term under such an average (Bla). Now divide (C10) by f, take d/dy, of it, and finally

SGauss’ theorem generally states [[f;, V-FdV = [[,, F-ndS, where F is a three-dimensional vector, n is a normal vector on surface S, and JV
is the surface around the volume V of interest. Note that in the case of F = pMu the [f;,, F-ndS =0 as u-n = 0 at the lower boundary and p — 0

at the upper boundary.
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s multiply it by f. This yields

oM (0,07
i [ 3 o e [P

acos @, I5p
v { 2 (WTp ) — (0,17 e
5, ¢
_fai (msﬁpvz+ms’p7z+p(3)v(l)&p7z> , (C11)
Yp

s« Where source terms were omitted for simplicity, the left-hand-side can be simplified to

—_—— P2
)
acos ¢, Dy,
o With
Jd B
£ = S~ T o
a)’p f

== and the last term in the equation can be simplified to +fdp(?) /dt,, via (B2d). Notice how all but
«s the last term on the right-hand-side resemble terms in the barotropic pressure equation (17). This

o« means that (17) can be rewritten using the angular momentum equation as

S?p7z

— —=<S,P,2
p_ DM 9p" 9y A PTROPENS
< {acos¢thm } I = o ey, P e (¢12)

ws where p(2) = p(z) — p<0>9<2> via (B4), which further simplifies it. This now gives a clear link

s between the barotropic equation for the mean flow and the angular momentum.

607 APPENDIX D

608 The Non-acceleration Theorem

«o  This Appendix shows the derivation of the non-acceleration theorem for the given asymptotic set

6

o of equations. To derive this, a Transformed Eulerian Mean (TEM) (Andrews and McIntyre 1976;

«» Edmon et al. 1980) version of the zonal mean (averaged over A,, A, denoted by [.]) momentum
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w2 and thermodynamic equations is necessary. From the zonal mean continuity (&'(£*,&3)), thermo-
s dynamic (€(€° ¢”)) and momentum equations (&(€3, €%, €%)) at different asymptotic orders, we
(i)

s« can identify the residual meridional circulation (vgl), wy with subscript r representing residual

s velocity and i represents its order)

PO = [p W __5i [ /32 ] (D1)
m®ka4M®MW+a%[ Mz] (D)

PO = o' /8z ] (D3)
mmw@%:m@wm+;;[é@ﬁﬁ:]+§_r; é?] o

s Which satisfy continuity equations at different orders.
617 Using the residual velocities (D1-D4), the zonal mean momentum equations at &’ (83, 84) (A6,

ss A7) become

91,1
[[)T:’t] —f[p(o)vgz)] _ [ /az ] (D5)
2@, 9o,
[p8ts ]+ [pa[p ]+[p( WV 3z - [p Vr ]
(1) g(4) (0)
@@ 9 o ], 9 |vs 8%p
=)= 55 P+ 5 | semya: (o)

s Which can both be linked to the zonal mean wave activity equations on planetary (13) and synoptic
e (12) scales, respectively, through their respective zonal mean EP flux divergences ([V?)D -F,l,

@ [V3P-Fy)) that appear on the right-hand-side of (D5, D6). Thus, (D5, D6) can be rewritten in

e2 terms of wave activities as

= FlP v+ [pOsP - [s2], (D7)

0)
= AP~ O % [p O I o9
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which, under synoptic scale averaging (¢, ), for steady eddies (wave activity tendencies vanish),
and in the absence of source-sink terms, satisfy the non-acceleration theorem, i.e. the tendencies
of the zonal mean velocities vanish. These equations also show that planetary wave activity af-
fects the zonal mean flow evolution on synoptic timescales, and that the synoptic wave activity
(linked to synoptic heat and momentum fluxes) affects the zonal mean flow evolution on plane-
tary timescales. However, the latter relationship vanishes under synoptic scale averaging, leaving
only the residual circulation terms and source-sink terms affecting the evolution of ug,l) in (D8).
This means that an evolution equation for p(3) (related to ug,l)), which can be derived in a similar
manner as the barotropic equation (evolution equation for p(?)) using & (%) u-momentum equa-
tion, &(&°) thermodynamic equation, &(£°) continuity equation, and hydrostatic balance for p©®)

averaged over synoptic scales and vertically, is only affected by the source-sink terms

Ap.$,z

0 1 a B a aﬁ (6)2’117‘?72 a ﬁ —(4)117,5‘,2
- - - £ - _ 2 — __£pl0) = _F (0)
(%f&yp 2oy, ! ) o, TP (ayp f) (" S ) (B9

This evolution equation suggests that a higher order momentum equation is needed to find the
dynamic influences on the mean flow on planetary spatial scales (averaged over synoptic scales)
and longer time scales (t,,) - see barotropic pressure equation (16).

Note that (D7,D8) provide equations for zonal mean flow variations on shorter timescales (syn-
optic and planetary), which have dynamical importance for higher frequency atmospheric flow
(e.g. baroclinic life cycles or barotropic annular modes with timescales of 10 days or less). Upon
averaging over these scales, the slower variations in the mean flow (#,,) emerge (as in the barotropic
equation for the mean flow).

The TEM version of the €’(£>) zonal momentum equation can also be derived using the same
residual velocities (with the same procedure), however, here we only show an equation averaged

OVer ts,1p, As, Ap, @5, 2 as this was the averaging performed to derive the barotropic equation for the
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mean flow (17). This yields

ﬁp»ﬂz D,S,2 0 P,S,Z 5,
% + p(O)vﬁz) aauf : +p(0)w£5) ag( ) 4 p<0>w$ 7 Zcos 0y
Im Yp z
DS,z —(1)}775‘72 (5)]),S7Z aﬁP,S,Z
B N ES N (N T P (D10)

with

Y — —p(0),(1),(1)
F put v cos g, + FFRFTICyER

(D11)

where a_ltam(])pp(O)u(l)v(l)p’&Z was absorbed into F” through cos@,. As in section 4b, many
terms in (D10) can be related to source-sink terms, v(#) can be eliminated via the continuity and
thermodynamic equations, and f p(3)v§,1) is related to meridional heat flux on planetary scales. To
link (D10) to the wave activity tendency, a higher order wave activity approximation would be
needed, and due to the planetary scale heat fluxes in (D10), also a boundary wave activity may
be needed, which are not the subject of this paper (only the leading order approximations are of
interest). Hence a non-acceleration theorem for this order of the momentum equation is yet to be
determined, but is expected to hold as is the case at lower orders.

The ¢'(¢7) thermodynamic equation within the TEM framework (under a ;,,, A5, A, 95 aver-

age) is

S,p

2p 0@ a9 [SYe)p©

i oy, TP g % "o\ a00/0: )

(D12)

which completes the TEM version of the equations. Note that the &/(&%) thermodynamic equation

remains unchanged within the TEM framework and is hence not repeated here.
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727 TABLE 1. The assumptions for the scale separations between planetary (p), synoptic (s) and zonal mean flow

728 (m)

longitude latitude height time

planetary A=A op=¢ p=2s=2 1, =€%
synoptic A, =¢e7 ', ¢=e'¢, zp=z=z tH=¢er=¢l,

5 2
mean On = 9p In=2p=2 Iy=€1=¢%,
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