University of
< Reading

A framework for convection and boundary
layer parameterization derived from
conditional filtering

Article

Published Version

Thuburn, J., Weller, H. ORCID: https://orcid.org/0000-0003-
4553-7082, Vallis, G. K., Beare, R. J. and Whitall, M. (2018) A
framework for convection and boundary layer parameterization
derived from conditional filtering. Journal of the Atmospheric
Sciences, 75 (3). pp. 965-981. ISSN 1520-0469 doi:
10.1175/jas-d-17-0130.1 Available at
https://centaur.reading.ac.uk/74660/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1175/jas-d-17-0130.1

Publisher: American Meteorological Society

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.

www.reading.ac.uk/centaur


http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

University of
< Reading
CentAUR

Central Archive at the University of Reading

Reading’s research outputs online



THUBURN ET AL.

A Framework for Convection and Boundary Layer Parameterization
Derived from Conditional Filtering

JOHN THUBURN

University of Exeter, Exeter, United Kingdom

HILARY WELLER

University of Reading, Reading, United Kingdom

GEOFFREY K. VALLIS AND ROBERT J. BEARE

University of Exeter, Exeter, United Kingdom

MICHAEL WHITALL
Met Office, Exeter, United Kingdom

(Manuscript received 24 April 2017, in final form 13 December 2017)

ABSTRACT

A new theoretical framework is derived for parameterization of subgrid physical processes in atmo-
spheric models; the application to parameterization of convection and boundary layer fluxes is a particular
focus. The derivation is based on conditional filtering, which uses a set of quasi-Lagrangian labels to pick
out different regions of the fluid, such as convective updrafts and environment, before applying a spatial
filter. This results in a set of coupled prognostic equations for the different fluid components, including
subfilter-scale flux terms and entrainment/detrainment terms. The framework can accommodate different
types of approaches to parameterization, such as local turbulence approaches and mass flux approaches. It
provides a natural way to distinguish between local and nonlocal transport processes and makes a clearer
conceptual link to schemes based on coherent structures such as convective plumes or thermals than the
straightforward application of a filter without the quasi-Lagrangian labels. The framework should facil-
itate the unification of different approaches to parameterization by highlighting the different approxi-
mations made and by helping to ensure that budgets of energy, entropy, and momentum are handled
consistently and without double counting. The framework also points to various ways in which traditional
parameterizations might be extended, for example, by including additional prognostic variables. One
possibility is to allow the large-scale dynamics of all the fluid components to be handled by the dynamical
core. This has the potential to improve several aspects of convection—-dynamics coupling, such as dy-
namical memory, the location of compensating subsidence, and the propagation of convection to

965

neighboring grid columns.

1. Introduction

In weather and climate models, various important
processes occur on scales that are too fine to be re-
solved. These processes must therefore be represented
by subgrid models or “parameterizations’’; for an in-
troduction and overview, see, for example, Mote and
O’Neill (2000), Randall (2000), and Kalnay (2003). A
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formal theoretical framework on which to build a
subgrid model can be obtained by applying a spatial
filter to the governing equations (e.g., Leonard 1975;
Germano 1992; Pope 2000); this leads to equations
for the filtered variables that resemble the original
equations for the unfiltered variables, supplemented
by terms representing the filter-scale effects of subfilter-
scale variability. This formal approach is widely used
in the development of numerical models for large-
eddy simulation (LES) but tends to be applied less
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systematically in the development of weather and
climate models.

In weather and climate models, a great variety of
processes need to be parameterized; these include un-
resolved waves, local turbulence, and coherent struc-
tures such as convective thermals or plumes. These
physical processes are qualitatively quite different from
each other and lead to subgrid models that are struc-
turally quite different, for example, eddy diffusivity
schemes for local turbulence compared with mass flux
schemes for cumulus convection. The usual LES filter-
ing approach does not, itself, make any distinction be-
tween these different types of subgrid process.

Recent developments have suggested a requirement
to be able to combine and extend these structurally
different types of subgrid model (e.g., Lappen and
Randall 2001; Arakawa 2004; Siebesma et al. 2007,
Gerard et al. 2009; Grandpeix and Lafore 2010;
Arakawa and Wu 2013; Storer et al. 2015). For
example, a convective boundary layer involves turbu-
lent eddies on a range of length scales up to the depth
of the boundary layer, implying that the turbulent
vertical transport has both local and nonlocal contri-
butions. This has motivated the inclusion of ‘“‘coun-
tergradient” transport terms in boundary layer
parameterizations (e.g., Holtslag and Boville 1993), as
well as the development of the eddy diffusivity—mass
flux (EDMF) scheme (Soares et al. 2004; Siebesma
et al. 2007) that, as its name implies, combines the
eddy diffusivity and mass flux approaches within a
single scheme.

A number of authors have argued for greater unifi-
cation of parameterization schemes (e.g., Lappen and
Randall 2001; Jakob and Siebesma 2003; Arakawa 2004;
Siebesma et al. 2007), pointing out that the real atmo-
sphere does not switch discontinuously, for example,
between a dry boundary layer and a shallow cumulus—
topped boundary layer or between shallow convection
and deep convection and that such switching behavior in
numerical models is unrealistic and undesirable. A
concrete step in this direction is the scheme of Neggers
et al. (2009; see also Soares et al. 2004), which extends
the EDMF approach by including moist processes and
by allowing the thermals in the mass flux part of the
scheme to penetrate above the top of the well-mixed
boundary layer. The scheme is thus able to smoothly
model transitions, in space and time, between a
stratocumulus-topped boundary layer, a shallow cumu-
lus regime, and a dry convective boundary layer.

Finally, there is a need for parameterization schemes
to take into account the grid resolution of the parent
model, that is, to be “‘scale aware.” The issue is partic-
ularly acute at resolutions that partly resolve the process
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in question: the so-called gray zone. Approaches to
handling the convective gray zone have considered not
only relaxing the assumption of small convective area
fraction, traditionally employed in mass flux schemes
(Arakawa and Wu 2013; Grell and Freitas 2014), but
also broadening the structure of the scheme to include a
stochastic element to account for local departures from
statistical equilibrium (Keane and Plant 2012), to in-
clude additional prognostic quantities to carry some
dynamical memory (e.g., Gerard et al. 2009; Grandpeix
and Lafore 2010; Park 2014), or by using a higher-order
turbulence model rather than an entraining plume model
to calculate convective transports (e.g., Bogenschutz et al.
2013; Storer et al. 2015). It should also be noted that the
deep convective gray zone merges gradually into the
shallow convective gray zone and then the boundary layer
gray zone as horizontal resolution is refined. In other
words, there is a rather broad range of model resolutions
across which the challenges of representing gray zone
processes must be addressed.

These considerations point to the need for a theoret-
ical framework that can accommodate these multiple
approaches to parameterization, both individually and
in combination. Such a framework would facilitate the
unification of different parameterizations or the cou-
pling of different parameterizations to each other and to
the dynamical core. For example, it could help ensure
that any dynamical or thermodynamic approximations
are made consistently throughout a model. It could also
help to prevent “double counting,” in which some con-
tribution to a flux is computed in two different ways by
two different parts of the model and counted twice in the
total flux. It should be possible to derive specific pa-
rameterization schemes from the general framework
via a set of clearly identifiable assumptions or approxi-
mations; this should enable the assumptions behind
different parameterizations to be compared more easily.
The framework should also be useful in interpreting
observational data or LES data to underpin the devel-
opment of parameterization schemes.

In this paper, a new theoretical framework is derived
and proposed for developing, coupling, and unifying
subgrid parameterizations. We particularly have in mind
the application of this framework to the parameteriza-
tion of convection and its coupling to the boundary layer
and to the larger-scale dynamics, motivated by current
challenges in this area (e.g., Holloway et al. 2014; Gross
et al. 2017, manuscript submitted to Mon. Wea. Rev.).
However, the derivation is quite general.

The derivation (sections 2 and 3) is based on the idea
of conditional filtering. It is closely related to the idea of
conditional averaging, which has been proposed, for
example, by Dopazo (1977) for the study of intermittent
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turbulent flows. Here, however, we use a spatial filter
rather than an ensemble average, and we extend the
approach to the fully compressible Euler equations. The
spatial filter is analogous to that used in LES. However,
in the conditional filtering approach, the fluid is first
partitioned into a number of regions identified by a set
of quasi-Lagrangian labels that each take only the values
0 or 1. Multiplying the governing equations by one of the
labels before applying the spatial filter effectively picks
out only the fluid identified by that label. The process is
repeated for each label in turn. For example, in the
simplest version, one label might pick out cumulus up-
drafts, while a second label picks out the rest of the fluid.
In this way, with very few approximations, one obtains
separate (but coupled) prognostic equations for each
fluid component, each with corresponding subfilter-
scale terms. The resulting equations resemble those
used in modeling multiphase flow for engineering ap-
plications (e.g., Stadtke 2006), though our derivation is
somewhat simpler.

A critical element of any application of the proposed
framework is to ensure that fluid parcels are appropri-
ately labeled, which will require fluid parcels to be
relabeled as the flow evolves. For example, if different
labels are used for updraft fluid and environmental fluid,
then fluid parcels must be relabeled as they are
entrained into the updraft and relabeled again when
they are detrained. Section 4 discusses how relabeling
may be included in the framework and briefly discusses
the relationship between relabeling and physical pro-
cesses such as mixing and source terms.

Section 5 outlines how local turbulence closures and
mass flux schemes are both accommodated in the pro-
posed framework. It is instructive to see how a typical
simple mass flux scheme is obtained by making certain
approximations within the framework; this example is
discussed in some detail.

An attractive feature of the proposed framework is
that it suggests how one might extend traditional mass
flux schemes for convection to include a prognostic
treatment of the convective dynamics, allowing some
aspects of dynamical memory to be captured. One
could, moreover, allow the dynamical core to handle the
convective as well as nonconvective (or mean) dynam-
ics. Such a treatment would allow convective systems to
be advected to neighboring grid cells (e.g., Grandpeix
and Lafore 2010). It would also allow the resolved dy-
namics to control the horizontal distribution of the
compensating subsidence rather than the parameterized
contribution being imposed in the convecting grid
column (e.g., Krueger 2001; Kuell and Bott 2008). It
would thus have the potential to overcome some sig-
nificant limitations of most current convection schemes,
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especially at high horizontal resolution. This possibility
is discussed briefly in section 6. Progress in analyzing and
implementing this approach will be reported elsewhere.

2. Conditionally filtered compressible Euler
equations

The derivation begins with the fully compressible
Euler equations:

%1 v. (pu)=0, (1)
ot
Dm _
=0 ()
Dq _
o= 3)
Du 1
4z + =
B pr Vb =0, (4)
p=P(p,m,q). (%)

Here, p is the total fluid density, u = (u, v, w) is the fluid
velocity, p is pressure, and ® is geopotential. For sim-
plicity, the governing equations have been expressed in
terms of ““‘conservative” variables—the specific entropy
m and the total specific water content g—and sources
and sinks have been neglected. In reality, source and
sink terms are often important (e.g., Bannon 2002;
Raymond 2013), and it is straightforward to include
them (section 3). It may be convenient to replace n by
some function of 7; see section 4. Similarly, Coriolis
terms have also been omitted, but it is straightforward to
include them. The equation of state has been written in
the generic form (5); this form assumes thermodynamic
equilibrium so that knowledge of p, 0, and g is enough to
determine the mass fractions of water in vapor, liquid,
and frozen form and, hence, determine p. This as-
sumption is not critical to the derivation below and can
be relaxed.

The derivation also applies to simplified equation sets
such as hydrostatic, anelastic, or Boussinesq. However,
an increasing number of weather and climate models are
now based on the nonhydrostatic compressible Euler
equations in order to be accurate across a wide range of
scales (Davies et al. 2003). To be applicable to such
models, we retain the compressible Euler equations
here. Moreover, we do not wish to encourage the in-
troduction of inconsistencies that might result from the
use of different underlying equation sets in the param-
eterizations and the dynamical core.

To carry out conditional filtering, a set of n Lagrang-
ian labels [, i =1, ..., n, is introduced. At any point in
the fluid, one of the I; values is equal to 1 while the others
are equal to 0. We will refer to the fluid with /; =1 as the
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ith fluid component. Eventually, we envisage that the
different fluid components might correspond to envi-
ronment, updraft, and possibly downdraft, cold pool, near
environment, further updrafts, etc. (Fig. 1). However, for
the moment, /; are just arbitrary Lagrangian labels.
Because /; are Lagrangian labels, we can write

DI,
5i=0. (6)

This equation will be used in the form
al.
—+u-V[L=0. 7)
ot !

In this form, there are time and space derivatives of
discontinuous functions; these must be interpreted as
Dirac 6 functions, and they will only make sense when
integrated. However, the derivation below avoids ex-
plicit consideration of these & functions. Also, the deri-
vation avoids the need to explicitly consider a surface
integral over the boundary of any fluid component (though
such consideration might be needed to formulate a specific
parameterization of some terms).

Now consider a formal spatial filtering of the gov-
erning equations. This is analogous to the derivation of
the filtered equations used in LES, with the key differ-
ence that the filter is restricted to each fluid component
in turn with the aid of the labels /;. Let G(¢, A) be a
kernel for the filter, where A is the filter width and
[, G(&, A)dé =1. Then a filtered variable, indicated by
an overbar, is defined as a convolution of the unfiltered
variable with the kernel:

X(x) = JD G(x — X, A)X(x) dX, ®)

where the integration is over the domain D of interest.
[A density-weighted filter X* may also be defined; see
(A1).] It will be assumed below that the filter commutes
with space and time derivatives:'

X X

—=—_—, VX=VX, etc. )
at at

! This assumption will not be valid if the filter scale A varies in
space or time. It will also break down near boundaries (such as
Earth’s surface). The additional terms that arise from variations in
A and from the presence of boundaries can be formally included at
the expense of some additional complexity (e.g., Fureby and Tabor
1997; Chaouat and Schiestel 2013) and may be estimated numeri-
cally with the aid of a second filter scale A =2A (Chaouat and
Schiestel 2013).
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FIG. 1. Schematic horizontal section showing a decomposition of
the fluid into multiple components, e.g., updrafts (orange), down-
drafts (blue), and the environment (green). In each component,
one of the /; values is equal to 1, and the others are equal to 0.

Now define o; to be the volume fraction of the ith fluid
component on the filter scale:

(10)

o =1

i i’

Then, since Y, I; = 1, it follows that ) ,o; = 1. Also define
the average density of the ith fluid component on the
filter scale p; by

(11)

op,=Ip.

To derive an evolution equation for o;p;, multiply (1) by
I; and add to p times (7) to obtain

d
Y (Ip)+V-(pu)=0. 12)
Apply the filter to this equation and use (9) to obtain

%(aipi) + V- (Ipu)=0. (13)

If we now define u, to be the density-weighted velocity of
the ith fluid component on the scale of the filter

u, = lpu/lp, (14)
that is,

(15)
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then (13) becomes

d

E(Ul.pl.) +V-(o,pu)=0. (16)
Next, we derive an evolution equation for the entropy

of the ith fluid component. Start by combining (2) with

(1) to obtain the conservative form

J
o, (pm) + V- (pun) =0. 17)
Take I; times (17) plus p7 times (7) to obtain
d
o Lipm) +V - (Lpun) =0. (18)
Now apply the filter and use (9) to obtain
9 - -
= @pm) +V - (Tpum) =0. (19)

By analogy with (15), define 7, to be the density-
weighted entropy of the ith fluid:

opm; = Lpm. (20)

Now write

Lpun = I,pun, + (I,pun — [,pun,)

;i

(21)
=opum; + Fg,

where Fgi. is the subfilter-scale flux of =,. Thus, (19)
becomes

d .
&(a-ipini) +V-(opum) = -V Fg. (22)
Subtracting 7, times (16) gives
o, 1 .
or, defining
D. 9
l=_ 4y .
i W \% 24)

to be the “material” derivative following the ith fluid
component,

Dini_ B 1

—V - Fg.
Dt o,p; SF

(25)

In an analogous way, one may define the average
density-weighted water content of the ith fluid ¢g; and
obtain its evolution equation
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1
Dt o.p;

L

V- Fg. (26)
The subfilter-scale fluxes For. and Fi. are completely
analogous to those obtained in the standard approach to
filtering, in which there is only a single fluid component.
But note that these are fluxes within fluid component i
and involve contributions only from fluid component i;
any fluxes between fluid components must occur through
relabeling terms—see section 4.

Next, consider the momentum equation. A key fea-
ture of this derivation is that we wish to end up with the
same pressure gradient term appearing in the mo-
mentum equations for each of the labeled fluid com-
ponents; see section 6 for a brief discussion. Taking
p times (4) plus u times (1) gives the flux form of the
momentum equation

%(pu) LV (puu) £ Vp 4+ pVB=0. (27
Then [; times (27) plus pu times (7) gives

%(Iipu) +V-(Lpuu)+ IVp + [pVd=0. (28)

Now apply the filter to (28) and consider each term in

turn. To an excellent approximation V® will be constant
over the filter scale, so

LpV® =TpVD =0 p V. (29)
The pressure gradient term is
INp=0NVp+ (I Vp—0o,Vp)
=o,Vp+[V(I,p) —o,Vp] — pVI.. (30)

The term pVI; involves & functions at the boundary of
the regions containing the ith fluid component, and it
represents the net pressure force (per unit volume)
exerted upon fluid i by the other components. It may
be decomposed into contributions from the boundary
between fluid component i and each other fluid com-
ponent j:

PV =-Yd, (31)
j

where d;; is minus the pressure force (i.e., the drag) ex-
erted by fluid j on fluid i on the scale of the filter. It can
be seen that d; = —dj;, as required for conservation of
momentum. (The case j =i can be included by defining
d; = 0.) The term

b,‘ = [V(I,‘p) - UiV]_)] (32)
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accounts for the fact that the remaining filter-scale
pressure gradient force is not given exactly by o;Vp.
By summing over i and using (10), it can be seen that
2b.=0. (33)
Now consider the time derivative term in (28). In (15),

we have already defined u; to be the density-weighted u
of the ith fluid, so

00— 0

—ILpu= t(aipl.ui).

i - 4
ot ' a (34)

Finally, consider the momentum flux due to advection
and write

Lpuu =T puu, + (Ipuu — I puu,)

=opuu + Fg,

(35)
where Fk is the subfilter-scale momentum flux tensor.
Combining these results gives

)
Y (opu)+V-(ocpun)+oVp+opVP

[ A

=—{VF§+@+Z¢}.
j

(36)

Then, subtracting u; times (16) and dividing through by
oip; gives

Du 1 1 u
—i+ Vp+Vd=——F{V-Fe.+b + >d_ p.
Dr inp Vo ‘{V Fse +b, jd"}

i

(37)

It is easily verified that including a Coriolis term 2Q X u
on the left-hand side of (4) leads to the appearance of a
term 2Q X u; on the left-hand side of (37).

For completeness, a filtered version of the equation of
state is also needed:

ﬁ = P(pi, np q,) + PlSF’ (38)
where Pi. = P(p, m, q) — P(p;, m;, q;) represents subfilter-
scale contributions to the equation of state. Because of the
short time needed for acoustic waves to propagate
across a grid cell and equilibrate the pressure field, it will
often be justifiable to neglect P,. A variety of alterna-
tive forms can be obtained by rearranging (5) before
applying the filter. In making a specific choice, the points
discussed in section 4 should be noted.

So far, the only approximations made in going from
(1)—(5) to the conditionally filtered equations (16), (25),
(26), (37), and (38) are that V® is constant on the filter
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scale and that the filter commutes with space and time
derivatives.

3. Inclusion of source terms

Up to this point, to simplify the presentation, source
and sink terms for entropy and total water have been
neglected. In realistic flows, such sources are important.
This section shows that the inclusion of source terms in
the framework is straightforward.

For illustration, consider the budget of liquid water
[superscript (/)], but neglect precipitation as well as
freezing and thawing. The analog of (3) for liquid water
is then

Dq(’)
Dt

- C-E, (39)

where C and E are the rates of condensation and evap-
oration, respectively. Combining with (1) to obtain the
flux form of the equation and then with (7) gives

J
=g+ V- (Lpug") = 1p(C~E).  (40)

Application of the filter then leads to

d I / %
&(ng,‘%( )) +V. (a-ip,'u,‘qz( )) = O-ip,'C,‘ - U[p,‘E,' -V FgF >
(41)

where ¢ is the mass-weighted filter-scale mean q® in
fluid component i, Fgi. is the subfilter-scale flux of ¢’
in fluid , and C; and E; are the mass-weighted filter-scale
condensation and evaporation rates in fluid i, defined by

op,C.,=1pC, opE =IpkFE. (42)
The final result can be converted back to advective form
by subtracting q,(/) times (16):

Diqz@ 1 "

(43)
i

Thus, the source and sink terms are carried through
the conditional-filtering operation in a straightforward
way. [Note, however, that care may be required if a
source term is to be expressed as a nonlinear function of
other variables. For example, if condensation rate is a
function of water vapor ¢ and temperature T, then
oip;Ci =ILp,C(q®, T) # a'ipiC(q,(v), T;) if there are
subfilter-scale variations in ¢® or T within fluid i.
However, such differences are commonly neglected.]
Other source terms can be included in an analogous way.
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This particular example will be used to discuss the link
between sources and relabeling in the next section.

4. Relabeling

A crucial aspect of any practical application of the
proposed framework will be the relabeling of fluid par-
cels. In the above derivation, I; are simply arbitrary
Lagrangian labels. It is envisaged that the framework
might be exploited by using the labels to pick out subsets
of fluid parcels with certain properties. For example,
fluid 2 might represent convective clouds or updrafts, as
identified, for example, by the fluid’s vertical velocity,
buoyancy, or liquid water content, while fluid 1 repre-
sents the updraft environment. It would then be neces-
sary to allow fluid parcels to be relabeled as their
properties change. For example, relabeling some of fluid
1 as fluid 2 would correspond to entrainment, while re-
labeling some of fluid 2 as fluid 1 would correspond to
detrainment. Specifying cloud-base mass fluxes, for ex-
ample, would also involve relabeling.

Even when there is such a clear conceptual link be-
tween fluid parcel labels and their physical properties,
defining a suitable relabeling scheme is a difficult and far
from fully solved research problem (e.g., de Rooy et al.
2013). Moreover, there are situations where it is not at
all clear how best to assign parcel labels. For example, in
the dry convective boundary layer, there are local and
nonlocal contributions to the vertical transport, and
some success has been achieved in modeling these with
the EDMF approach (Siebesma et al. 2007). However,
joint probability density functions (pdfs) of vertical ve-
locity and temperature from LES (e.g., Wyngaard and
Moeng 1992) do not suggest any clear criterion for la-
beling the fluid as updraft and environment. Again, the
best choice of relabeling scheme is an open research
question. In this section, we first note how relabeling can
be included in the conditionally filtered equations. We
then briefly discuss how the mathematical operation of
relabeling may be linked to physical processes such as
mixing and source terms.

a. Inclusion of relabeling terms

One way to bring relabeling into the framework would
be to introduce source terms for the Lagrangian labels 7.
However, such source terms would necessarily have a
o-function structure, making the subsequent mathe-
matics cumbersome. Instead, we choose to introduce the
relabeling terms directly in the filtered equations (16),
(25), (26), and (37).

Let .7,; be the rate per unit volume at which mass is
converted from component j to component i. Then (16)
becomes
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J ,,
Z(0p) + V- (@) = E(///, — ). (@)

(If we define .#;; = 0, then we can include j =i in the
sum, too.) This formulation clearly introduces no net
source to the total density p = Y ,0:p;.

Next, let g;; be a representative value of g for the fluid
that is converted from component j to component i. The
flux form of the ¢; equation becomes

d Nl o o e
g (O'gp,*q,') +V. (Uip,‘u,‘qi) _]g,l( /él»jqi/« - .//Jl.l.qﬁ) V. FSF .
(45)

Subtracting ¢, times (44) then leads to

Dg. 1 ,
= MG, —q)—#(q.—q)|—V-F
Dt O'ipz{lé:i[ 7y 4) =G ql)} v FSF}

(46)

This formulation clearly introduces no net source to the
total density of water pg = > ,0:p,q;- A simple choice
would be to set cjﬁ = g;,in which case, the right-hand side
of (46) simplifies. However, we are not restricted to this
choice, and a more accurate scheme might be obtained
by making a different choice. For example, the air de-
trained from a cumulus updraft might typically be less
moist than the average air in the updraft (e.g., de Rooy
et al. 2013). There is an analogy here with flux-form
advection schemes, as noted by Yano (2014), with g;
analogous to the moisture mixing ratio at a cell edge
used in computing a moisture flux. The choice g; = g;
corresponds to a first-order upwind scheme, but other
choices might give more accurate schemes.

A similar argument allows the inclusion of relabeling
terms in the entropy equation

Dim, 1 (= (s i
W - E{ 2[//61'/‘(77,']'_ 71,-) - -///6]7(7717_ 77,‘)] -V FSF }

i

J#i

(47)

This formulation clearly conserves the total entropy.
The simple choice 7); = 7, is possible, leading to some
simplification, but other choices might give more accu-
rate results.

As noted in section 2, it is possible to work with some
function of entropy rather than entropy itself. If the fluid
is a perfect gas and moisture can be neglected, then there
are two advantages to working with potential tempera-
ture 0 rather than 7). First, note that the conditionally
filtered potential temperature equation, including re-
labeling terms, would be
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(48)

This formulation would conserve the density-weighted
potential temperature rather than entropy. In this
case, it is appealing to write the equation of state in the

form
(1-x) R
()i
Py Py

where p is a constant reference pressure, R is the gas
constant for dry air, and k = R/C, with C, the specific
heat capacity at constant pressure. Multiplying by /; and
applying the filter then gives

—\ 1l—«
R .
(ﬂ) _ R oo+ P
Py Py

(49)

(50)

Dt j#i

i

In this formulation, the relabeling terms conserve mo-
mentum. On the other hand, they do not generally
conserve the filter-scale kinetic energy; instead, they
imply a transfer of kinetic energy to (or from) the sub-
filter scale. This transfer could, in principle, be di-
agnosed and used as a source for subfilter-scale kinetic
energy or as a term in a diagnostic budget.

b. The relation between relabeling and physical
processes

In the discussion so far, we have identified entrain-
ment and detrainment with relabeling. Now, in the
continuous equations [(1)—(6)], before filtering, the la-
bels are completely passive; that is, the values of I; do
not affect the solution for the other variables in any
way. The labeling is purely a mathematical device for
picking out certain regions of the fluid. On the other
hand, it is normal to regard entrainment and de-
trainment as closely associated with physical processes
such as mixing, condensation, and evaporation. The
key to reconciling these two viewpoints is to recognize
that, in order to be most useful, the choice of labeling
should reflect the physical properties of the fluid. For
example, in diagnosing entrainment rates from high-
resolution simulations, a critical step is how one defines

JOURNAL OF THE ATMOSPHERIC SCIENCES

Du 1 1
My Lo pve- L { > [ 7,6, - w)
p;

VOLUME 75

If the subfilter-scale terms are negligible, then multi-
plying by o; and summing over fluid components gives

—\ l—«
R R _
<£> =—20'ipi6i=—p0.
0 i Py

o (1)

Since the relabeling terms in (48) would preserve the
right-hand side of (51), they would therefore preserve p.
Thus, relabeling terms should not introduce any pres-
sure fluctuations that could generate acoustic waves and
cause numerical problems.

A closely related point is that the internal energy den-
sity of the ith fluid component (neglecting subfilter-scale
contributions) C,p,T; = (C,/R)p (where C,=C, — R is
the specific heat capacity at constant volume) is a func-
tion only of p and so would also be preserved by the
relabeling terms in (48). Thus, the total internal energy
density Y, C,o:0,T; would also be preserved by the
relabeling terms.

Finally, relabeling terms can be included in the mo-
mentum equation in an analogous way

— (0~ )|~ VRl b, ;dq} : (52)

(i.e., labels) updrafts (Couvreux et al. 2010; Yeo and
Romps 2013). Consequently, relabeling should reflect
changes in the physical properties of the fluid, which in
turn will often be associated with source and sink
terms. These ideas are explored a little more in this
subsection.

First, note that there is a close relationship between
relabeling and mixing. As a simple illustrative thought
experiment, consider a situation in which ¢ is uniform in
fluid 1 and also in fluid 2 but with different values in
each. Now consider relabeling some of fluid 1 as fluid 2.
As a result, the mean mixing ratio in fluid 2 g, will
change. Also, there will now be some subfilter-scale
variability of ¢ in fluid 2; previously, it was zero. In
principle, if we were to keep track of the subfilter-scale
variability, for example, through budgets of variance
and higher-order moments, then the relabeling could be
reversed; after all, the physical state of the system has
not changed. However, if no attempt is made to keep
track of the subfilter-scale variability, then this in-
formation is lost; as far as a numerical model is con-
cerned, the relabeled fluid 1 has effectively been mixed
into fluid 2. Because of this implied mixing, in practice,
we will want to relabel in situations where it is reason-
able to assume that mixing occurs. This is exactly what is
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done in typical mass flux convection schemes for en-
trainment and detrainment.

Next, consider the link between source terms and
relabeling. To illustrate the idea, consider the equation
for liquid water mixing ratio [see (43)], which includes
condensation and evaporation terms. Introduce relab-
eling terms, by analogy with (46), but for simplicity,
neglect the subfilter-scale flux term, to leave

D(I)
~4r Ci—E,-+Ulp{2[//<‘” ¢

Dt 7
— 2,6 - @)} } (53)

At this point, the mathematical operation of relabeling
and the physical sources are conceptually distinct and
correspond to different terms in the equation.

Now suppose there are just two fluid components, and
we wish to label air containing liquid water as fluid 2 and
air without liquid water as fluid 1. In this way, we
impose a link between the mathematical labels and the
physical state of the system Since we now impose

q(l) =0, the equation for ‘h) becomes

(///qug Mndl). (54)

a.p,

Thus, we have a constraint relating the relabeling terms
to the source terms. It would be natural to require that
any condensation that occurs in fluid 1 will immediately
result in relabeling (entrainment) into fluid 2, while any
relabeling of fluid containing liquid water from fluid 2 to
fluid 1 would immediately result in evaporation. In that
case, (54) breaks into two separate constraints:

(55)
(56)

o,p,C ///21%1 )

_ A()
o0 Ey =74y -
These constraints ensure that the proposed labeling
scheme remains consistent with the source and sink
terms.

5. Relation to existing approaches

It will be useful to note how existing approaches to
parameterizing the boundary layer and convection fit
into the proposed framework. Many such schemes fit
broadly into two types: local turbulence closures and
mass flux schemes. The example of a mass flux scheme
for convection is perhaps the most instructive and is
discussed in some detail in section 5b. The local turbu-
lence closure approach is mentioned briefly first. The
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EDMEF approach may be considered a hybrid of the two
and is discussed briefly at the end of this section.

An important detail is that atmospheric models are
generally formulated to predict the evolution of filter-
scale mean variablesp, %", g, and U, with the dynamical
core handling transport by u". The appendix obtains the
equations for these mean variables in the conditionally
filtered framework.

a. Local turbulence closures

In terms of the conditionally filtered framework, local
turbulence closures amount to considering a single fluid
component and modeling all of the boundary layer and
convective fluxes through the subfilter-scale terms Fdg,
F{., and Fg. In this approach, the calculation of the
fluxes is essentially local; that is, the parameterized flux
at a given point depends only on prognostic fields and
quantities constructed from them, and their derivatives,
at that point.

The simplest such schemes include diagnostic eddy
diffusivity schemes, usually applied to the boundary
layer, in one dimension (e.g., Louis 1979) or three di-
mensions (e.g., Smagorinsky 1963; Germano et al. 1991).
More sophisticated schemes attempt to diagnose or
predict some higher-order moments of the turbulent
flow (e.g., Mellor and Yamada 1982). By assuming a
particular functional form for the subfilter-scale joint
pdf of w, 6, and g, for example, and predicting enough
moments in order to fix the free parameters describing
the pdf, it is possible to reconstruct all the other desired
moments. This approach has been applied to unifying
the treatment of the boundary layer, shallow convection,
and even deep convection (Lappen and Randall 2001;
Golaz 2002; Storer et al. 2015). All of these approaches
correspond to making particular choices and approxi-
mations within the proposed framework. Although the
framework does not explicitly include the additional
prognostic equations that might be needed for some
higher-order turbulence closure, there is no barrier to
including them.

b. Reduction to a mass flux scheme

It is instructive to see how a typical mass flux scheme
can be obtained by making systematic approximations
within the conditional filtering framework. The ap-
proximations are all familiar from the literature on
convection parameterization. Since the purpose here is
to illustrate how the argument goes, we neglect sources
of entropy and water and consider only a very simple
mass flux scheme.

We begin by noting that mass flux schemes are often
based on budgets of moist static energy rather than en-
tropy. The moist static energy budget in turn is often
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broken down into separate budgets for dry static energy
and for water vapor and condensed water with corre-
sponding source and sink terms (e.g., Arakawa and
Schubert 1974; Tiedtke 1989). Moist static energy is only
approximately conserved, both materially and in an in-
tegral sense (e.g., Romps 2015), so an approximation is
involved in using its budget. Other mass flux schemes
work in terms of entropy or related quantities, and the
budget may be broken down into separate budgets for
potential temperature and moisture quantities (e.g.,
Gregory and Rowntree 1990; Siebesma et al. 2007). In
this section, we will use the entropy budget as it is the
simplest for the purpose of illustration. The formulation
in terms of conserved moist static energy is analogous.

A typical mass flux scheme comprises three compo-
nents: (i) convective source terms for the large-scale
budget equations, which depend on the vertical profiles
of properties within the cloud; (ii) a cloud model that
determines the vertical profiles of cloud properties such
as mass flux, entropy, and water content, given their
values at cloud base; and (iii) some trigger and closure
assumptions that determine whether convection occurs
and the cloud-base properties if it does. In this section,
we note how the large-scale budgets and cloud model
for a typical mass flux scheme can be systematically
derived from the conditionally filtered equations by
making certain approximations. Triggering and closure
will not be discussed; as noted above, these remain dif-
ficult open research questions. We will consider the
simplest possible situation with just two fluid compo-
nents, i = 2 being the convecting fluid and i = 1 being the
environment.

The budgets for the filter-scale mean entropy and
total moisture are given by (A8) and (A6). We neglect
the Fdi. and F{. terms. Such terms are not usually in-
cluded in mass flux convection schemes. They are
typically accounted for by other parameterizations
such as the boundary layer scheme or by a combined
scheme such as EDMF (e.g., Siebesma et al. 2007).
Also, horizontal contributions to the flux divergence on
the right-hand side of (A8) and (A6) are neglected.
This leaves

_Dn J
=——F] 57
p Dt 9z CF» ( )

Dy’ 9
p——=——F] 58
Pt 9z CF» (58)

where

FgF = 0Py + T,P,Wo My — ﬁW*ﬁ (59)

and
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Flg=o,p,w,q, + 0,p,w,q, — pwaq . (60)
Next, if we assume that o, < 1, then n, ~7%" and
q1 ~q . Then, using (A2), (59) and (60) simplify to

FgF = Uzpzwz(nz - ﬁ*) = M(nz - ﬁ*) (61)

and

F(qZF = Uzpzwz(qZ - q*) = M(Qz - q*)’ (62)
where M = o,p,w, is the vertical mass flux in the
convecting fluid.

Equations (57) and (58), together with (61) and
(62), specify the convective source terms for the large-
scale thermodynamic variables in terms of the profiles
of M, n,, and g,. The simplest convection schemes
neglect the effect of convection on the large-scale
momentum budget, and for simplicity, we will do the
same here.

The cloud model is obtained by approximating the
conditionally filtered equations for fluid 2. First, consider
the mass budget [see (44)]. Assume that o,p, is steady,
and neglect horizontal transport in fluid 2 to obtain

oM
“Z=E-D,

7z (63)

where E = .7 is the entrainment rate and D = 71, is
the detrainment rate. If desired, entrainment and de-
trainment may be expressed as fractional entrainment
rates per unit height: £E=&eM and D =M.

For the cloud water budget, in (45), assume that 0,0,
is steady; that is, neglect storage of water in the cloud. Also
neglect horizontal transport of water by the cloud, and
neglect the F&. term, which represents transport of water
by subcloud variability. The water budget then reduces to

ad . .

& (MCIz) = Eq21 - Dqlz . (64)
Next, assume that the specific humidity in entrained air
is equal to the mean environmental value ¢,, = q;, while
the specific humidity in detrained air is equal to the
mean cloud value g,, = q», so that (64) simplifies to

d

&(qu) :qu _qu' (65)
An alternative form is obtained by subtracting ¢,
times (63):

i,

0z (66)

= E(ql - qz)'

In a similar way, by making analogous approxima-
tions, the cloud entropy budget may be written
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& (an) = E771 - Dnz (67)
or
an
2= E(n, = my). (68)

Given cloud-base values of M, ¢,, and 7, and
vertical profiles of E and D (or ¢ and §), (63), (65),

D2W2+l6£+g: 1

M (W, —
Dt p, 0z 9z oy, 21 (¥,

Here, b, and d,; are the vertical components of b, and
dy;. The second and third terms on the left-hand side
together represent the negative of the buoyancy. They
may be written in a more familiar form by assuming that
the filter-scale mean state is in hydrostatic balance

Lop o _

0, 70
paz 9z (70)

so that
(71)
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p, 9z 0z 0z Py

In a typical mass flux scheme, p, is not calculated di-
rectly. However, B can be diagnosed from the vertical
profiles of thermodynamic properties of the cloud and
its environment together with the usual parcel as-
sumption that the pressures in the cloud and the envi-
ronment are equal.

Some mass flux schemes solve an equation for vertical
velocity in the updraft. This is useful, for example, if the
vanishing of the vertical velocity is used to define the top
of the updraft (e.g., Siebesma et al. 2007) or E and D are
assumed to depend on updraft vertical velocity (e.g., Rio
et al. 2010). Assuming w, to be steady and neglecting
horizontal transport of w, and transport by subfilter-
scale variations, (69) becomes

1
29z 0,p,

[E(wy = wy) = DOvy, = w,)

—b,—d,]. (72)
This is typically simplified further by assuming
Wzl =wp = 0 and lff/lz =w, to giVC

a

py (73)

2
w3 1
—~|=B——(Ew,+b,+d,,).
(2) Uzpz( 2 2 21)
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and (67) may be integrated to obtain vertical profiles
of M, q,, and 7.

Values of cloud buoyancy will be needed to determine
whether convection occurs. They will also be needed if a
zero-buoyancy condition is used to determine cloud top,
if entrainment or detrainment are assumed to depend on
buoyancy, or if an equation for cloud vertical velocity is to
be solved. Consider the vertical momentum budget for
fluid 2, that is, the vertical component of (52):

9w
R b, —dy . (69)

2

However, there is evidence that this assumption is a
not a good approximation (e.g., Sherwood et al. 2013),
and some schemes account for other values of w,; and
w1 by using (73) with a modified value of E for the
entrainment of w (e.g., Siebesma et al. 2007). A variety
of schemes have been proposed for parameterizing the
pressure drag terms b, + d; ;.

All of the assumptions and approximations made
above are standard ones that can be found in the liter-
ature on parameterization of convection. Recent de-
velopments have attempted to relax some of these
approximations. For example, Gerard et al. (2009),
Arakawa and Wu (2013), and Grell and Freitas (2014)
attempt to remove the assumption that the volume
fraction of convecting fluid is small. Kain (2004), Plant
and Craig (2008), Gerard et al. (2009), and Grandpeix
and Lafore (2010) include some elements of memory
about the state of convection or boundary layer cold
pools resulting from convective downdrafts, thereby
relaxing the steadiness assumption. Vertical transport of
horizontal momentum, both by advection and via pres-
sure fluctuations (b; and d; terms), may be taken into
account (e.g., Kim et al. 2008), representing ‘‘cumulus
friction.”

c. Eddy diffusivity-mass flux schemes

EDMF schemes have been proposed to parameterize
the local and nonlocal transports in the convective
boundary layer, as well as transitions between the
shallow cumulus, stratocumulus, and dry convective
boundary layer. The net transport is decomposed into a
local turbulent contribution modeled as an eddy diffu-
sivity and a nonlocal contribution modeled using the
mass flux approach. Thus, it combines the approaches
discussed in sections 5a and 5b above, and it nicely
illustrates how such hybrid approaches can be accom-
modated in the proposed framework. The dry convec-
tive boundary layer scheme of Siebesma et al. (2007)
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would correspond to using two fluid components, one to
represent updraft and one to represent the rest of the
fluid. The extended scheme of Neggers et al. (2009)
would correspond to using three fluid components, one
for dry updrafts, one for moist updrafts, and one for the
rest of the fluid. In both cases, subfilter-scale flux terms
Fl., F&., etc., could be included in one or more com-
ponents to represent the eddy diffusive fluxes.

6. Multifluid schemes

One of our motivations for introducing the above
framework is to provide a derivation of the multifluid
equations (44), (46), (47), and (52), along with (38), in
preparation for exploring their potential for represent-
ing convection in atmospheric models. The multifluid
approach, like mass flux schemes, represents environ-
ment, updrafts, and downdrafts, by different fluid
components. It could be simplified by neglecting the
subfilter-scale fluxes For. and Fgi, and the pressure terms
b; and d;. But crucially, unlike traditional mass flux
schemes, it retains the full material derivative D;/Dt for
all fluid components. Hence, it provides a natural and
physically sound basis for representing some dynamical
memory about the state of convection.

A particularly attractive possibility for solving the
multifluid equations in a numerical model is to allow the
dynamical core to represent the filter-scale terms (i.e.,
the left-hand sides) in the equations for all fluid com-
ponents. Parameterizations of entrainment/detrainment
terms ./; and subfilter-scale fluxes Fsg would still be
needed; these could be based on existing approaches to
modeling these terms. However, the main burden of
handling the convective dynamics would be shifted to
the dynamical core.”> We believe this approach has the
potential to improve the model representation of the
coupling between convection and the larger-scale cir-
culation. First, it would help to ensure the consistency of
the governing equations used throughout the model.
Second, it would allow the dynamical core to control the
location of the subsidence compensating convective
mass flux rather than a parameterized contribution be-
ing imposed in the convecting grid column. Third, it
would allow information about the state of convection to
be transported by the dynamical core to neighboring
grid columns. Finally, with a suitably scale-aware for-
mulation of the parameterized terms, such an approach
should work both at grid resolutions where convection
is usually parameterized and at convection-resolving

2 On a philosophical note, this would shift the established—but
artificial—boundary between ‘‘dynamics” and “‘physics.”
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resolutions and may even be able to work at in-
termediate gray-zone resolutions.

The difficulty of parameterizing convection, and the
potential benefits of using a more fundamental equa-
tion set with fewer approximations, has been used as a
justification for the “‘superparameterization” approach
to convection (Grabowski and Smolarkiewicz 1999;
Randall et al. 2003) and is summarized in the epithet,
“The equations know more about convection than we
do.” The epithet might also be applied to the multifluid
approach, since it attempts to solve a more complete and
fundamental equation set than is usually done in con-
ventional parameterizations.

The derivation of section 2 was constructed in such a
way that the same mean pressure gradient Vp appears in
the momentum equations for all fluid components. This
feature becomes important when considering the mul-
tifluid equations and particularly their numerical solu-
tion. If different fluid components were permitted to
have different pressures p;, then this would permit the
equations to support subfilter-scale acoustic modes
with the entire cloud field in synchronized oscillation.
Besides being manifestly unphysical, such modes
would likely be difficult to handle numerically. The use
of a single pressure field in all the component mo-
mentum equations can be considered a type of filter
that removes such acoustic modes. Note, however, that
the different fluid components are not required to have
the same density. Since buoyancy can be expressed
entirely in terms of the densities of a fluid parcel and its
environment together with gravity [e.g., Holton 2004;
Vallis 2017; see also (71) above], the use of a single
pressure field does not prevent buoyancy effects from
being explicitly represented. On the other hand, rising
thermals do not in general experience the same pres-
sure gradient as their environment. For example,
pressure perturbations above and below a thermal
can provide an effective drag (e.g., Romps and
Charn 2015). Such small-scale pressure perturbations
are included in the conditional-filtering framework
but appear in the b; and d;; terms, which must be
parameterized.

Another advantage of using a single mean pressure
field arises when considering numerical solutions. For
example, a semi-implicit semi-Lagrangian solution
scheme for the multifluid equations may be written
down, by analogy with the Even Newer Dynamics for
General Atmospheric Modelling of the Environment
(ENDGame) scheme used operationally at the Met
Office (Wood et al. 2014). Seeking an iterative solution
method and eliminating unknowns leads to a Helmholtz
problem for (increments to) the single pressure field that
has the same form as that in ENDGame itself. Such a
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straightforward scheme would not be expected if dif-
ferent p; were allowed.

Itis important to check that the derivation in section 2
provides the right number of equations to determine all
the unknowns; in particular, we need to be able to de-
termine both o; and p; even though there is a prognostic
equation only for the combined quantity o;p;. Counting
the velocity vector as three components, we have 7n + 1
unknown fields: oy, p;, m;, qi, w;, and p. We also have
7n + 1 equations: (16), (25), (26), (37), (5), and Y0, = 1.
How the equations determine o; and p; is most trans-
parent for a perfect gas equation of state. The middle
expression in (51) may be evaluated from directly pre-
dicted quantities o;p; and 6;, giving p. Then (50) de-
termines p;, and finally, o; = o;p;/p;. It is noteworthy that
the different fluid components are coupled by the Vp
term even in the case .Z; = 0.

One variant of the multifluid scheme makes the ap-
proximation that the horizontal velocities v; of all fluid
components are equal. This amounts to assuming that
the horizontal components of d;; are just what is required
to maintain that equality of the v;. Since the v; are equal,
v; = (Xoip;vi)/p =V". The prognostic equation for v; is
then just the horizontal component of (A9):

DV'

ﬁE+VHp+pVH¢>:—ZV-F;fF, (74)

where Vy is the horizontal gradient operator, Fg are the
subfilter-scale fluxes of horizontal momentum, and the
F{r contribution vanishes because of the equality of v;.
There might be some computational benefit from mak-
ing this approximation. On the other hand, there might
be some benefit in modeling the vertical flux of hori-
zontal momentum by retaining separate v; for each
component, for example, near squall lines or frontal
convection. It would be valuable to explore this trade-
off.

We have begun to explore the potential of the
multifluid approach theoretically and numerically. In
the absence of entrainment/detrainment terms and
subfilter-scale terms, we have shown that the multifluid
equations have a Hamiltonian formulation and that the
two-fluid system has a physically reasonable set of linear
normal modes, providing some confidence in their
physical soundness. We also have some preliminary re-
sults from a Boussinesq two-fluid model and from a
single-column two-fluid model of the dry convective
boundary layer, confirming that the system is amenable
to numerical solution. These developments will be re-
ported elsewhere.

Ideas closely related to the multifluid approach have
appeared previously several times in the literature.
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Libby (1975) and Dopazo (1977) derived conditionally
averaged equations for incompressible flow, using labels
to pick out turbulent and nonturbulent regions of the
fluid. Equations closely resembling the multifluid
equations are used in engineering applications to model
two-phase flows such as particle-laden flow, bubbly lig-
uids, and combustion of fuel droplets (e.g., Weller 2005;
Stadtke 2006). The applications include disperse flows,
in which the changes of phase occur on unresolved scales
(e.g., Drew 1983; Lance and Bataille 1991; Jackson 1997,
Zhang and Prosperetti 1997; Rafique et al. 2004), and
flows in which the interface between two phases is re-
solved but modeled as a thin region of mixed phase (e.g.,
Abgrall and Karni 2001; Allaire et al. 2002; Garrick et al.
2017). These two regimes are analogous to the regimes
of subfilter-scale convection and resolved convection,
which our proposed approach is intended to represent.

Application of similar ideas to convective flows goes
back at least as far as Cushman-Roisin (1982), who
proposed to describe dry convection in terms of “‘ther-
mals” and ‘‘antithermals,” with separate dynamical
equations for each. In relation to the meteorological
literature, there are a number of similarities between
our proposed framework and the work of Yano et al.
(2010) and Yano (2012,2014, 2016). They too propose to
decompose the flow into a number of components, each
occupying distinct regions, with separate dynamical
equations for each component. However, there are
some important differences too. Yano (2012) restricts
attention to the hydrostatic primitive equations. He
makes the segmentally constant approximation in which
fluid properties within each component are assumed
constant within a grid cell; he thus omits terms corre-
sponding to our subfilter-scale fluxes. As a result of
other approximations, the equations for the different
fluid components fully decouple from each other in the
absence of entrainment and detrainment; this is in con-
trast to (37) above, in which the fluid components re-
main coupled through the common Vp term and the
requirement for Y ,0; = 1. Yano et al. (2010) and Yano
(2014, 2016) also make the segmentally constant ap-
proximation, but now the underlying equation set is the
nonhydrostatic anelastic equations. Again, the flow is
decomposed into a number of components with the aid
of labels analogous to our /;. Yano (2014, 2016) focuses
on the transport equation and on the conceptual aspects
of the approach. Yano et al. (2010) develop the ap-
proach into a two-dimensional vertical slice model and
apply it to simulation of dry convection. To do this, they
must numerically solve a Poisson equation for the
pressure at each time step. Thus, their implementation
resembles an adaptive mesh refinement method rather
than a typical parameterization.
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Finally, the work of Kuell et al. (2007) and Kuell and
Bott (2008) should be mentioned. They allow the dy-
namical core to handle the environmental subsidence
that compensates the net convective mass flux due to
updrafts and downdrafts. The parameterization itself
handles the convective updrafts and downdrafts and
hence determines mass sink and source terms for the
dynamical core. These mass source and sink terms cor-
respond to the .7 terms discussed in section 4 above.

7. Summary and discussion

We have derived conditionally filtered versions of the
compressible Euler equations. The conditionally filtered
equations provide a framework for the parameterization of
subgrid-scale processes such as convection and boundary
layer fluxes in atmospheric models. We have shown how
several existing approaches to parameterization fit within
the framework. It has the benefit of accommodating both
local turbulence approaches and mass flux approaches in a
very natural way. It provides a natural way to distinguish
between local and nonlocal transport processes and
makes a clearer conceptual link to schemes based on co-
herent structures such as convective plumes or thermals
than the traditional unconditional filtering approach. It is
hoped that the framework will facilitate the unification of
different approaches to parameterization by highlighting
the different approximations made and helping to ensure
consistency such as the avoidance of double counting.

A major motivation for developing this framework is
that it can accommodate various extensions to current
approaches to parameterization such as the inclusion of
additional prognostic variables. In particular, it indicates
how one could allow the dynamical core to handle the
dynamics of convection; this multifluid approach has the
potential to improve coupling between convection and
large-scale dynamics in several ways (section 6), and we
have begun to explore this possibility.

A closely related point is that, in the proposed frame-
work, the dynamics is expressed through a set of partial
differential equations, to which standard numerical methods
can be applied, supplemented by some subfilter-scale fluxes
and relabeling terms that must be parameterized. In con-
trast, most convection parameterization schemes are not
expressed as partial differential equations (Cullen et al.
2001; Arakawa and Wu 2013), and they typically involve a
variety of ad hoc switches to which the model behavior may
be very sensitive (Jakob and Siebesma 2003). Thus, for a
typical climate model, convergence with increasing resolu-
tion (if obtained at all) must be interpreted with consider-
able caution (Williamson 2008).

Finally, it should be emphasized that what we have
derived is no more than a framework. It does not specify
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how the subfilter-scale fluxes or the relabeling terms are
to be modeled. These remain very challenging problems
in atmospheric modeling, though existing approaches
will provide a very useful starting point. Moreover, the
framework does not specify how many fluid components
are to be used or how they are to be chosen. More com-
ponents will lead to greater computational cost, particu-
larly if the dynamics of all components is to be handled by
the dynamical core, as suggested in section 6. There is
clearly a great scope for optimizing this choice, and again,
existing approaches should provide a useful starting point.
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APPENDIX

Equations for Unconditionally Filtered Variables

Atmospheric models are generally formulated such
that the dynamical core integrates prognostic equations
for unconditionally filtered variables. It will therefore
be useful to note how these prognostic equations arise
in the proposed framework. First, define a density-
weighted filter operation by

pX =pX, (AD)
and note a useful identity
pX =pX= ZIipX = ZoipiXi. (A2)

Summing (44) over i and noting the cancellation of the
Mij gives
p

—+V.(pu)=0.

o (A3)

This is exactly what we would obtain by directly apply-
ing the filter to the original density equation [see (1)].

Summing (45) over i and again noting the cancellation
of /;; gives

a £ k¥ .
STV pua) =V (TE R (a9

where
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Fie= Xopug,—puq . (AS)

The advective form of the moisture equation is then
obtained by subtracting §" times (A3) to obtain

q 1
Br =—,§V~(ZFZIF+F%F>, (A6)
where
D 4 _.
—=—+4u -V A
Dt ot " (A7)

is the “material” derivative following the density-
weighted mean flow. This equation agrees with what
we would obtain by directly applying the filter to the flux
form of the original moisture equation [see (3)], but note
how the subfilter-scale flux has been decomposed into
contributions from the variations of properties within
each fluid component Fi plus a contribution from the
variations of properties between fluid components
picked out by the conditional-filtering Fi.

In an exactly analogous way, we obtain an evolution
equation for the filter-scale mean entropy

D7 1 .

An evolution equation for the filter-scale mean ve-
locity is obtained by converting the fluid component
momentum equation [see (52)] to flux form, summing
over i, and converting back to advective form:

Du" 1__ 1 A
ST ,%Vp + V0= —,:)V : (;FS'F + FCF> : (A9)

Here, we have used the antisymmetry of d;; and the fact
that > ;b; = 0.

REFERENCES

Abgrall, R., and S. Karni, 2001: Computations of compressible
multifluids. J. Comput. Phys., 169, 594-623, https://doi.org/
10.1006/jcph.2000.6685.

Allaire, G., S. Clerc, and S. Kokh, 2002: A five-equation model for
the simulation of interfaces between compressible fluids.
J. Comput. Phys., 181, 577-616, https://doi.org/10.1006/
jcph.2002.7143.

Arakawa, A., 2004: The cumulus parameterization problem: Past,
present, and future. J. Climate, 17, 2493-2525, https://doi.org/
10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.

——, and W. H. Schubert, 1974: Interaction of a cumulus cloud
ensemble with the large-scale environment, part I. J. Atmos. Sci.,
31, 674-701, https://doi.org/10.1175/1520-0469(1974)031<0674:
IOACCE>2.0.CO22.

THUBURN ET AL.

979

——, and C.-M. Wu, 2013: A unified representation of deep moist
convection in numerical modeling of the atmosphere. Part I.
J. Atmos. Sci., 70, 1977-1992, https://doi.org/10.1175/JAS-D-
12-0330.1.

Bannon, P. R., 2002: Theoretical foundations for models of moist
convection. J. Atmos. Sci., 59, 1967-1982, https://doi.org/
10.1175/1520-0469(2002)059<1967:TFFMOM>2.0.CO;2.

Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson,
C. Craig, and D. P. Schanen, 2013: Higher-order turbulence
closure and its impact on climate simulations in the Commu-
nity Atmosphere Model. J. Climate, 26, 9655-9676, https:/
doi.org/10.1175/JCLI-D-13-00075.1.

Chaouat, B., and R. Schiestel, 2013: Partially integrated transport
modeling for turbulence simulation with variable filters. Phys.
Fluids, 25, 125102, https://doi.org/10.1063/1.4833235.

Couvreux, F., F. Hourdin, and C. Rio, 2010: Resolved versus
parameterized boundary-layer plumes. Part I: A parameterization-
oriented conditional sampling in large-eddy simulations. Bound.-
Layer Meteor., 134, 441-458, https://doi.org/10.1007/
$10546-009-9456-5.

Cullen, M. J. P., D. Salmond, and N. Wedi, 2001: Interaction of
parametrised processes with resolved dynamics. Proc. Key
Issues in the Parametrization of Subgrid Physical Processes
Workshop, Reading, United Kingdom, ECMWF, 127-149.

Cushman-Roisin, B., 1982: A theory of convection: Modelling by
two buoyant interacting fluids. Geophys. Astrophys. Fluid
Dyn., 19, 35-59, https://doi.org/10.1080/03091928208208946.

Davies, T., A. Staniforth, N. Wood, and J. Thuburn, 2003: Validity
of anelastic and other equation sets as inferred from normal-
mode analysis. Quart. J. Roy. Meteor. Soc., 129, 2761-2775,
https://doi.org/10.1256/qj.02.1951.

de Rooy, W. C., and Coauthors, 2013: Entrainment and de-
trainment in cumulus convection: An overview. Quart. J. Roy.
Meteor. Soc., 139, 1-19, https://doi.org/10.1002/qj.1959.

Dopazo, C., 1977: On conditioned averages for intermittent tur-
bulent flows. J. Fluid Mech., 81, 433-438, https://doi.org/
10.1017/50022112077002158.

Drew, D. A., 1983: Mathematical modeling of two-phase flow.
Annu. Rev. Fluid Mech., 15, 261-291, https://doi.org/10.1146/
annurev.fl.15.010183.001401.

Fureby, C., and G. Tabor, 1997: Mathematical and physical con-
straints on large-eddy simulations. Theor. Comput. Fluid Dyn.,
9, 85-102, https://doi.org/10.1007/s001620050034.

Garrick, D. P., M. Owkes, and J. D. Regele, 2017: A finite-volume
HLLC-based scheme for compressible interfacial flows with
surface tension. J. Comput. Phys., 339, 46-67, https://doi.org/
10.1016/j.jcp.2017.03.007.

Gerard, L., J.-M. Piriou, R. Brozkovd, J.-F. Geleyn, and
D. Banciu, 2009: Cloud and precipitation parameterization
in a meso-gamma-scale operational weather prediction
model. Mon. Wea. Rev., 137, 3960-3977, https://doi.org/
10.1175/2009OMWR2750.1.

Germano, M., 1992: Turbulence: The filtering approach.
J. Fluid Mech., 238, 325-336, https://doi.org/10.1017/
S0022112092001733.

——, U. Piomelli, P. Moin, and W. H. Cabot, 1991: A dynamic
subgrid-scale eddy viscosity model. Phys. Fluids, 3,1760-1765,
https://doi.org/10.1063/1.857955.

Golaz, J.-C.,2002: A PDF-based model for boundary layer clouds.
Part I: Method and model description. J. Atmos. Sci., 59,
3540-3551, https://doi.org/10.1175/1520-0469(2002)059<3540:
APBMFB>2.0.CO;2.


https://doi.org/10.1006/jcph.2000.6685
https://doi.org/10.1006/jcph.2000.6685
https://doi.org/10.1006/jcph.2002.7143
https://doi.org/10.1006/jcph.2002.7143
https://doi.org/10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2
https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2
https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2
https://doi.org/10.1175/JAS-D-12-0330.1
https://doi.org/10.1175/JAS-D-12-0330.1
https://doi.org/10.1175/1520-0469(2002)059<1967:TFFMOM>2.0.CO;2
https://doi.org/10.1175/1520-0469(2002)059<1967:TFFMOM>2.0.CO;2
https://doi.org/10.1175/JCLI-D-13-00075.1
https://doi.org/10.1175/JCLI-D-13-00075.1
https://doi.org/10.1063/1.4833235
https://doi.org/10.1007/s10546-009-9456-5
https://doi.org/10.1007/s10546-009-9456-5
https://doi.org/10.1080/03091928208208946
https://doi.org/10.1256/qj.02.1951
https://doi.org/10.1002/qj.1959
https://doi.org/10.1017/S0022112077002158
https://doi.org/10.1017/S0022112077002158
https://doi.org/10.1146/annurev.fl.15.010183.001401
https://doi.org/10.1146/annurev.fl.15.010183.001401
https://doi.org/10.1007/s001620050034
https://doi.org/10.1016/j.jcp.2017.03.007
https://doi.org/10.1016/j.jcp.2017.03.007
https://doi.org/10.1175/2009MWR2750.1
https://doi.org/10.1175/2009MWR2750.1
https://doi.org/10.1017/S0022112092001733
https://doi.org/10.1017/S0022112092001733
https://doi.org/10.1063/1.857955
https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2
https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2

980

Grabowski, W. W., and P. Smolarkiewicz, 1999: CRCP: A cloud
resolving convection parameterization for modeling the
tropical convecting atmosphere. Physica D, 133, 171-178,
https://doi.org/10.1016/S0167-2789(99)00104-9.

Grandpeix, J.-Y., and J.-P. Lafore, 2010: A density current pa-
rameterization coupled with Emanuel’s convection scheme.
Part I: The models. J. Atmos. Sci., 67, 881-897, https://doi.org/
10.1175/2009J AS3044.1.

Gregory, D., and P. R. Rowntree, 1990: A mass flux convection
scheme with representation of cloud ensemble characteristics
and stability-dependent closure. Mon. Wea. Rev., 118,
1483-1506, https://doi.org/10.1175/1520-0493(1990)118<1483:
AMFCSW>2.0.CO;2.

Grell, G. A., and S. Freitas, 2014: A scale and aerosol aware sto-
chastic convective parameterization for weather and air
quality modeling. Atmos. Chem. Phys., 14, 5233-5250, https://
doi.org/10.5194/acp-14-5233-2014.

Holloway, C. E., and Coauthors, 2014: Understanding and representing
convection across scales: Recommendations from the meeting
held at Dartington Hall, Devon, UK, 28-30 January 2013. Afmos.
Sci. Lett., 15, 348-353, https:/doi.org/10.1002/as12.508.

Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th
ed. Academic Press, 535 pp.

Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal
boundary-layer diffusion in a global climate model. J. Climate,
6, 1825-1842, https://doi.org/10.1175/1520-0442(1993)006<<1825:
LVNBLD>2.0.CO;2.

Jackson, R., 1997: Locally averaged equations of motion for a
mixture of identical spherical particles in a Newtonian fluid.
Chem. Eng. Sci., 52,2457-2469, https://doi.org/10.1016/S0009-
2509(97)00065-1.

Jakob, C., and A. P. Siebesma, 2003: A new subcloud model for
mass-flux convection schemes: Influence on triggering, updraft
properties, and model climate. Mon. Wea. Rev., 131,
2765-2778, https://doi.org/10.1175/1520-0493(2003)131<2765:
ANSMFM>2.0.CO;2.

Kain, J. S., 2004: The Kain—Fritsch convective parameterization:
An update. J. Appl. Meteor., 43, 170-181, https://doi.org/
10.1175/1520-0450(2004)043<0170: TKCPAU>2.0.CO;2.

Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and
Predictability. Cambridge University Press, 341 pp.

Keane, R. J., and R. S. Plant, 2012: Large-scale length and time-
scales for use with stochastic convective parametrization.
Quart. J. Roy. Meteor. Soc., 138, 1150-1164, https://doi.org/
10.1002/qj.992.

Kim, D.,J.-S. Kug, I.-S. Kang, F.-F. Jin, and A. T. Wittenberg, 2008:
Tropical Pacific impacts of convective momentum transport in
the SNU coupled GCM. Climate Dyn., 31, 213-226, https://
doi.org/10.1007/s00382-007-0348-4.

Krueger, S. K., 2001: Current issues in cumulus parameterization.
Proc. Key Issues in the Parametrization of Subgrid Physical
Processes Workshop, Reading, United Kingdom, ECMWEF,
25-51.

Kuell, V., and A. Bott, 2008: A hybrid convection scheme for use in
non-hydrostatic numerical weather prediction models. Meteor.
Z., 17, 775-783, https://doi.org/10.1127/0941-2948/2008/0342.

——, A. Gassmann, and A. Bott, 2007: Towards a new hybrid cu-
mulus parametrization scheme for use in non-hydrostatic
weather prediction models. Quart. J. Roy. Meteor. Soc., 133,
479-490, https://doi.org/10.1002/qj.28.

Lance, M., and J. Bataille, 1991: Turbulence in the liquid phase of a
uniform bubbly air-water flow. J. Fluid Mech., 222, 95-118,
https://doi.org/10.1017/S0022112091001015.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 75

Lappen, C.-L., and D. A. Randall, 2001: Toward a unified pa-
rameterization of the boundary layer and moist convec-
tion. Part I: A new type of mass-flux model. J. Atmos. Sci.,
58, 2021-2036, https://doi.org/10.1175/1520-0469(2001)058<<2021:
TAUPOT>2.0.CO32.

Leonard, A., 1975: Energy cascade in large-eddy simulations of
turbulent fluid flows. Adv. Geophys., 18, 237-248, https://doi.org/
10.1016/S0065-2687(08)60464-1.

Libby, P. A., 1975: On the prediction of intermittent turbulent
flows. J. Fluid Mech., 68, 273-295, https://doi.org/10.1017/
$0022112075000808.

Louis, J.-F., 1979: A parametric model of vertical eddy fluxes in the
atmosphere. Bound.-Layer Meteor., 17, 187-202, https://doi.
org/10.1007/BF00117978.

Mellor, G. L., and T. Yamada, 1982: Development of a turbulence
closure model for geophysical fluid problem. Rev. Geophys.
Space  Phys., 20, 851-875, https://doi.org/10.1029/
RG020i004p00851.

Mote, P., and A. O’Neill, Eds., 2000: Numerical Modeling of the
Global Atmosphere in the Climate System. NATO Science
Series C, Vol. 550, Kluwer Academic, 517 pp.

Neggers, R. A. J., M. Kohler, and A. C. M. Beljaars, 2009: A dual
mass flux framework for boundary layer convection. Part I:
Transport. J. Atmos. Sci., 66, 1465-1487, https://doi.org/
10.1175/2008J AS2635.1.

Park, S., 2014: A unified convection scheme (UNICON). Part I:
Formulation. J. Atmos. Sci., 71, 3902-3930, https://doi.org/
10.1175/JAS-D-13-0233.1.

Plant, R. S., and G. C. Craig, 2008: A stochastic parameterization
for deep convection based on equilibrium statistics. J. Atmos.
Sci., 65, 87-105, https://doi.org/10.1175/2007J AS2263.1.

Pope, S. B., 2000: Turbulent Flows. Cambridge University Press,
802 pp.

Rafique, M., P. Chen, and M. P. Dudukovi¢, 2004: Computa-
tional modeling of gas-liquid flow in bubble columns. Rev.
Chem. Eng., 20, 225-375, https://doi.org/10.1515/
REVCE.2004.20.3-4.225.

Randall, D. A., Ed., 2000: General Circulation Model Develop-
ment: Past, Present, and Future. International Geophysics
Series, Vol. 70, Academic Press, 807 pp.

——, M. Kairoutdinov, A. Arakawa, and W. Grabowski, 2003:
Breaking the cloud-parameterization deadlock. Bull. Amer.
Meteor. Soc., 84, 1547-1564, https://doi.org/10.1175/BAMS-
84-11-1547.

Raymond, D. J., 2013: Sources and sinks of entropy in the atmo-
sphere. J. Adv. Model. Earth Syst., 5, 755763, https://doi.org/
10.1002/jame.20050.

Rio, C., F. Hourdin, F. Couvreux, and A. Jam, 2010: Resolved
versus parametrized boundary-layer plumes. Part II: Contin-
uous formulations of mixing rates for mass flux schemes.
Bound.-Layer Meteor., 135, 469-483, https://doi.org/10.1007/
$10546-010-9478-z.

Romps, D. M., 2015: MSE minus CAPE is the true conserved
variable for an adiabatically lifted parcel. J. Atmos. Sci., 72,
3639-3646, https://doi.org/10.1175/JAS-D-15-0054.1.

——, and A. B. Charn, 2015: Sticky thermals: Evidence for a
dominant balance between buoyancy and drag in cloud up-
drafts. J. Atmos. Sci., 72, 2890-2901, https://doi.org/10.1175/
JAS-D-15-0042.1.

Sherwood, S. C., D. Hernindez-Deckers, M. Colin, and
F. Robinson, 2013: Slippery thermals and the cumulus en-
trainment paradox. J. Atmos. Sci., 70, 2426-2442, https://
doi.org/10.1175/JAS-D-12-0220.1.


https://doi.org/10.1016/S0167-2789(99)00104-9
https://doi.org/10.1175/2009JAS3044.1
https://doi.org/10.1175/2009JAS3044.1
https://doi.org/10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2
https://doi.org/10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2
https://doi.org/10.5194/acp-14-5233-2014
https://doi.org/10.5194/acp-14-5233-2014
https://doi.org/10.1002/asl2.508
https://doi.org/10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2
https://doi.org/10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2
https://doi.org/10.1016/S0009-2509(97)00065-1
https://doi.org/10.1016/S0009-2509(97)00065-1
https://doi.org/10.1175/1520-0493(2003)131<2765:ANSMFM>2.0.CO;2
https://doi.org/10.1175/1520-0493(2003)131<2765:ANSMFM>2.0.CO;2
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
https://doi.org/10.1002/qj.992
https://doi.org/10.1002/qj.992
https://doi.org/10.1007/s00382-007-0348-4
https://doi.org/10.1007/s00382-007-0348-4
https://doi.org/10.1127/0941-2948/2008/0342
https://doi.org/10.1002/qj.28
https://doi.org/10.1017/S0022112091001015
https://doi.org/10.1175/1520-0469(2001)058<2021:TAUPOT>2.0.CO;2
https://doi.org/10.1175/1520-0469(2001)058<2021:TAUPOT>2.0.CO;2
https://doi.org/10.1016/S0065-2687(08)60464-1
https://doi.org/10.1016/S0065-2687(08)60464-1
https://doi.org/10.1017/S0022112075000808
https://doi.org/10.1017/S0022112075000808
https://doi.org/10.1007/BF00117978
https://doi.org/10.1007/BF00117978
https://doi.org/10.1029/RG020i004p00851
https://doi.org/10.1029/RG020i004p00851
https://doi.org/10.1175/2008JAS2635.1
https://doi.org/10.1175/2008JAS2635.1
https://doi.org/10.1175/JAS-D-13-0233.1
https://doi.org/10.1175/JAS-D-13-0233.1
https://doi.org/10.1175/2007JAS2263.1
https://doi.org/10.1515/REVCE.2004.20.3-4.225
https://doi.org/10.1515/REVCE.2004.20.3-4.225
https://doi.org/10.1175/BAMS-84-11-1547
https://doi.org/10.1175/BAMS-84-11-1547
https://doi.org/10.1002/jame.20050
https://doi.org/10.1002/jame.20050
https://doi.org/10.1007/s10546-010-9478-z
https://doi.org/10.1007/s10546-010-9478-z
https://doi.org/10.1175/JAS-D-15-0054.1
https://doi.org/10.1175/JAS-D-15-0042.1
https://doi.org/10.1175/JAS-D-15-0042.1
https://doi.org/10.1175/JAS-D-12-0220.1
https://doi.org/10.1175/JAS-D-12-0220.1

MARCH 2018

Siebesma, A. P., P. M. M. Soares, and J. Teixeira, 2007: A com-
bined eddy-diffusivity mass-flux approach for the convective
boundary layer. J. Atmos. Sci., 64, 12301248, https://doi.org/
10.1175/JAS3888.1.

Smagorinsky, J., 1963: General circulation experiments with the
primitive equations. Mon. Wea. Rev., 91, 99-165, https://doi.org/
10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

Soares, P. M. M., P. M. A. Miranda, A. P. Siebesma, and J. Teixeira,
2004: An eddy-diffusivity/mass-flux parametrization for dry
and shallow cumulus convection. Quart. J. Roy. Meteor. Soc.,
130, 3365-3383, https://doi.org/10.1256/qj.03.223.

Stadtke, H., 2006: Gasdynamic Aspects of Two-Phase Flow: Hy-
perbolicity, Wave Propagation Phenomena, and Related Nu-
merical Methods. Wiley, 288 pp.

Storer, R. L., B. M. Griffin, J. Hoft, J. K. Weber, E. Raut, V. E.
Larson, M. Wang, and P. J. Rasch, 2015: Parameterizing deep
convection using the assumed probability density function
method. Geosci. Model Dev., 8, 1-19, https://doi.org/10.5194/
gmd-8-1-2015.

Tiedtke, M., 1989: A comprehensive mass flux scheme for cuamulus
parameterization in large-scale models. Mon. Wea. Rev., 117,
1779-1800, https://doi.org/10.1175/1520-0493(1989)117<1779:
ACMFSF>2.0.CO;2.

Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics. 2nd
ed. Cambridge University Press, 946 pp.

Weller, H. G., 2005: Derivation, modelling and solution of the
conditionally averaged two-phase flow equations. Open-
FOAM Tech. Rep., 29 pp.

Williamson, D. L., 2008: Convergence of aqua-planet simulations
with increasing resolution in the Community Atmospheric

THUBURN ET AL.

981

Model, version 3. Tellus, 60A, 848-862, https://doi.org/
10.1111/j.1600-0870.2008.00339.x.

Wood, N., and Coauthors, 2014: An inherently mass-conserving
semi-implicit semi-Lagrangian discretization of the deep-
atmosphere global nonhydrostatic equations. Quart. J. Roy.
Meteor. Soc., 140, 1505-1520, https://doi.org/10.1002/qj.2235.

Wyngaard, J. C., and C.-H. Moeng, 1992: Parameterizing turbulent
diffusion through the joint probability density. Bound.-Layer
Meteor., 60, 1-13, https://doi.org/10.1007/BF00122059.

Yano, J.-I., 2012: Mass-flux subgrid-scale parameterization in
analogy with multi-component flows: A formulation towards
scale independence. Geosci. Model Dev., 5,1425-1440, https:/
doi.org/10.5194/gmd-5-1425-2012.

——,2014: Formulation structure of the mass-flux convection pa-
rameterization. Dyn. Atmos. Oceans, 67, 1-28, https://doi.org/
10.1016/j.dynatmoce.2014.04.002.

——,2016: Subgrid-scale physical parameterization in atmospheric
modeling: How can we make it consistent? J. Phys., 49A,
284001, https://doi.org/10.1088/1751-8113/49/28/284001.

——, P. Bénard, F. Couvreux, and A. Lahellec, 2010: NAM-SCA:
A nonhydrostatic anelastic model with segmentally constant
approximation. Mon. Wea. Rev., 138, 1957-1974, https://
doi.org/10.1175/200OMWR2997.1.

Yeo, K., and D. M. Romps, 2013: Measurement of convective en-
trainment using Lagrangian particles. J. Atmos. Sci., 70,
266-277, https://doi.org/10.1175/J AS-D-12-0144.1.

Zhang, D. Z., and A. Prosperetti, 1997: Momentum and energy
equations for disperse two-phase flows and their closure for
dilute suspensions. Int. J. Multiphase Flow, 23, 425-453,
https://doi.org/10.1016/S0301-9322(96)00080-8.


https://doi.org/10.1175/JAS3888.1
https://doi.org/10.1175/JAS3888.1
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
https://doi.org/10.1256/qj.03.223
https://doi.org/10.5194/gmd-8-1-2015
https://doi.org/10.5194/gmd-8-1-2015
https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2
https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2
https://doi.org/10.1111/j.1600-0870.2008.00339.x
https://doi.org/10.1111/j.1600-0870.2008.00339.x
https://doi.org/10.1002/qj.2235
https://doi.org/10.1007/BF00122059
https://doi.org/10.5194/gmd-5-1425-2012
https://doi.org/10.5194/gmd-5-1425-2012
https://doi.org/10.1016/j.dynatmoce.2014.04.002
https://doi.org/10.1016/j.dynatmoce.2014.04.002
https://doi.org/10.1088/1751-8113/49/28/284001
https://doi.org/10.1175/2009MWR2997.1
https://doi.org/10.1175/2009MWR2997.1
https://doi.org/10.1175/JAS-D-12-0144.1
https://doi.org/10.1016/S0301-9322(96)00080-8

