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Abstract 

Insects play a key role in the regulation and dynamics of many ecosystem services (ES). 

However, this role is often assumed, with limited or no experimental quantification of its real 

value. We examine publication trends in the research on ES provided by insects, ascertaining 

which ES and taxa were more intensively investigated, and with which methodological 

approaches, with particular emphasis on experimental approaches. We performed a systematic 

literature search to identify which ES have been attributed to insects. Then we classified the 

references retrieved according to the ES, taxonomic group and ecosystem studied, as well as 

to the method applied to quantify the ES (in four categories: no quantification, proxies, direct 

quantification and experiments). Pollination, biological control, food provisioning and 

recycling organic matter are the most studied ES. However, the majority of papers do not 

specify the ES under consideration, and from those that do it, most do not quantify the ES 

provided. From the rest, a large number of publications use proxies as indicators for ES, 

assuming or inferring their provision through indirect measurements such as species 

abundances, species richness, diversity indices, species density or the number of functional 

groups. Pollinators, predators, parasitoids, herbivores and decomposers are the most studied 

functional groups, while Hymenoptera, Coleoptera and Diptera are the most studied taxa. 

Experimental studies are relatively scarce and they mainly focus on biological control, 

pollination, and decomposition performed in agroecosystems. These results suggest that our 

current knowledge on the ES provided by insects is relatively scarce and biased, and shows 

obvious gaps in the least-studied functional and taxonomic groups. An ambitious research 

agenda to improve the empirical and experimental evidence of the role played by insects in 

ES provision is essential to fully assess synergies between functional ecology and biodiversity 

conservation. 
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Introduction 

Understanding, valuing, quantifying and ensuring the provision of ecosystem services 

(ES) under current global changes have become increasingly important during the last two 

decades (Turner et al., 2007, Seppelt et al., 2011 and Díaz et al., 2013). ES can be defined as 

the beneficial functions and goods that humans obtain from ecosystems, that support directly 

or indirectly their quality of life (Harrington et al., 2010 and Díaz et al., 2015). These services 

are critical for human welfare (Daily et al., 2000), since they include, amongst others, the 

provision of food and water, the regulation of floods, diseases and climate, the control of 

organic matter decomposition and nutrient cycling, the suppression of pests, and the cultural 

services associated with recreation or education (Millennium Ecosystem Assessment, 2003 

and Díaz et al., 2015). The definition and interpretation of ES has varied considerably in the 

literature over the years (De Groot et al., 2002, Harrington et al., 2010 and Spangenberg et al., 

2014), and this concept is often confounded with related terms such as “ecosystem functions” 

and “ecosystem goods” (Millennium Ecosystem Assessment, 2003 and Díaz et al., 2015). 

Ecosystem functions refer to all biogeochemical characteristics of ecosystems (including the 

structures and processes that may arise as emergent properties), regardless of whether they 

have a value for, or benefit, humans (Spangenberg et al., 2014). Whereas ecosystem goods 

correspond to the products of ecosystem services that can be traded by humans through either 

perception, expectations, experience, use or consumption (Díaz et al., 2015). 

Insects are the largest and most diverse group in the animal kingdom. They are key 
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components in the provision, regulation and dynamics of many ecosystem services (referred 

as insect ES herein; Weisser & Siemann, 2004 and Schowalter, 2013). Insects are potentially 

involved in the four broad types of services defined by the Millennium Ecosystem 

Assessment (2003): (i) provisioning services, that correspond to material or energy outputs 

from the ecosystems; (ii) supporting services, that allow the maintenance of other ES; (iii) 

regulating services, that regulate the processes and structure of ecosystems; and iv) cultural 

services, that do not provide material benefits but have an educational, spiritual and/or 

aesthetic value (GEO4, 2007 and Prather et al., 2013). Previous efforts to assign monetary 

values to several ES provided by insects usually understimated the value of these animals to 

our economies and quality of life (Beynon et al., 2015). Still, insects provide ES worth at least 

$57 billion per year in the United States alone (Losey & Vaughan, 2006), and insect 

pollination may have an economic value of $235 to 577 billion per year worldwide (IPBES, 

2016). 

A realistic assessment of the contribution of natural resources and biodiversity for the 

delivery and maintenance of ES depends on having accurate information and a clear 

understanding of the processes involved in the provision of those services (Haines-Young & 

Potschin, 2010). There is a general lack of knowledge on the functional roles played by most 

species in nature (i.e. the so-called Raunkiaeran Shortfall; Hortal et al., 2015). This is 

particularly important when assessing the value of insect ES. Despite their enormous 

diversity, insects are often under-represented in ecosystem studies, so their contribution to 

ecosystem functioning has been comparatively less investigated (Schowalter, 2016). As a 

consequence, we often lack a comprehensive understanding of the role of insects in many 

ecosystem processes that underlie ES. Although many efforts to quantify insect ES have been 

developed in the last decade (e.g. Prather et al., 2013 and Boerema et al., 2017), they 
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particularly focused on a subset of either functional or taxonomic groups, such as pollinating 

bees or dung beetles. 

Current knowledge on the ES provided by insects has usually been obtained from a 

variety of methodological approaches, ranging from field observations to manipulative 

controlled experiments, even though such relationship is often simply assumed (e.g. Philpott 

& Armbrecht, 2006 and Allsopp et al., 2008). Thus, assessment of insect ES includes a wide 

variety of approaches such as opportunistic field observations, expert opinions or estimates, 

assumptions or inferences made from proxies (e.g. species richness, total abundance, 

morphological traits), estimates inferred from trait values and empirical data obtained from 

field and/or microcosm experiments that may or may not have been specifically designed to 

quantify the real ES provision in the first place. These approaches also differ widely in their 

replicability, accuracy, and applicability of their outputs, direct relevancy to the ES itself, as 

well as in their costs in terms of time and resources. Further, while they may allow inferring 

which insects provide which ES, proxies might not be approriate to reveal the mechanisms 

linking specific traits to particular ecosystem functions or services. A better quantification of 

the specific relationship between ES and specific traits provides a potentially useful link to the 

wide-scale prediction of ES (de Bello et al., 2010), although this information is limited to a 

few groups and ecosystems (see Hortal et al., 2015). This contrasts with greenhouse and cage 

experiments performed on individual species or simple communities, which enable either 

maintaining a tighter control of the environmental conditions or subjecting the object of study 

to well-defined treatments, or both (Lähteenmäki et al., 2015). This allows establishing –and 

measuring– direct links between given ES and particular individual(s), trait values, and 

functional compontents of biodiversity (e.g. Dias et al., 2013 and Bílá et al., 2014), while 

revealing mechanisms behind the relationship between biodiversity and ES. However, these 
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types of studies present several disadvantages, as they can be expensive and laborious. 

Further, synergies and/or antagonistic effects are difficult to control, and their findings might 

not be relevant or realistic when up-scaling to real-world conditions and/or when they are 

extrapolated to a different taxa from the model species 

We examine the general trends in published research on ES provided by insects, to 

provide an overview of the overall quality and extent of the current state-of-the-art on this 

topic. To do this, we conduct a systematic literature search, identifying which specific 

services have been attributed to insects, which methodological approaches have been applied 

to describe and quantify these ES over time, and whether there are any important gaps in 

current knowledge. In particular, we seek to answer the following questions: (i) Which insect 

ES have been studied? (ii) What type of methodological approaches have been used for their 

study of these ES? (iii) Which functional and taxonomic groups of insects have been 

investigated in this context? and, (iv) Which ecosystems have been monitored experimentally 

for insect ES? 

 

Materials and methods 

We performed a literature search using different online platforms to identify articles 

dealing with insect ES that were published during the last six decades (1956–2016, time 

interval preselected by default by some of the online platforms). Firstly, we conducted 

bibliographic queries in the ISI Web of Knowledge (WOK) and Scopus using the keyword 

string “(ecosystem* service* OR ecosystem* function* AND insect*)”, looking for matches 

in the title, abstract and/or keywords. In addition, we used the same keywords to retrieve 

articles from the group associated with “ecosystem services and insects” in ResearchGate 

(www.researchgate.net, one group: ecosystem service insects) and ACADEMIA 

http://www.researchgate.net/
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(www.academia.edu, three groups: ecosystem services, ecosystem service and ecosystem 

functions). Since the terms “ecosystem services” and “ecosystem functions” are often used 

very loosely in the literature, we widened our search by using both terms and thereafter 

discarded those references that were not clearly related to any ES. Therefore, from the initial 

search (updated on 30th December 2016) we retrieved 8,424 records (WOK: 2,348, Scopus: 

2,859, ResearchGate: 200, Academia: 3,017). We then eliminated conference papers, articles 

in press, duplicate records (i.e. articles that appeared more than once in the different search 

engines, or in the same platform due to typographical errors) and finally, all those references 

not related to any ES or insect group. The finally selected records included 913 papers papers 

that provided ES estimates. 

The following information was retrieved from each selected publication: author(s); 

year of publication; journal; method used for quantifying each ES in four categories: not 

quantified, proxies, directly quantified, and experiments (Table 1); trophic group(s); 

taxonomic group(s) (order and superfamily or family); ES studied (specific ES or ES in 

general); and any relevant additional observation as notes. To keep consistency with the 

literature, we used the term ‘biological control’ to refer to the most-adequate term “pest and 

pathogen suppression” (that includes both human-controlled and ‘natural’ regulation of pest 

populations). In addition, the type of ecosystem investigated and the location of the study 

were recorded for the experimental studies.  

This type of literature search has several limitations that were considered when 

analyzing the data and interpreting the results. Firstly, the search may miss some relevant 

papers, simply because the title, abstract or keywords did not contain the keywords searched. 

In fact, our literature search was biased towards publications specifically referring to insect 

groups (i.e. studies that included the word ‘insects’ only), which could result in missing some 

http://www.academia.edu/
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papers that focus on particular species (e.g. Apis mellifera), functional groups (e.g. 

pollinators) or larger groups of invertebrates that also include insects. Secondly, the approach 

used here might have overlooked publications that refer to a particular ecosystem service by 

its name (e.g. pollination) without quoting the words “ecosystem services” per se in their 

abstract or keywords. These limitations have been previously identified by other authors using 

similar search approaches (e.g. Prather et al., 2013). Thirdly, the term “ecosystem service” is 

fairly recent, and its use was not common prior to the 1990s, so some older publications 

addressing insect ES may not have been detected by our search. Finally, we may have failed 

to include some works that were not indexed by the platforms used here. However, and 

despite these problems, we believe that the data retrieved gives us enough relevant 

information to examine general trends in insect ES research and to identify knowledge gaps 

on the topic that could help us to develop future research strategies to better evaluate the ES 

provided by insects. 

 

Results 

Our search retrieved 913 articles, published from 1989 to 2016, with relevant 

information on the ecosystem services provided by insects (see Appendix A). There were no 

papers before 1989 with the specific keyword string used for our search. These articles show 

an exponentially increasing trend in the number of insect ES studies over time (Fig. 1). 

Pollination, biological control, food provisioning, and recycling organic matter are the most 

well studied ES (Fig. 2A), although the role of insects has been investigated for many others, 

including a number of services that were not included in former reviews on insect ES (Table 

2). Remarkably, 20% of the publications (N=184) mention ES in general without referring to 

any specific service (Fig. 2A), without clarifying the role that the investigated insect groups or 



10 
 

species performed to deliver these services. ES of high socio-economic relevancy, such as 

pollination and biological control in agricultural ecosystems, are both the most commonly 

studied and those with the highest proportion of experimental data supporting the link 

between the studied insects and the service provided (Fig. 2B). Indeed, there is a remarkable 

similarity between the proportions of studies focused on these two ES and nutrient cycling, 

and the functional groups performing these services (i.e., pollinators, predators and 

parasitoids, and decomposers, respectively; compare Figs. 2A and 2C). 

The majority of insect ES literature does not include a quantification of the actual 

level or extent of the ES studied: categories not quantified and proxies sum up 69.6% of all 

papers (N=635; Fig. 3A). These studies are not restricted to those not specifying the ES under 

consideration, but rather extend to all types of services (Fig. 2B). Strikingly, almost half of the 

publications retrieved by our search used proxies as indicators for ES (46.8%, N=427; Fig. 

3A), particularly for pollination and non-specified biological control services (Fig. 2B). Less 

than a third of studies actually quantify insect ES either directly or through experiments 

(N=278, 30.4%), although the proportion of these two kinds of studies together has increased 

steadily during the last 15 years (Fig. 3B). Strikingly, most of them make direct measures 

without any experimental manipulation (N=222, 24.3% of all papers), whereas experimental 

studies undertaken either in the laboratory or in the field represented only 6.1% (N=56) of the 

total number of publications (Fig. 3A; see Appendix B). Pollination, biological control and 

nutrient cycling were the ES most studied using experiments (Fig. 2B). 

As identified above, insect ES are most commonly studied through proxies. These 

proxies are typically species abundance, species richness and, to a less extent, ecological 

diversity indices such as Simpson or Shannon, among others (sometimes referred to as alpha 

diversity, but see Magurran, 2004) (Fig. 3C). However, many other proxies have been used in 
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the literature, including species density, the number of functional groups, visitation rates, 

network complexity and modularity, functional traits (e.g. body size/biomass, behavioral 

traits, colony density and health, etc.) and associated measures of functional diversity, species 

composition, beta diversity, niche overlap or endemicity, among others. Very few studies 

corroborated the existence of a direct link between the proxy and the functional aspect that 

was intended to represent, at the studied geographical scales and/or for a specific taxonomic 

or trophic group (exceptions being, e.g., Arnan et al., 2013 and Rader et al., 2014). 

Pollinators, predators of pests, parasitoids, herbivores and decomposers (especially 

dung beetles) were the most studied functional groups (Fig. 2C), together with some 

charismatic and/or easy to identify groups such as ground beetles or bumblebees. The order 

Hymenoptera –that includes many pollinators (particularly bees), parasitoids (commonly used 

for biological control), predators and decomposers (such as ants)– has been the most studied 

taxonomic group, followed by Coleoptera and Diptera (Fig. 4A). In fact, hymenopterans have 

been comparatively overstudied if we take into account the total number of described species 

(Fig. 5). At a finer taxonomic level, several superfamilies or families also emerge as being 

highly studied subjects, including Apoidea (particularly Apidae), Formicidae and Braconidae 

belonging to Hymenoptera; Carabidae, Coccinellidae and Scarabaeidae within Coleoptera; 

Syrphidae among Diptera and several families of termites from Blattodea (Fig. 4C). 

The services most studied using experimental approaches are biological control, 

pollination and decomposition (see Appendix B). Thus, the links with ES have been more 

often quantified in experimental studies for Hymenoptera and Coleoptera (Fig. 4B). Most 

experimental evidence on insect ES comes from USA and Europe – in particular Switzerland, 

Germany and Sweden, although a few studies have also been performed in developing 

countries such as Costa Rica, Mexico, Philippines, Tanzania, Indonesia, Kenya and Argentina 
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(see Appendix B). The ecosystems most commonly studied experimentally were 

agroecosytems, which included a long list of different types of crops (e.g. almonds, cabbage, 

cacao, cereals, coffee, rice, potato, wheat, etc.). The services provided by insects in grasslands 

and, to a lesser extent, forests, savannas, wetlands or lakes have also received some (though 

much less) attention (see Appendix B). 

 

Discussion 

Research interest on the ecosystem services provided by insects grew during the last 

decade (Stout & Finn, 2015, and references therein). The increase in the number of papers 

published on this topic mirrors the pattern described by Hallouin et al. (2016) for ES in 

general, and reflects the expanding significance of identifying, analyzing, conserving, and 

managing ES under the global changes that characterize the Anthropocene. This general 

interest has reached entomological research, resulting in a clear increase in the number of 

studies focusing on insect ES (compare our Table 2 with the list provided by GEO4, 2007 or 

Turner et al., 2007). Despite such recent work, the services provided by insects still remain 

relatively understudied compared to other groups. Insects comprise 49.9% of the 1’656,025 

accepted species currently included in the Catalogue of Life (accessed on 23rd December 

2016; Roskov et al., 2017). However, a quick search in Scopus (using “ecosystem service*” 

AND [insect* OR coleop* OR hymenop* OR lepidop* OR dipter* OR bees OR beetle*], 26th 

January 2017) produced 1,102 documents on insect ES out of 16,476 for ES in general. That 

is, about 6.7% of the total research output on ES is devoted to these invertebrates making up 

half of known diversity, containing species and trophic groups with unique roles in ES 

provision. This comparatively low level of knowledge arises despite the fact that, in many 

cases, it is likely that the majority of particular ES are supported by a relatively small number 
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of invertebrate species (e.g. for pollination, Klein et al., 2015). 

 Remarkably, the majority of the studies on insect ES published so far are descriptive, 

either making no quantification of the ES or using proxies to indirectly link species and/or 

groups to particular ES, even for the better-studied groups such as bees (e.g. Eardley, 2000, 

Morandin et al., 2007 and Kimoto et al., 2012). Experimental studies and direct ES 

quantifications have become more common in recent years, but still account for a small 

proportion of published studies. Experiments are therefore needed to ascertain in detail which 

species or functional groups provide a particular service, and which mechanisms and aspects 

of biodiversity are behind the provision of specific ES (e.g. Slade et al., 2007, de Bello et al., 

2010 and Ibanez et al., 2013). A better understanding of the links between insect diversity, 

insect behavior, and ES provisioning is also needed (Schmitz, 2008 and Brosi & Briggs, 

2013). Considering that most information on insect ES comes from studies using proxies 

rather than direct quantifications or experiments, it is likely that most current knowledge on 

these services holds a high degree of uncertainty, for it is based only on estimates rather than 

quantitative assessments (Boerema et al., 2017). This lack of robust quantitative data can 

indeed hamper the assessment of global change effects, preventing us from identifying and/or 

quantifying the impacts of environmental changes on ES, and therefore making difficult to 

design adequate actions to mitigate them. 

 

From proxies to experiments 

Further analysis is required to determine why proxies are preferred to direct service 

quantifications and/or experiments in ES research, both in general and in the particular case of 

insects. Some ES, such as nutrient cycling or soil nutrient regulation, are difficult to quantify 

and/or require laborious, expensive and time-consuming work, making the use of proxies 
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more attractive (e.g. Hoffman et al., 1996 and Palin et al., 2011). In fact, there are no well-

established standardized ways of quantifying the value for some ES, such as provision of 

nursery habitats, cultural, educational and pharmaceutical services, tourism, and urban quality 

of life (see Nallakumar, 2003 and Choosai et al., 2009). Quantifying the value of a number of 

ES presents important methodological difficulties, such as the spatial redistribution and 

accumulation of soil nutrients, seed dispersal and germination, or soil removal (see Folgarait, 

1998, Pringle et al., 2010 and Wu et al., 2010). One big challenge to ES field experimentation 

is excluding a particular taxon from the system to measure the effects of different taxa on the 

ES of interest. This has strained efforts to accurately quantify the contribution of insects to the 

decomposition of both litter (Kampichler & Bruckner, 2009) and wood (Ulyshen & Wagner, 

2013), and to nitrogen cycling in grasslands (Risch et al., 2015). Some success has been, 

however, achieved with dung beetles (e.g. Slade et al., 2007, Beynon et al., 2012, Griffiths et 

al., 2015, Lähteenmäki et al., 2015 and Slade & Roslin 2016). 

 The most commonly used proxies for ES are species richness and species abundance. 

However, these two metrics could provide limited information on service delivery if they do 

not adequately capture the uneven contributions of different taxa to an ES (e.g. Klein et al., 

2015). The relationship between taxonomic diversity and ecosystem function is often context-

dependent (Tylianakis et al., 2008), and it is not uncommon for the effects of a single taxon 

on a particular service to eclipse those of all other species in a community (e.g. Straub & 

Snyder, 2006 and Klein et al., 2015). Studies addressing the importance of insects for wood 

decomposition, for example, have shown termites to consume by far more wood than all other 

insects combined (Ulyshen et al., 2014). Indeed, an increasing number of studies show the 

importance of considering functional aspects of biodiversity in improving our understanding 

of the relationships between proxies and ES (Díaz et al., 2013, Lavorel et al., 2013, Moretti et 
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al., 2013, Harrison et al., 2014 and Wood et al., 2015). 

Metrics related to functional diversity or attributes (i.e. traits) that affect an ES (sensu 

Violle et al., 2007 and Díaz et al., 2013) may be more informative than those related to total 

abundance or taxonomic richness (Lavorel et al., 2013). Trait-based metrics can take into 

consideration that different species (and individuals) have different effects on the ecosystem, 

and assume that there may also exist some complementarity among species’ functioning 

(Hoehn et al., 2008). Indeed, it has been argued that trait diversity at the community level is 

one of the key factors governing ecosystem properties (Hooper et al., 2005), sometimes 

exceeding species richness in importance (Hoehn et al., 2008). However, a proper use of traits 

to link diversity and ES requires good knowledge on which traits are associated with a 

particular ecosystem function and/or service, the intraspecific variability of these traits, under 

what environmental conditions are those functional traits more important, and which 

component of the distribution of trait values within communities is most appropriate to 

account for service provision (i.e. mean or variance; e.g. Ricotta & Moretti, 2011, Dias et al., 

2013 and Griffiths et al., 2016a). 

Unfortunately, data on traits and knowledge on how these traits translate into ES are 

limited (Hortal et al., 2015), at least at the spatial scales relevant to the study of ES. This 

shortfall is even more acute in insects and other soil invertebrates (but see e.g. Ibanez, 2012 or 

Martins et al., 2015). An adequate selection of traits genuinely related with the studied service 

could provide a mechanistic understanding of the role of insects in ES provision, and will 

nonetheless have the greatest potential to infer ES delivery (e.g. Woodcock et al., 2013 and 

Griffiths et al., 2016b). However, many times, the traits used for ES analyses are chosen 

based on either readily-available trait data, or on traits used by former studies, rather than on a 

functional hypothesis linking traits, ecosystem functions, and their associated services. This 
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can result in a consistent bias towards using small subsets of traits, some of which could have 

little value for particular functions or services. Even in those few cases where the traits 

genuinely related with the studied service have been identified, their data are typically limited 

to a handful of species, as their measurement is often labour intensive. Therefore to improve 

the use of trait-based proxies for insect ES research further work is needed to provide 

experimental evidence on the relationship between trait variation and service provision. 

Initiatives to provide standardized measures of traits across terrestrial invertebrates and their 

effect on ecological functioning –such as the invertebrate trait handbook proposed by Moretti 

et al. (2016)–  are key for the advance of insect ES research.  

 

Functional and taxonomic biases 

The biases in insect ES research are both functional and taxonomic; not only some 

services are more studied than others, but also some groups are more studied than others. 

Indeed, the most-studied ecosystems are croplands and consequently, the focus is placed on 

those ES that have a larger impact on the goods we receive from these managed ecosystems 

such as pollination and biological control, two services with high economic impacts (Losey & 

Vaughan, 2006). These two services are also the ones that have been more studied using 

experimental approaches, together with nutrient cycling. Hence, a good example of why 

biases are often functional rather than taxonomic is the high proportion of papers that have 

studied pollination. These often analyze more than one insect group or the whole community 

of pollinators, including Hymenoptera (predominantly Apoidea and some additional families), 

Diptera (Syrphidae) and Lepidoptera (e.g. Gardiner et al., 2010, and Lundin et al., 2013). This 

contrasts with the research on many ES of less obvious and/or indirect economic importance, 

such as dung removal, seed dispersal, soil aeration, pest control or soil water infiltration. 
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These studies are typically constrained to a single trophic group and/or a single taxonomic 

group, hence providing very little information on the whole-community responses and/or the 

interactions between ecosystem services, functional and/or taxonomic groups. In addition, 

there is an evident bias in the literature we reviewed towards those groups that can be easily 

studied (e.g. towards above- vs. below-ground organisms), have larger body sizes (e.g. 

butterflies vs. flies), are readily identifiable (e.g. Carabidae are more often studied than the 

taxonomically complex Staphylinidae), or are more charismatic (e.g. bumblebees compared 

with flies). 

The publications that study multiple ES rarely focus on a single group of insects (e.g. 

Klein et al., 2006 and Campbell et al., 2012; but see Slade & Roslin, 2016). In fact, many 

recent articles considering several taxonomic groups have investigated how their combined 

responses to different stressors interact with service provision, such as biological control or 

pollination (e.g. Mody et al., 2011, Caballero-Lopez et al., 2012 and  Stanley & Stout, 2013). 

However, very few studies have analyzed the possible range of interactions (from synergies to 

antagonistic or trade-offs) between two or more ES within a specific network or for the whole 

ecosystem. A significant exception to this lack of knowledge are those studies investigating 

the interaction between different groups of pollinators and those describing the regulating 

services provided by other elements of the ecological network, such as pest control provided 

by predators and parasitoids, or the effects of herbivores on the pollinated plants (e.g. 

Morandin et al., 2007, Hegland et al., 2010, and). Indeed, current knowledge indicates that 

these regulatory relationships usually affect network dynamics and hence, the supporting ES 

provided by insects in a negative way (Badano & Vergara, 2011). 

There are few quantitative assessments of the ES provided by several functional and 

taxonomic groups, either from experiments or from indirect quantifications. Our bibliographic 
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search failed to find any information for several key functional groups, such as rhyzophagous 

insects, some decomposers and many symbionts and kleptoparasites. Similarly, very few 

studies were found concerning several small insect Orders, such as Ephemeroptera, Plecoptera 

or Neuroptera. Therefore, the design of our review, which focused on describing publication 

trends rather than assessing knowledge gaps in a conceptual map, might have prevented us 

from resolving whether these groups are underrepresented in ES research, if they actually 

provide few services of minor importance, or whether the lack of general knowledge on their 

ecology and systematics is the main cause of their misrepresentation. The key ecological roles 

played by some of them in freshwater ecosystems (e.g. litter decomposition) suggests that 

many of these groups are likely to have a very significant role in the provision of many ES 

(Macadam & Stockan, 2015). Our bibliographic survey also pinpoints other biases that are 

common in biodiversity knowledge, such as the lack of data for many geographical areas and 

ecosystem types. Knowledge on all aspects of biodiversity is typically concentrated in 

northern temperate regions, particularly Europe and North America (Hortal et al., 2015). This 

widespread bias is also evident in the published work on insect ES; very little is known about 

the services provided by insects in agroecosystems outside these two regions, with the 

exception of some limited work in tropical plantations (mostly coffee and trees) or savannas. 

However, the sheer lack of knowledge on insect ES throughout most of the world’s 

ecosystems makes more developed analyses on geographical and ecological biases premature. 

 

A cautionary note on insect disservices 

It is important to highlight that we did not include in our analysis papers studying 

disservices by insects for two main reasons. First, the goal of this paper was to characterize 

the trends in insect ES research and, in particular, how much current information comes from 
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experimental evidence. Second, the study of insect disservices is a vast topic that would not 

be easy to embrace using literature searches, and that definitively requires a separate analysis. 

However, the line that separates an ES from a disservice is sometimes very thin. In fact, in 

some cases, the same ecological function can be qualified as service or disservice depending 

on the perspective. While the effects of many foliage or root feeders might often be 

considered as disservices, they do provide regulating services by controlling the populations 

of both weeds and certain pests through herbivory and/or competitive exclusion, respectively 

or by helping to maintain populations of generalist predators and parasitoids (e.g. Martin et 

al., 2010, Evans et al., 2011 and Eckberg et al., 2014). Herbivores also influence nutrient 

cycles and can contribute to soil fertility and enhance primary production (Belovsky & Slade, 

2000). Also, bark and wood boring insects, create suitable habitats for other insects (e.g. Zuo 

et al., 2016) and have been shown to facilitate colonization by fungi, thus indirectly 

accelerating the decomposition of woody debris (Strid et al., 2014 and Ulyshen et al., 2016). 

It is therefore important to understand which ecological functions performed by herbivores 

can in fact result in regulating services, and how they interact with supporting and 

provisioning services.  

As a consequence of this, during our bibliographic search we found some articles that 

evaluated or studied ecosystem disservices, related to three main topics: (i) damage of 

agricultural crops by herbivores (e.g. Hiltpold et al., 2013 and Dale & Frank, 2014); (ii) 

damage to wood plantations by xylophagous insects (e.g. DeSantis et al., 2013 and Reich et 

al., 2014); and (iii) harmful effects on human health by hematophagous insects (e.g. 

Sommerfeld & Kroeger, 2013 and Muturi et al., 2014). Some of these studies were not 

discarded from our final list because they refer to ecological functions that can be classified 

either as services or disservices.  
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Concluding remarks 

Knowledge on the ecosystem services provided by insects is relatively scarce and 

biased. This occurs despite the fundamental importance of the ecological functions they 

perform for the maintenance of ecosystem functioning and their links to human well-being. 

Part of the reason behind the poor knowledge on insect ES comes from the tradition of 

considering insects as providing mainly disservices to humanity, through pest and parasite 

outbreaks. However, given the sheer diversity of insects and their key ecological role in all 

terrestrial and freshwater ecosystems, it is extremely likely that the economic and non-

economic benefits provided by this group through many ES may be much larger than the 

damage and disservices they provide even in some specific areas such as crop production. 

Indeed, the value of some ES provided by insects, such as pollination, is widely accepted in 

financial, food security and health terms. Valuing these services can therefore be a good way 

to stimulate and promote research into them – through increasing financial support and 

societal engagement. 

It is therefore key to gain an increased understanding of the role played by insects in 

ES delivery. This requires combining the efforts of ES researchers (including ecologists, 

entomologists, economist and social scientists) to identify direct links between insect species 

and the ES they provide, either through field observations or experiments. A good map of our 

current knowledge could help defining further needs in insect ES research. Our work provides 

a review of current knowledge in the area and identifies obvious gaps in the less-studied 

functional and taxonomic groups. Moreover, we also highlight the existence of knowledge 

gaps in the research of some ES that either have a lower direct economic value, or their study 

poses important methodological challenges. However, the nature of our analyses prevents us 
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from obtaining a complete overview of what is actually known and a full distribution of the 

knowledge gaps, since we characterize publication trends rather than the level of 

completeness, accuracy and usefulness of the knowledge on each ES, ecosystem and/or insect 

group. 

A clear shortfall in current knowledge is the lack of high-quality quantifications of ES 

delivery (Boerema et al., 2017), either directly in the field or through experiments. Ideally, 

such information should be obtained by adopting a robust and cohesive common framework 

for insect ES research, which clearly separates ES from ecological functions, which have been 

more commonly studied for insects. Many studies use the term ES very loosely; actually, 

some consider ecological functions of non-human value as services too. A conceptual and 

methodological framework that clearly links the study of functions with the quantification of 

the delivery of services can help to increase the research impact of ES for insects in general, 

and for many seldom-studied groups in particular. This framework should consider the 

interactions and trade-offs among the services provided by different insect groups, allowing 

us to also identify and measure the services provided by less diverse insect orders. A first step 

in the implementation of such framework is certainly to quantify insect ES provision in the 

field, but in the mean time, it is necessary to implement a combination of laboratory and field 

experiments. While the use of controlled microcosms can provide accurate information, 

manipulative field experiments are more realistic since they take into account the interacting 

environmental factors. Obtaining accurate and comprehensive information on the ES provided 

by insects therefore requires joining efforts in implementing such an ambitious research 

program that combines empirical and experimental evidence.  
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FIGURES AND TABLES 

 

 
 

Fig. 1. Temporal trends in the number of published articles dealing with ecosystem services 

provided by insects across all the literature analyzed from 1956 to 2016 using two search 

engines (ISI Web of Knowledge and Scopus) and two academic social networks 

(ResearchGate and ACADEMIA). See methods section for the keyword strings used in this 

search. Note that no article published before 1989 was retrieved using these search strings. 
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Fig. 2. Percentage and number of articles found in the literature search on ecosystem services 

provided by insects (1956-2016), examined at three levels: A) main ecosystem service 

categories; B) cumulative number of articles devoted to study each one of these services in 

relation with the four main categories of quantification (not quantified, proxies, directly 

quantified and experiments) and, C) main functional insect groups studied (trophic groups). 

ES general refers to ecosystem services in general, with no specification of which type of 

services were studied. See main text for more details.  
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Fig. 3. Percentage of articles retrieved in our literature review on the ecosystem services 

provided by insects (1956-2016), examined at three levels: A) type of approach used to 

quantify the ecosystem services provided by insects; B) cumulative percentage of articles over 

time in relation to the four main categories of quantification (not quantified, proxies, directly 

quantified and experiments) and, C) main proxies used in the papers that do not quantify 

directly an ecosystem service. 
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Fig. 4. Percentage and number of articles retrieved in our literature review on ecosystem 

services provided by insects (1956-2016), examined at three levels: A) higher-level 

taxonomic groups (i.e. orders); B) cumulative number of articles studying these groups in 

relation with the four main categories of quantification (not quantified, proxies, directly 

quantified and experiments); and, C) most studied taxonomic groups at superfamily/family 

level.   
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Fig. 5. Comparison of the total number of papers investigating ecosystem services provided 

by insects (1956-20016) in each major insect order (grey bars) and the number of described 

species in these major orders (black dots). 

  



36 
 

 

 

Table 1. Categories of quantification of the ecosystem services (ES) provided by insects used 

to classify the studies retrieved by our literature review. 

Quantification category Description Example 

Not quantified Assume the relationship between 

ES and the studied taxonomic or 

functional group following the 

criteria of experts. There is no 

attempt to measure the service, 

neither directly nor indirectly. 

Philpott and Armbrecht (2006) discuss 

the costs and benefits of promoting ants 

in agroecosystems from their functional 

role as predators and the known impacts 

of intensive agriculture practices on their 

diversity. No direct or indirect 

quantification of service delivery is 

either made or inferred. 

Proxies Use of biodiversity aspects –such as 

species richness or abudance– as 

proxies for ES provision, instead of 

quantifying the relationship 

between ES and insects. 

Frank et al. (2008) assess the potential 

benefits of promoting certain native 

plants in croplands, assuming that the 

richness and abundance of natural 

enemies inhabiting these plants are a 

good proxy for their effectiveness for 

biological control. 

Direct quantification Direct quantification in the field of 

the ES provided by insects, without 

following any experimental design. 

Thies et al. (2005) quantify the increase 

in aphid mortality by parasitoids in 

different landscape conditions, as a 

direct measure of his latter group on 

biological control. 

Experiments Quantification of the ES through 

laboratory or field experiments, 

with one or more environmental 

and/or biotic factors being 

controlled for. 

Brittain et al. (2010) measure pollinator 

abundance and richness, flower 

visitation rates, pollination of 

experimental potted plants and seed 

production to quantify pollination in 

their analysis of the benefits of organic 

farming in different landscape contexts. 
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Table 2. List of ecosystem services provided by insects across our literature review (1956-

2016) with selected examples of each one. 

 
Ecosystem services Selected reference 

Provisioning services  

Alternative nutrition source Dzerefos and Witkowski, 2014 

Economic services Rodriguez et al., 2006 

Food chain supplementation Macadam and Stockan, 2015 

Industrial production Sehnal and Sutherland, 2008 

Medicine services Shi and Shofler, 2014 

  

Regulating services  

Below-ground exchange Folgarait, 1998 

Carbon absorption Metcalfe et al., 2014 

Climate regulation Hammer et al., 2016 

Control and suppression of pathogens Ryan et al., 2011 

Counteract climate change Premalatha et al., 2011 

Fungi control Schrader et al., 2013 

Gastrointestinal parasite control Sands and Wall, 2016 

Greenhouse gas emissions Slade et al., 2016 

Habitat genetic diversity Corbet, 1997 

Network services Hope et al., 2014 

Pest control Aluja et al., 2014 

Pollination Baron et al., 2014 

Population regulation Midega et al., 2015 

Soil fertility regulation Jouquet et al., 2011 

Soil nutrient regulation Shukla et al., 2013 

Soil nutrients spatial variability  Wu et al., 2010 

Soil erosion prevention Ganade and Brown, 1997 

  

Supporting services  

Biodiversity protection Choosai et al., 2009 

Decomposition Mitchel et al., 2014 

Dung removal Gray et al., 2014 

Hydrological soil properties Brown et al., 2010 

Mineralization Palin et al., 2011 

Nutrient accumulation Pringle et al., 2010 

Nutrient flow Bloor et al., 2012 

Recycling of matter Ulyshen et al., 2014 

Seed dispersal Leal et al., 2014 

Soil removal Giraldo et al., 2011 

Soil structure Jouquet et al., 2014 

Soil water infiltration Evans et al., 2011 

  

Cultural services  

Bioindicators tool Maleque et al., 2009 

Conservation tool Stout and Finn, 2015 

Cultural heritage Vidal et al., 2014 

Education Macadam and Stockan, 2015 

Recreation services Woodger, 2011 

Religion and spiritual values Ayieko and Oriaro, 2008 

Tourism services Nallakumar, 2003 

Urban quality life Morley et al., 2014 

 


