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Runfeng Yang and R. Simon Sherratt, Senior Member, IEEE

Abstract — Dual Carrier Modulation (DCM) is currently used
as the higher data rate modulation scheme for Multiband
Orthogonal Frequency Division Multiplexing (MB-OFDM) in the
ECMA-368 defined Ultra-Wideband (UWB) radio platform.
ECMA-368 has been chosen as the physical radio platform for
many systems including Wireless USB (W-USB), Bluetooth 3.0
and Wireless HDMI; hence ECMA-368 is an important issue to
consumer electronics and the user’s experience of these products.

In this paper, Log Likelihood Ratio (LLR) demapping method
is used for the DCM demaper implemented in fixed point model.
Channel State Information (CSI) aided scheme coupled with the
band hopping information is used as the further technique to
improve the DCM demapping performance. The receiver
performance for the fixed point DCM is simulated in realistic
multi-path environments’,

Index Terms — MB-OFDM, DCM, CSI. LLR

I. INTRODUCTION

Ultra-Wideband (UWB) technology was historically
employed in military radar systems. Recently UWB systems
were proposed to standardize wide bandwidth wireless
communication systems, particularly for Wireless Personal
Area Networks (WPAN). The fundamental issue of UWB is
that the transmitted signal can be spread over an extremely
large bandwidth with a very low Power Spectral Density
(PSD). In 2002, the USA Federal Communications
Commission (FCC) agreed to allocate 7500 MHz spectrum in
3.1-10.6 GHz band for unlicensed use for UWB devices [1]
and limited the UWB Effective Isotropic Radiated Power
(EIRP) to -41.3 dBm/MHz [2].

In 2005 the WiMedia Alliance [3] working with the
European Computer Manufacturers Association (ECMA)
announced the establishment of the WiMedia MB-OFDM
(Multiband Orthogonal Frequency Division Multiplexing)
UWB radio platform as their global UWB standard, ECMA-
368. ECMA-368 was also chosen as physical layer (PHY) of
high data rate wireless specifications for high-speed Wireless
USB (W-USB) [4], Bluetooth 3.0 [5] and Wireless High-
Definition Media Interface (HDMI) [6]. Recently ECMA-368
has published a second updated version [7].
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ECMA-368 specifies a MB-OFDM system occupying 14
bands. Each band with a bandwidth of 528 MHz can support
up to 480 Mb/s. The first 12 bands are grouped into 4 band
groups (BG1-BG4), and the last two bands are grouped into a
fifth band group (BGS5). A sixth band group (BG6) containing
band 9, 10 and 11 is also defined within the spectrum of BG3
and BG4, in agreement to use within worldwide spectrum
regulations. The advantage of the grouping is that the
transmitter and receiver can process a smaller bandwidth
signal while taking advantages from frequency hopping.

The OFDM symbol is the basic quanta of MB-OFDM
based UWB radio. Each OFDM symbol is constructed from
the Inverse Fast Fourier Transform (IFFT) of a set of 128
complex valued carriers made from 100 data carriers, 12 pilot
subcarriers, 6 NULL valued subcarriers and 10 guard
subcarriers. The 10 guard subcarriers used for mitigating Inter
Symbol Interference (ISI) are located on either edge of the
OFDM symbol and they are the same value as the 5 outermost
data subcarriers. In addition, the guard subcarriers can be used
as another form of time and frequency diversity resulting in
improved performance for the receiver [8]. Each OFDM
symbol is appended with zero-padded suffix to aid multipath
interference mitigation and settling times of the transmitter
and receiver.

To operate the Physical layer (PHY) service interface to the
Medium Access Control (MAC) service, a Physical Layer
Convergence Protocol (PLCP) sublayer is defined to provide a
method for converting a PSDU (PHY Service Data Unit) into
a PPDU (PLCP Packet Data Unit) composed from three
components (shown in Fig. 1): the PLCP preamble (containing
the Packet/Frame Synchronization and the Channel Estimation
sequence), the PLCP header, and the PSDU.

To transmit a Packet Service Data Unit (PSDU) that
contains information bits, ECMA-368 has eight transmission
modes by applying various levels of coding and diversity,
which offers 53.3, 80, 106.7, 160, 200, 320, 400 or 480 Mb/s
to the MAC layer. After the bit interleaver, the coded and
interleaved binary data sequence is mapped onto a complex
constellation. A Quadrature Phase Shift Keying (QPSK)
constellation is used for data rates 200 Mb/s and lower. Dual
Carrier Modulation (DCM) is used as a four-dimensional
constellation for data rates 320 Mb/s and higher. DCM was
introduced to the MB-OFDM proposal by Batra and
Balakrishnan [9] as one of the enhancement changes to create
the current WiMedia Alliance standard.
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The resulting complex numbers are loaded onto the data
subcarriers of the OFDM symbol implemented using an IFFT
to create real or complex baseband signal. Fig. 2 and 3 depict
the encoding and decoding process for the scrambled PSDU
respectively. Chapter II introduces DCM mapping process.
Chapter III discusses the DCM demaper using Log Likelihood
Ratio (LLR) demapping method and Channel State
Information (CSI) aided scheme for the further demapping
technique. Chapter VI  discusses the performance
measurements and comparison while chapter VII presents the
conclusions.

II. DCM MAPPING

A. Frequency diversity

Coded information on a single tone is unreliable if a
channel has deep fade. However, the probability of
experiencing a channel deep fade is extremely small if two
tones with the same information are separated by a large
bandwidth. Frequency diversity is used in the DCM by
mapping the same coded information but different forms onto
two different tones at different channel frequencies with a
large bandwidth separation.

B. DCM constellation mapping

After bit interleaving, the 1200 interleaved and coded bits
are divided into groups of 200 bits, and further grouped into
50 groups of 4 reordering bits. Each group of 4 bits is

represented as (b, Dgc+1> Daci50, Deciyesi), where k€
[0...49] and
o) 2k kelo0...24] )
2k+50 ke[25...49]
These four bits are mapped to two QPSK symbols

(Xg(k)+jxg(k)+50)’ (Xg(k)+1+jxg(k)+51) as illustrated in (2)
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Then the DCM mapper uses a DCM matrix H as in (3) to
execute mapping of the two QPSK symbols into two DCM

Xetk+1 + jxg(k)+51 (Zbg(km -D+ j(2bg(k)+51 -1

symbols (Y1), Yrksso) as illustrated in (4). The resulting

DCM symbols are formed into two 16-QAM like
constellations [7].
n=|? ! (3)
1 -2
Y1 L 2 1 KXoy T J Xy iy450 4)

ety Sl

where 1/4/10 is a normalization factor for normalizing the

Yr(k+50) v1o|1 =2 xg(k)+l+jxg(k)+51

average symbol power to be a constant unit.

The two resulting DCM symbols (Yra), Yrksso) are
allocated into two individual OFDM data subcarriers with 50
sub-carriers separation to achieve frequency diversity. In total
100 DCM symbols (complex numbers) are given to the 128pt
IFFT block for building an OFDM symbol. Each OFDM sub-
carriers occupies a bandwidth of about 4 MHz. Therefore the
bandwidth between the two individual OFDM data sub-
carriers related to the two complex numbers (Irq), Qry) and
Irkes0), Qrersoy) 18 at least 200 MHz, which offers good
frequency diversity gain against channel deep fading. Fig. 4
depicts the DCM mapping process.

III. DCM DEMAPPING
A. Log likelihood ratio demapping

The receiver converts each time-domain OFDM symbol
into the frequency-domain via the Fast Fourier Transform
(FFT). Then Channel Estimation and symbol Equalization
follows. To demap the DCM symbols at the receiver, the
received and equalized symbols previously transmitted on
different sub-carriers can be demapped by using Log




Likelihood Ratio (LLR). The DCM deampper uses two
separate subcarriers concurrently to decode the symbol pair. If
one symbol within one subcarrier is lost or degraded, it can be
detected, even recovered by the DCM demapper. The
proposed DCM soft demapping employs the DCM mixing
matrix to combine the two equalized complex numbers into a
sub-group of 4 soft bits. It is required to repeatedly execute
demapping of the two received DCM sysmbols to output
groups of 200 soft-bits. The soft bits from the DCM demapper
are then inputted to the bit deinterleaver, the soft-bit Viterbi
decoder and then descrambled to recover the PSDU. The
generic format of LLR equation can be expressed in the
following.

LLR = log(exp(A) + exp(B)) —log(exp(X) + exp(Y)) 5

In our case, a LLR is calculated from the received DCM

symbols Yrk and Yrxsso In addition, the LLR functions
related to the two 16-QAM like constellations are
independent. Hence the LLR for a group of 4 bits (by), beg+15
by(io)4505 bg(k)+;1) is formed from comblnlng the two independent
LLR, as in (6), (7), (8) and (9). o7 is noise variance associated
with the channel.

LLR(bm.)‘lOg{ )y exP{i(I”“ - Izk(k))}Jr )y exp{i(l““”) ,I"“*S“')z}} (0)
. = .

by =1 k ey =1 = Oyss0
_ 10g{ Z exp{ (Irm - IZR(k))z:| + Z exp{ (1m+50) _zlmmn )2 }}
bou,=0 — 0y beu)=0 ~ 050
Iy = Tr S I -1 ]
LLR(bMM)log{ Z cxp{( (k) 1R(k)) :|+ Z exp{( Tes0) R(k+50)) }(7)
sy =1 0y oy =1 ~ Olis0 ]
- log{ > cxp{(lm) ~ 1:?(“)2 } + oy exp{(lﬂmm _qIR(MU) i }
by =0 — 0y byt =0 ~Ois0 ]
LLR(,.50) = log{ exp{i@' 0~ ) } ex{(Q' w0~ O }(8)
-1 ~Grs

2
Py

QR(A +50)

O-A+50

_ l()g ex (Ql (/\ QRU(' + Z ex ( 1(k+)0 QR(I(+)0
byky+s0=0 Oliso
2
LLR(D,1.51) = log{ Z exp{i(QmJ O_sz)) } N Z QT(k+SO) }
b(‘lh‘ﬂ:l - I"&'[UAS\ =1

( T(k) QR ) ( -0 )—
—1 (k) T (k+50) R(k+50)
og{m; =0 P{i O-A mu; - O-A2+50

For a Gaussian channel, the LLR can be approximated as two
piecewise-linear functions which depend on the amplitude of
1/Q signals [10], [11]. Furthermore, the maximum LLR value
can be approximated to be soft magnitude with the associated
bit completely depending on the amplitude of the 1/Q signals.
In our case, there are two bits associated with each of the two
16-QAM like constellations completely relying on their soft
magnitude of the I/Q. Hence the LLR functions related to

}(9)
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these two bits from each constellation are considered to be
partially linear. Therefore some terms of these LLR functions
are approximated by the proposed soft magnitude, as in (10),
(11), (12) and (13).

! —Tegaso)
LLR(b, ) =31z +10g{ z cxp{(mm)zm””'):l} (10)

by =1 — Oyis0

2
~log Z exp (1m+50> _ZIR(A+50))
bygy=0 ~ Oiiso

LLR(bWI)—log{ z exp{(l““lf“')} an

by =1 Oy

JAPREY S &
CXP|:( T (k) 1R(A))— :|} _ 3IR“+50)
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- log{b" Z
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B. Enhancement by exploiting Channel State Information

In OFDM modulation, the OFDM subcarriers suffer from
different noise powers, for example, echoes, deep fades, etc.
Each OFDM subcarrier position has a dynamic estimation for
the data reliability. This dynamic estimation in frequency-
domain is defined as Channel State Information (CSI), which
is used to enhance the channel decoder’s error correction
performance [12] [13]. Each data carrier has a potentially
different CSI based on the power of the channel estimate at the
corresponding frequency. The more reliable CSI is applied to
the associated data subcarrier, the better decoding performance
can be. The proposed CSI aided scheme coupled with the band
hopping information maximizes the soft demapping
performance [14] [15]. The resulting CSI is a scalar term
indicative of the power of each frequency component of the
sequences. The soft bits for the demodulator are scaled by the
corresponding CSI, hence more reliable data for better
decoding and achieve better system performance. As a result,
each soft bit with incorporated CSI is derived as the following.

Soft(b,,) = LLR(b,,,) * min{CSI,, CSI, 5, } (14)
Soft(b, ) = LLR(b, ;) * min{CSI,, CSI, .5, } (15)
Soft(byys0) = LLR(D, ,.50) * min{CSI,, CSI, 5} (16)
Soft(b,,s1) = LLR(b,,,5,) * min{CSI,, CSI 5 } (17
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Fig. 5. System performance (in CM1) comparisons for fixed point and floating point DCM

IV. SYSTEM PERFORMANCE MEASUREMENTS

The system is simulated in a realistic multipath channel
environment of 100 channel realizations in Foerster’s Channel
Model 1 (CM1) [16] with conformance test requirement in
ECMA-368. All simulations results are averaged over 2000
packets with 1024 octets per payload in the PSDU and 90th-
percentile channel realization (the worst 10% channels are
discarded). The link success probability is defined as system
can be achieved with a Packet Error Rate (PER) less than 8%
[17]. We maintain strict adherence to timing and use a
hopping characteristic of Time Frequency Code (TFC)=1, and
incorporate a Noise Figure (NF) of 6.6 dB and 2.5 dB
implementation loss to the system model [7]. The simulation
was performed with the use of guard pilot diversity resulting.

V.CONCLUSION

ECMA-368 offers a robust wireless solution and low cost
wireless service in high speed WPAN. This paper presents
DCM mapping and demapping processes for ECMA-368.
Meanwhile, the fixed point DCM with 6 bits is found to
maintain system performance with using the floating point
DCM, which achieves a successful link of 3.9 meters at 480
Mb/s in realistic multipath channel environment.
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