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CHAPTER 11

The Nature of Weather and Climate Impacts
in the Energy Sector

David ]. Brayshaw

Abstract The power sector’s meteorological information needs are
diverse and cover many different distinct applications and users.
Recognising this diversity, it is important to understand the general nature
of how weather and climate influence the energy sector and the implica-
tions they have for quantitative impact modelling. Using conceptual
examples and illustrations from recent research, this chapter argues that
the traditional ‘transfer function” approach that is common to many indus-
trial applications of weather and climate science—whereby weather can be
directly mapped to an energy impact—is inadequate for many important
power system applications (such as price forecasting and system operations
and planning). The chapter concludes by arguing that a deeper under-
standing of how meteorological impacts in the energy sector are modelled
is required.
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WEATHER AND CLIMATE IMPACTS IN THE ENERGY SECTOR

The power sector’s meteorological information needs are diverse. On the
one hand, Transmission System Operators (TSOs) may be concerned with
detailed geographical forecasts of wind power and demand at relatively
short lead times (hours or days ahead) for the operational management of
the power grid. This contrasts, for example, with long-term investors in
infrastructure and system planners who require a longer view of system
resilience (years to decades), and energy traders or maintenance planners
seeking to position themselves for the coming weeks or seasons.

A common theme, however, is the need for a series of conversions to
transform meteorological information into an actionable decision. The
three steps in Fig. 11.1 can typically be recognised.

Chapter 6 discussed the first step in this process at length, and under-
standing user needs and preferences is discussed elsewhere in other chap-
ters of this book (Chaps. 1, 3,4 and 5). Here, the focus is on the general
process of modelling energy system impacts using meteorological data
from numerical simulations, illustrated with selected examples (i.e., Impact
Simulation). It is, however, noted that user preferences—once elicited and
expressed quantitatively—can be thought of as a conversion of a physical
impact (in terms of MWh, prices, loss of load) into a ‘utility’ (a numerical
expression of the user’s preferences). To some extent, they can therefore
be considered as direct extensions of the impact models discussed below.

It is helpful to identify three distinct levels of complexity in weather-
and climate-impact modelling, as illustrated in Fig. 11.2.

Meteorological Impact User
simulation simulation preferences

. 4
. 4

Fig. 11.1 The process of converting meteorological data into actionable
information

Fig. 11.2 Levels of impact |

Single impact ‘
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Fig. 11.3 Simple examples of idealised transfer functions used to convert meteo-
rological quantities into estimates of power system properties: (a) an idealised
wind power curve based on Brayshaw et al. (2011); (b) a simplified demand model
based on Bloomfield et al. (2016). In each example here, the transfer function is
shown to depend only on a single meteorological variable for simplicity but in
general they may incorporate many input variables. Additional dependencies may
be meteorological (e.g., wind direction for wind power, cloud cover for demand)
or non-meteorological (e.g., day-of-week for demand), and include stochastic
‘noise’ to simulate the error and uncertainty in the transfer function

The simplest level, commonly referred to as ‘point forecasting’, may be
defined as the response of a single energy system component to a set of mete-
orological drivers for which a transfer function can be written. Typical
examples might include predicting wind power output for a particular tur-
bine, farm or country, or forecasting power demand over a particular geo-
graphical region (Fig. 11.3). The key aspect is that it is possible to write
(or otherwise estimate in at least an approximate form) a function, f; which
converts a set of meteorological variables, {m}, into the energy system
property of interest E:

E=f({m})

The transfer function may be either physically or empirically derived,
may be non-linear, many-to-one or probabilistic. Typical examples include
electricity demand models (Thornton et al. 2016; Taylor and Buizza
2003), wind power production models (Dunning et al. 2015; Cannon
et al. 2015) and damage models (McColl et al. 2012).

A more complex form of impact occurs when the simultanecous influ-
ence of meteorology on several different components of an energy system
becomes an important part of the impact. In this case, a transfer function
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exists for each component, but the impact is perceived through a
combination of those components (often referred to as a ‘compound
impact’). An example is the residual power load of national power systems
(i.e., demand net renewables), which depends on demand, solar and wind,
each of which has a different sensitivity to weather.

In the simplest case, the system can be considered as a set of non-
interacting energy system components,{ E}, and may be written:

s=L({£})

where L is a mapping of the set of energy system components {E} to a
particular system-wide property of interest, S.

An example! of this is the ‘merit order” model® of UK wholesale power
price, exploring the extent to which month-ahead forecasts could be ben-
eficial to energy-trading and risk management (Fig. 11.4a; see Lynch et al.
2014; Lynch 2016). In this example, daily ensemble forecasts of UK wind
power and national total power demand are created from the European
Centre for Medium-Range Weather Forecasts (ECMWE) system for sev-
eral weeks in advance, and the ‘residual demand’ calculated.? The residual
demand is assumed to be met by a mixture of coal and gas generation,
preferentially utilising the cheapest marginal cost generators first (i.c.,
those bidding to produce power at the lowest price), with the wholesale
power price being determined by the most expensive generation unit
required to operate (Fig. 11.4b). The use of sub-seasonal weather forecasts
three to four weeks ahead was shown to offer an improvement over stan-
dard industry practice for some—though not all—trading applications.
This work therefore emphasised both the potential benefits of longer-range
meteorological forecasts for energy, but also the need for careful evaluation
of the forecast’s performance in the context for which it is being used.

In both ‘point impact’ and ‘compound impact’ problems, the meteoro-
logical state is assumed to map directly to that of the impacted system (via
a transfer function or set of transfer functions) and, although the mapping
may be complicated, it is only dependent on the current meteorological
state. This assumption does not hold, however, in many energy system
planning and operations problems (e.g., ‘optimal power flow” or ‘unit
commitment’). In problems of this type, there are potentially complex
connections in time and space between different energy system compo-
nents and to forecast the state of the impacted system accurately requires
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Fig. 11.4 An illustration of energy price forecasting using meteorological inputs
following Lynch (2016) and Lynch et al. (2014). (a) A flow chart illustrating the
process through which the forecast is made and evaluated. (b) A schematic of the
‘merit order model’. In (b), the red curve indicates the relationship between sup-
ply and price (more expensive power stations are willing to produce as price rises,
hence a positive relationship between volume and price). The blue curve indicates
the relationship between demand and price (the demand for power decreases with
price, but here is assumed to be perfectly price-insensitive). The intersection of the
two curves sets the wholesale price and volume of power produced by the market.
The qualitative shape of the supply curve produced by the two-generation type
model (as fitted by Lynch (2016) to observed price data using an Ensemble
Kalman filter) is indicated in (b). Lynch (2016) went on to demonstrate that the
ECMWE-forecast based process outlined in (a) was able to significantly outper-
form equivalent forecasts using purely historical weather observations for each of
wind power, demand and price (evaluated over the period December 2010—
February 2014, at a 99% statistical confidence level). ECMWEF stands for European
Centre for Medium-Range Weather Forecasts

knowledge of both the power system’s initial state and the meteorological
evolution between the forecast’s initialisation and its target lead time.

It is beyond the scope of the present text to discuss these problems in
detail but the key concepts of a ‘complex impact’ on the power system can
be illustrated through a conceptual model,* as shown in Fig. 11.5.
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Fig. 11.5 A conceptual model of a simple power system with four components:
two fossil fuel generators (F, and F) with differing characteristics, wind power
generation Wand demand D. Residual demand (E = D — W), shown by the green
line on the time series (right-hand plot), must be met by the combined generation
from F, and F,. See main text for discussion

Consider a power system with a single demand node, D, connected to a
wind power source, W, the output from which is always instantaneously
utilised. As there is no storage of power, the residual demand E (i.c.,
demand minus wind power, E = D — W) must be met at all times by two
fossil fuel generators, F; and F,. F, has low fuel costs (i.c., it is cheap to
generate power with F) but changes in its output must occur slowly,
whereas F, has high fuel costs (i.c., it is expensive to use) but its output can
change rapidly if required.

Consider further a time series of residual demand as shown by the green
line on the right hand panel of Fig. 11.5. Initially, the residual demand can
be met entirely by £,—the low cost generator—but on hour 4 the residual
demand rapidly increases faster than F, can respond and £ must be used
to meet the short fall. Crucially, although the residual demand at hour 4
could have been determined using a transfer function applied to the
instantaneous meteorological state,® the division of the generation used to
meet this residual demand between F, and F, in hour 4 could not have
been estimated without also knowing the prior and future meteorological
and power system status. In this example, if the residual demand had been
higher in hour 3—and hence F\(# = 3) was also higher—then more of the
residual demand in hour 4 could have been met with the cheaper F rather
than the more expensive . In effect, it is not possible to determine the
value of F, and F, at a particular point in time (e.g., ¢ = 4) independently
of determining F, and F, over many surrounding time steps.

Thus, if one wishes to model the status of the power system at any instant,
it is therefore important to correctly represent both the meteorological
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time series trajectory and the power system’s time-evolving response to it.
It is not sufficient to simply apply a transfer function to an instantancous
‘snapshot’ of weather in isolation from the vest of the time series trajectory to
produce a full estimate of the power system’s status. In practice, the time-
dependences introduced by power system response constraints are also fur-
ther complicated by spatial connections introduced by transmission
limitations (i.e., finite rates of power transfer between locations). In contrast
to ‘point forecasting’, however, there has been relatively little assessment of
‘time-trajectory forecasting’ (or spatial patterns of co-dependent meteoro-
logical surface variables) in the meteorological research literature in either a
weather-forecasting or climate modelling context. Similarly, there has also
been relatively little attention paid to the quality of meteorological data used
in sophisticated energy system planning and operations studies. New
research is, however, beginning to tackle some of these concerns, for exam-
ple, Bloomfield et al. (2016) highlight that significant errors may arise if
insufficiently long weather records are used for power system planning and
Pfenninger and Keirstead (2015) have provided a recent example of com-
plex unit commitment modelling in a climate-change context.

Despite the differing levels of energy system impact complexity, many
challenges in energy meteorology have similarities to other meteorological
applications (e.g., insurance, water and agriculture). The need to calibrate
and downscale meteorological variables from coarse prediction datasets to
specific localised properties is a particularly ubiquitous problem. Direct
meteorological observations of the site (for ‘statistical downscaling’) and
‘dynamical downscaling’ (with finer resolution numerical models) can
assist in many circumstances, but it is especially challenging when the
response of the impacted system depends on more than one meteorologi-
cal input (in such cases, the co-variability of the meteorological properties
may be important as well as the individual meteorological properties them-
selves). It is also noted that downscaling and calibration only improve the
forecast if the large-scale dynamics of the system are well-simulated and, in
practice, errors associated with meteorological downscaling and transfer
functions are often difficult to separate (see, e.g., Cannon et al. 2017).

SUMMARY

To summarise, the transfer from ‘meteorology’ to ‘energy’ is, in many
cases, highly non-linear. This has profound implications for simulation and
prediction of energy system impacts, suggesting that forecast skill may be
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strongly influenced by the transformation from meteorological variables
to energy variables. In an ideal world, this may act to either increase or
decrease the skill of the forecast, depending on the specific characteristics
of the forecast problem but, in practice, the skill of an energy forecast will
often tend to be lower than the meteorological forecast from which it origi-
nates as errors in the transformation process will tend to compound errors
in the original meteorology. Careful diagnosis is needed to identify which
aspects of the forecasting system—from the meteorological prediction to
its downscaling and transformation into an energy property, and finally its
conversion into an end-user decision—lead to the dominant sources of
error, and to focus analytical resources on the scales and processes where
skill is achievable.

NoOTES

1. Other examples of similar ‘compound impact’ problems can be found in
peak-load estimation (e.g., Thornton et al. 2017) and simple models for
system planning applications (e.g., load duration curves for the estimation
of the optimal generation-type mix: Green and Vasilakos 2010; Bloomfield
et al. 2010).

2. See, e.g., Staffell and Green (2016) for an introduction to ‘merit order’
concepts.

3. The residual demand is presented here as total demand minus wind power
generation for simplicity. In practice, Lynch (2016) made several additional
calculations, removing inflexible generators (such as nuclear) and other
varying contributions (such as embedded solar and interconnectors) from
the total demand.

4. See, e.g., Wood et al. (2014) and Staffell and Green (2016) for an
introduction.

5. That is, a function of the form E(z = 4) = f({m(z = 4)}).
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The images or other third party material in this chapter are included in the
work’s Creative Commons license, unless indicated otherwise in the credit line; if
such material is not included in the work’s Creative Commons license and the
respective action is not permitted by statutory regulation, users will need to obtain
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