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ABSTRACT 1 

Background: Elevated postprandial triacylglycerol concentrations, impaired vascular 2 

function and hypertension are important independent cardiovascular disease (CVD) risk 3 

factors in women. However, the effects of meal fat composition on postprandial lipemia and 4 

vascular function in postmenopausal women are unknown.  5 

Objective: This study investigated the impact of sequential meals rich in saturated (SFAs), 6 

monounsaturated (MUFAs) or n-6 polyunsaturated fatty acids (PUFAs) on postprandial flow-7 

mediated dilatation (FMD, primary outcome measure), vascular function and associated CVD 8 

risk biomarkers (secondary outcomes) in postmenopausal women.  9 

Methods: A double-blind, randomized, cross-over, postprandial study was conducted with 32 10 

postmenopausal women (58 ± 1 years, BMI 25.9 ± 0.7 kg/m2). After fasting overnight, 11 

participants consumed high-fat meals at breakfast (0 min; 50 g fat, containing 33-36 g SFAs, 12 

MUFAs or n-6 PUFAs) and lunch (330 min; 30 g fat, containing 19-20 g SFAs, MUFAs or n-13 

6 PUFAs), on separate occasions. Blood samples were collected before breakfast and 14 

regularly after the meals for 480 min, with specific time points selected for measuring 15 

vascular function and blood pressure. 16 

Results: Postprandial FMD, laser Doppler imaging and digital volume pulse responses were 17 

not different after consuming the test fats. The incremental AUC (IAUC) for diastolic blood 18 

pressure was lower (-0.5-fold) after the MUFA than SFA-rich meals (P=0.009), with a similar 19 

trend for systolic blood pressure (-0.4-fold; P=0.012). This corresponded with a lower IAUC 20 

(-6.4-fold) for the plasma nitrite response after the SFA than MUFA-rich meals (P=0.010). 21 

The soluble intercellular adhesion molecule-1 (sICAM-1) time course profile, AUC and 22 

IAUC were lower after the n-6 PUFA than SFA and MUFA-rich meals (P≤0.001). Lipids, 23 

glucose and markers of insulin sensitivity did not differ between the test fats.    24 
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Conclusions: Our study revealed a differential impact of meal fat composition on blood 25 

pressure, plasma nitrite and sICAM-1, but no effect on postprandial FMD or lipemia in 26 

postmenopausal women.      27 

 28 

This trial was registered at www.clinicaltrials.gov (NCT02144454). 29 

 30 

Keywords: cell adhesion molecules, diastolic blood pressure, monounsaturated fat,  31 

n-6 polyunsaturated fat, nitrate and nitrite, postprandial lipemia, saturated fat, vascular 32 

function  33 
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INTRODUCTION  34 

The decline in estrogen at menopause is associated with adverse effects on lipid metabolism, 35 

vascular function and blood pressure (1), significantly increasing cardiovascular disease 36 

(CVD) risk in postmenopausal women. As a key public health strategy to reduce the 37 

incidence of CVD, the leading cause of death in women globally (2, 3), the FAO recommends 38 

that intakes of dietary SFAs are reduced to ≤10% of total energy (TE) (4). Replacement of 39 

SFAs with unsaturated fats is recognized as an effective strategy to lower risk; however the 40 

optimal type of replacement fat is unclear (5, 6). In the Dietary Intervention and VAScular 41 

function (DIVAS) study, replacement of 9.5-9.6 %TE of dietary SFAs with either MUFAs or 42 

n-6 PUFAs for 16-wk showed favourable effects on the fasting lipid profile, with differential 43 

beneficial effects of the unsaturated fats on markers of endothelial activation and blood 44 

pressure (7). The majority of studies examining the effects of dietary fat composition on lipids 45 

and vascular function have been conducted in the fasting state, with very little known about 46 

the acute effects of meal fat composition on postprandial lipemia. This is particularly 47 

important since individuals spend up to 18 h every day in the postprandial (fed) state, with 48 

non-fasting triacylglycerol (TAG) levels now recognized as a valid independent risk factor for 49 

CVD, particularly in women (8-10). However, the majority of studies have only looked at the 50 

effects of a single high-fat meal on the postprandial response with very little known about the 51 

impact of meal fat composition. The only acute study to address this in postmenopausal 52 

women has shown a SFA-rich breakfast meal to reduce postprandial insulin sensitivity with a 53 

carryover effect observed after eating a subsequent low fat meal, compared with n-6 PUFA, 54 

n-3 PUFA and MUFA-rich breakfast meals (11). Dietary fat induced insulin resistance (12) 55 

can initiate metabolic changes that predispose individuals to CVD.   56 

Acute endothelial dysfunction associated with postprandial lipemia has been reported 57 

by several investigators (13, 14). Flow mediated dilatation (FMD) is well recognized as a gold 58 

standard measure of endothelium-dependent vasodilation and is used as a surrogate measure 59 
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of endothelial NO production (15, 16).  Although it has been shown that a single high-fat 60 

meal (50 g) can reduce FMD 2-4 h postprandially (14, 17), there is limited data on the impact 61 

of different meals fatty acids, particularly in postmenopausal women who represent an 62 

understudied population at increased cardiometabolic risk. Designed as a follow-on from the 63 

chronic DIVAS study (7) and without any confounding effects of prior chronic dietary fatty 64 

acid manipulation, this study investigated the acute impact of meals enriched in SFAs, 65 

MUFAs and n-6 PUFAs on postprandial CVD risk markers. Thus the second DIVAS study 66 

(DIVAS-2) hypothesized that sequential meals rich in unsaturated fatty acids (MUFAs and n-67 

6 PUFAs) would have beneficial effects on postprandial measures of vascular function 68 

(primary outcome, FMD), lipemia and other CVD risk biomarkers in postmenopausal women 69 

compared with SFA-rich meals.  70 

 71 

SUBJECTS AND METHODS  72 

Subjects 73 

This study was conducted at the Hugh Sinclair Unit of Human Nutrition, University of 74 

Reading (UK), between June 2014 and September 2015. Thirty-six non-smoking 75 

postmenopausal women aged ≤65 y (BMI range: 18-35 kg/m2; fasting TAG: 0.75-4.10 76 

mmol/L) were recruited from the University of Reading and surrounding area. Interested 77 

volunteers were provided with a participant information sheet. To assess eligibility, 78 

participants completed a medical and lifestyle questionnaire and those who met the initial 79 

recruitment criteria attended a short screening visit, where written informed consent was 80 

provided. Inclusion criteria included: female; postmenopausal (not menstruated for ≥1 y; self-81 

reported); aged ≤65 y; non-smokers; not consuming more than the maximum recommended 82 

intake of alcohol per week (<14 units/week; self-reported), BMI between 18-35 kg/m2; blood 83 

pressure <160/100 mm Hg; fasting glucose concentration <7 mmol/L (not diagnosed with 84 

diabetes or any other endocrine disorders); total cholesterol (TC) concentration <8 mmol/L; 85 
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TAG concentration 0.75-4.10 mmol/L; normal liver and kidney function; and not anemic 86 

(hemoglobin ≥115 g/L). Further exclusion criteria included: early menopause resulting from 87 

medical conditions; myocardial infarction/stroke within the past 12 months; diagnosis of 88 

CVD, respiratory, renal, gastrointestinal, cancer or hepatic disease; medication for 89 

hyperlipidemia, hypertension, inflammation or hypercoagulation; hormone replacement 90 

therapy; vegan; planning or undertaking a weight reducing regime; taking nutritional 91 

supplements; participation in a clinical trial within the last 3 months and >3 x 30 min aerobic 92 

exercise sessions per week.   93 

Study design  94 

The DIVAS-2 study was an acute randomized, double-blind, sequential meal, cross-over 95 

study. A favourable ethical opinion for conduct of this study was given by the University of 96 

Reading Research Ethics Committee (project reference number 14/16) and the study protocol 97 

was conducted in accordance with the Declaration of Helsinki. The participants were 98 

randomly allocated to the three different treatment arms with the use of a random assignment 99 

program (18) by one study researcher (KMR). Each of the three postprandial visits, lasting 100 

approximately 10 h, took place on different days and were separated by approximately 4-6 101 

weeks. The primary endpoint was macrovascular reactivity measured by FMD. Secondary 102 

outcome measures included clinic blood pressure, peripheral microvascular function 103 

(measured using laser Doppler imaging (LDI)), vascular tone and arterial stiffness (both 104 

determined by digital volume pulse (DVP)), serum lipids, and circulating markers of insulin 105 

resistance, inflammation and endothelial activation.   106 

 107 

Postprandial test meal composition  108 

A sequential meal protocol was used to more closely mimic a habitual dietary intake pattern 109 

compared with a single test meal challenge (19-21). Both breakfast (50 g fat, of which 33-36 110 
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g are SFAs, MUFAs or n-6 PUFAs) and lunch (30 g fat, of which 19-20 g are SFAs, MUFAs 111 

or n-6 PUFAs) were provided in the form of a warm chocolate drink containing the specific 112 

test fat/oil accompanied by toasted thick white bread with the test fat and strawberry jam 113 

(Supplemental Table 1). Following on from the chronic DIVAS intervention (21), the same 114 

primary sources of dietary fat were used as test fats in the postprandial protocol, whose fatty 115 

acid compositions are presented in Supplemental Table 2. For the SFA-rich meals, butter 116 

(Wyke Farm) was used as the fat source, whereas specially prepared spreads (80% total fat) 117 

and oils (Unilever R & D) were used for the MUFA-rich (refined olive oil and olive 118 

oil/rapeseed oil blended spread) and n-6 PUFA-rich (safflower oil and spread) meals. The 119 

nutrient and fatty acid composition of the sequential meals (breakfast and lunch) containing 120 

the different test fats are shown in Table 1. Neither the researchers responsible for performing 121 

and analyzing the measurements (KMR and MW) nor the participants were aware of the meal 122 

composition at each visit.  123 

 124 

Study visits  125 

Volunteers attended five visits: a screening visit, a familiarization visit and three postprandial 126 

study visits. At the screening visit, a number of measurements were performed to determine 127 

eligibility. Height was measured using a wall-mounted stadiometer to the nearest 0.5 cm. 128 

While wearing light clothing, weight and BMI were determined using the Tanita BC-418 129 

scale (Tanita Europe) with the following settings: standard body type and -1 kg for clothing. 130 

Blood pressure was measured in triplicate using an OMRON M6 automatic digital blood 131 

pressure monitor (OMRON). A 12 h fasted serum blood sample (9 mL) was collected to 132 

assess fasting TC, TAG, glucose and markers of kidney and liver function using an 133 

autoanalyzer (ILAB600; Werfen (UK) Ltd.). Participants were assessed for anemia by a full 134 

blood count which was analyzed by the Pathology Department at the Royal Berkshire 135 
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Hospital (Reading, UK). Prior to the first study visit, all participants attended a 136 

‘familiarization visit’ to introduce and demonstrate the vascular reactivity techniques used in 137 

the study protocol to minimize the impact of stress on these measures. Participants were also 138 

provided with a study handbook and trained researchers gave detailed instructions for 139 

completing a 4-day weighed diet diary (one weekend day and three weekdays) to assess 140 

habitual dietary intake, which was analyzed using the nutrient analysis software, Dietplan 7 141 

(Forestfield Software, Horsham, UK), as previously described (21).  142 

For 24 h prior to each postprandial study visit, participants were asked to abstain from 143 

alcohol and aerobic exercise regimens, and consumed a low-fat meal (<10 g total fat) 144 

provided by the researchers before fasting overnight for 12 h. Only low-nitrate mineral water 145 

(Buxton) was allowed during the fasting period and throughout the postprandial study day. 146 

The study visits began at 07:30. Participants attended the clinical unit of the Hugh Sinclair 147 

Unit of Human Nutrition where baseline anthropometric measures were taken. Weight, BMI 148 

and % body fat were assessed using the same protocol as screening, and waist circumference 149 

was measured as previously described (21). After 10 min of rest, an indwelling cannula was 150 

inserted into the antecubital vein of the left forearm and two fasting blood samples were 151 

collected (-30 min and 0 min) from which the mean baseline values were calculated for each 152 

serum/plasma biomarker. Baseline measurements of LDI, DVP, FMD and blood pressure 153 

were performed in that order. Participants were then asked to consume the breakfast meal 154 

within 15 min and blood samples collected at regular intervals (every 30 min until 180 min 155 

and then every 60 min until 300 min) until lunch was presented at 330 min, which was also 156 

consumed within 15 min. Blood samples were then collected every 30 min up to 420 min, 157 

with the final sample taken at 480 min after the breakfast meal. Since peak TAG 158 

concentrations were expected to occur approximately 120-240 min following the breakfast 159 

meal and 60-120 min after the lunch meal, FMD was performed to coincide with each peak, 160 
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with measurements being performed at baseline, 180, 300 (prior to lunch meal) and 420 min; 161 

blood pressure, LDI and DVP were measured at baseline, 240 and 450 min.          162 

 163 

Assessment of vascular function and blood pressure   164 

Participants rested for 30 min in a supine position in a quiet, temperature-controlled 165 

environment (22 ± 1 °C) prior to measurements of vascular function being performed. Using 166 

the right arm, a single trained researcher measured endothelial-dependent vasodilation of the 167 

brachial artery (FMD, primary outcome) and conducted LDI and DVP, as previously 168 

described (22). Briefly, FMD was performed with the use of an ALT ultrasound HDI-5000 169 

broadband ultrasound system (Philips Health Care) according to standard guidelines (23). 170 

Electrocardiogram-gated image acquisition was accomplished at 0.25 frames/s for 650 s using 171 

image-grabbing software (Medical Imaging Applications LLC). The obtained image files 172 

were analyzed by a single researcher, who was blinded to the test fat allocation, by using 173 

wall-tracking software (Brachial Analyzer; Medical Imaging Applications LLC). The % FMD 174 

response was computed as the maximum change in post-occlusion brachial artery diameter 175 

expressed as a percentage of the pre-occlusion artery diameter. For each image, % FMD was 176 

determined in triplicate, from which the mean % FMD response was calculated.   177 

LDI with iontophoresis was performed with the LDI2-IR laser Doppler imager (Moor 178 

Instruments Ltd., Axminster, UK) (22) to determine the microvascular responses to 1% 179 

acetylcholine (endothelial-dependent vasodilation) and 1% sodium nitroprusside (endothelial-180 

independent vasodilation). Data were expressed as the AUC for flux (measured in arbitrary 181 

perfusion units) vs. time for the 20 scan protocol. In the peripheral arteries, DVP (Pulse Trace 182 

PCA2; Micro Medical Ltd.) determined the stiffness index (m/s) and reflection index (%) as 183 

measures of arterial stiffness and vascular tone, respectively (22).  184 
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Clinic systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate 185 

were measured on the right arm using an OMRON blood pressure monitor at least 30 min 186 

prior to the commencement of FMD. Three consecutive measurements were obtained and 187 

pulse pressure was calculated as the difference between the mean SBP and mean DBP. 188 

 189 

Sample analyses 190 

Blood samples were collected into lithium heparin, K3EDTA coated blood tubes or serum 191 

separator tubes (VACUETTE; Greiner Bio-One) and either kept on ice (for plasma) or left at 192 

room temperature for 30 min (for serum samples) until centrifugation at 1700 x g for 15 min 193 

at 4°C or 20°C (to obtain plasma and serum respectively), and stored at -80°C until analysis. 194 

Serum was used to determine lipids (TC, HDL cholesterol (HDL-C), TAG, apolipoprotein B 195 

(apoB)), glucose, non-esterified fatty acids (NEFA) and C-reactive protein with the use of an 196 

ILAB600 autoanalyzer (reagents: Werfen (UK) Ltd.; NEFA reagent: Alpha Laboratories; 197 

apoB reagent: Randox Laboratories Ltd). Fasting LDL cholesterol (LDL-C) was estimated 198 

using the Friedewald formula (24). Plasma nitrite and nitrate levels were analyzed using the 199 

HPLC based approach, Eicom NOx Analyzer ENO-30 (Eicom; San Diego; USA) as 200 

described elsewhere (25). ELISA kits were used to determine concentrations of circulating 201 

serum insulin (Dako Ltd.; Denmark), and plasma concentrations of soluble intercellular 202 

adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule (sVCAM-1), E-203 

selectin and P-selectin (R & D Systems Europe Ltd.; UK & Europe). Mean intra-assay and 204 

inter-assay CVs were <5% for the automated assays and <10% for the ELISAs. For the nitrate 205 

and nitrite analysis, quality controls with low and high levels were run per 12 samples to 206 

check for CV% compliance (<20%). 207 

Using baseline measures, the QRISK®2-2016 online calculator was used to estimate 208 

the participant’s risk of developing CVD within the next 10 y (26). Fasting insulin resistance 209 
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and insulin sensitivity were determined by HOMA-IR and the revised quantitative insulin 210 

sensitivity check index, respectively, using standard equations (27).    211 

            212 

Statistical analyses 213 

This study required 28 participants for sufficient power to detect a significant change of 1.5% 214 

(SD 2.0%) in FMD (primary outcome measure), with a power of 80% at the 5% significance 215 

level. To allow for a 22% dropout rate, 36 volunteers were recruited onto the study and 216 

randomized. All statistical analyses were performed with the use of IBM SPSS Statistics 217 

version 24. All data were checked for normality and log transformed where necessary. Data 218 

not normally distributed by transformation included baseline measures (pulse pressure, fasting 219 

glucose, TAG, insulin, NEFA, HOMA-IR and C-reactive protein), the AUC for % FMD and 220 

nitrite responses and the IAUC for the postprandial parameters. The postprandial time course 221 

profiles in response to the test fats were analysed using two-way repeated measures ANOVA 222 

using within-subject factors of ‘test fat’ and ‘time’, where P≤0.05 was considered significant. 223 

Summary measures for the postprandial responses following the sequential meals were 224 

expressed as area under the time response curve (AUC) computed using the trapezoidal rule 225 

(28), maximum concentration (maxC) and time to reach maximum concentration (TMax). 226 

The incremental AUC (IAUC) was calculated as AUC minus the fasting concentration to 227 

determine the changes in the primary and secondary outcome measurements to the sequential 228 

meals relative to baseline (0 min). For NEFA, additional summary measures were calculated 229 

including the minimum concentration (minC), time to reach minC (TMin) and % NEFA 230 

suppression. Due to the shape of the NEFA curve, AUC and IAUC were calculated from 120-231 

480 min. One-way repeated measures ANOVA were used to analyze the effects of test fat on 232 

these summary measures and fasting data. When a significant test fat effect was observed, a 233 

paired sample t-test was performed, with the application of Bonferroni’s correction (where 234 
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P≤0.017 was considered significant; calculated as the level of significance (P=0.05) divided 235 

by the number of meal comparisons (n=3)). Non-parametric one-way repeated measures 236 

ANOVA were applied for the postprandial summary data that could not be normalized by 237 

transformation. Data are presented in the text, tables, and figures as mean ± SEM or median 238 

and interquartile range.     239 

 240 

RESULTS  241 

Study participation 242 

Of the 36 participants randomly allocated to the intervention meals, 32 (89%) successfully 243 

completed all three study visits (see Figure 1 for flowchart). Subject characteristics and 244 

baseline levels of all outcome measures were not significantly different between study visits, 245 

and the average values for the three visits are shown in Table 2. The mean habitual dietary 246 

intake of the postmenopausal women recorded prior to visit 1 are also presented in this table.  247 

 248 

Postprandial vascular function response 249 

For the primary outcome measure, there was no statistically significant difference in the 250 

postprandial % FMD response after consumption of the SFA, MUFA or n-6 PUFA-rich 251 

sequential test meals (Table 3, Supplemental Figure 1). However, there was a tendency for 252 

an effect of the test fat on the AUC for the % FMD response (P=0.086). Furthermore, 253 

measures of microvascular reactivity (LDI), vascular tone (DVP: reflection index) and arterial 254 

stiffness (DVP: stiffness index) did not differ after consumption of the different test fats.       255 

 256 

Postprandial blood pressure response  257 

There was a significant impact of test fat on the IAUC for the postprandial DBP response 258 

(P=0.007), with greater reduction (-0.5 fold) observed after consumption of the MUFA 259 
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relative to the SFA-rich meals (-2.3 ± 0.3 vs -1.5 ± 0.3 mm Hg x 450 min x 103; P=0.009) 260 

(Table 3). The IAUC for the SBP response showed borderline significance between the test 261 

fats (P=0.053), with a greater reduction (-0.4 fold) after consumption of the MUFA versus 262 

SFA-rich meals (-4.8 ± 0.6 vs -3.4 ± 0.6 mm Hg x 450 min x 103; P=0.012). Furthermore, 263 

there was a significant effect of test fat (P=0.035) and time (P≤0.001) for the incremental 264 

DBP time course profile, with a greater reduction after the MUFA than SFA-rich meals 265 

(P=0.013; Figure 2A). A similar effect was found for the incremental SBP time course 266 

response (test fat effect P=0.049 and time effect P≤0.001), but the differences between the 267 

MUFA and SFA-rich meals were not significant after Bonferroni correction (P=0.025; Figure 268 

2B). At the end of the postprandial period (450 min), the reduction in DBP after the MUFA-269 

rich meals remained significantly lower (approximately 3 mm Hg) compared with those rich 270 

in SFA (P=0.016; Figure 2A).  271 

 272 

Postprandial nitrite and nitrate response    273 

There was a significant effect of the test fat on the IAUC for the postprandial plasma nitrite 274 

response (P=0.016), with a greater reduction (-6.4 fold) observed after consumption of SFA 275 

than MUFA-rich meals (-1.23 ± 0.7 vs -0.17 ± 0.4 µmol/L x 420 min; P=0.017) (Table 3). 276 

The IAUC for the nitrate response following the test fats showed borderline significance 277 

(P=0.054), but the difference between the test fats did not reach significance after Bonferroni 278 

correction.    279 

 280 

Postprandial response for markers of endothelial activation 281 

There was a significant test fat*time interaction (P≤0.001) for the postprandial sICAM-1 time 282 

course response (Figure 3), with lower concentrations, AUC and IAUC (meal effects 283 

P≤0.001) found after the n-6 PUFA than SFA and MUFA-rich meals (P≤0.002) (Table 3). In 284 
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contrast, meal fat composition had no effect on the postprandial plasma sVCAM-1, E-selectin 285 

or P-selectin responses (Table 3).          286 

 287 

Postprandial lipid, glucose and insulin response  288 

No significant effects of meal fatty acid composition were evident for the postprandial TAG 289 

(Supplemental Figure 2), apoB, NEFA, glucose and insulin responses (Table 4).  290 

 291 

DISCUSSION  292 

To our knowledge, the DIVAS-2 study is the first study in postmenopausal women to 293 

investigate the impact of sequential meals rich in SFAs, MUFAs and n-6 PUFAs on 294 

postprandial macro- and microvascular reactivity (novel CVD risk markers (29-31)), blood 295 

pressure and postprandial CVD risk biomarkers. Our study showed differential beneficial 296 

effects of meals rich in unsaturated fatty acids on clinic blood pressure, plasma nitrite and 297 

sICAM-1 (a marker of endothelial activation), with no significant impact of test fat 298 

composition on real time measures of vascular function (including the primary outcome 299 

measure, FMD), postprandial lipemia and markers of insulin resistance.  300 

The lack of effect of meals with varying fat composition on postprandial vascular 301 

reactivity (including FMD) and arterial stiffness in our postmenopausal women is similar to 302 

previous findings in healthy men and women (32-37). Low bioavailability of NO, the most 303 

potent vasodilator produced by the vascular endothelium, has been demonstrated to be closely 304 

associated with endothelial damage, which may affect the regulation of vascular tone and 305 

function (38). Moreover, NO inhibits platelet aggregation, smooth muscle cell proliferation 306 

and adhesion of monocytes and endothelial cells (39). An effective method for estimating 307 

endogenous NO availability is to measure its more stable oxidation products nitrite and nitrate 308 

in plasma or other biological fluids. We observed a lower plasma nitrite response post-309 
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consumption of the SFA relative to MUFA-rich meals, with little impact of the test fats on 310 

nitrate responses. Similar findings were observed in the LIPGENE study which reported a 311 

beneficial effect of a MUFA-rich meal (refined olive oil; 12% SFAs, 43% MUFAs, 10% 312 

PUFAs) on plasma nitrites compared with a SFA-rich meal (vegetable sources of SFAs; 38% 313 

SFAs, 21% MUFAs, 6% PUFAs) in patients classified with metabolic syndrome (40). 314 

Although differences in the biomarkers of NO production were evident between the test fats 315 

in the current study, comparable changes in the real-time measures of vascular reactivity were 316 

not quite significant, suggesting possible indirect effects of meal fatty acids on vascular 317 

function. These may include differences by which SFAs, n-6 PUFAs and MUFAs influence 318 

fat-induced oxidative stress, the magnitude of the lipemic response and also duration of 319 

exposure of the endothelium to circulating TAG-rich lipoproteins (chylomicrons and VLDL) 320 

during the postprandial phase (41, 42).         321 

In the current study, each test fat reduced blood pressure over 450 min, with a greater 322 

decrease in DBP and, to a lesser extent, SBP observed after consumption of the MUFA than 323 

SFA-rich meals. Circadian variability is responsible for a rise in blood pressure and 324 

attenuation of vascular function in the morning, reflecting the peak incidence of CVD events 325 

in the early hours after waking (43). Since our 480 min study commenced in the morning, the 326 

fall in blood pressure observed during the postprandial period may in part be explained by 327 

diurnal fluctuations. However, since each study visit started at the same time of day (07:30 h), 328 

this is unlikely to have confounded the differential effects of the test fats observed. There are 329 

very limited and inconclusive data in the literature regarding the relative effects of acute 330 

consumption of meals varying in fat composition on postprandial blood pressure or heart rate 331 

in postmenopausal women. However, findings from previous chronic interventions have 332 

shown significant effects of replacing SFAs with unsaturated fatty acids on blood pressure (7, 333 

44). In our chronic DIVAS study, replacement of 9.5 %TE of dietary SFAs with MUFAs for 334 
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16 wk significantly attenuated the increase in night SBP in 195 men and women with a 335 

moderately increased risk of CVD (7). Another 3-month controlled parallel study in which 336 

participants followed a high fat diet (37 %TE) rich in either SFAs (17 %TE from SFAs) or 337 

MUFAs (23 %TE from MUFAs) also reported significant reductions in both fasting DBP and 338 

SBP in response to the MUFA-rich diet (44). The results from these chronic studies and our 339 

more recent acute study provide evidence to support the replacement of dietary SFAs with 340 

MUFAs as a potential strategy for blood pressure lowering, although more studies are needed 341 

to confirm these findings.  342 

Endothelial dysfunction is associated with an increased expression of adhesion 343 

molecules due, in part, to increased endothelial cell activation. This triggers leukocyte 344 

homing, adhesion and migration into the sub-endothelial space, all of which are associated 345 

with the initiation, progression and destabilization of atherosclerosis (45). During the process 346 

of atherosclerotic plaque formation, soluble adhesion molecules, such as sICAM-1 and 347 

sVCAM-1, and cell surface adhesion molecules, such as E-selectin and P-selectin, are 348 

activated (46). In the DIVAS-2 study, we observed a lower postprandial sICAM-1 response 349 

after the n-6 PUFA than SFA and MUFA-rich meals, with little effect evident on other 350 

adhesion molecules. Our finding is similar to that of a previous study in overweight men 351 

which showed a reduction in sICAM-1 after consumption of a single mixed meal rich in n-6 352 

PUFAs (40 g margarine and 10 g safflower oil) compared with SFAs (50 g butter fat) (47). In 353 

contrast to our study, others have reported a reduction in sVCAM-1 following a n-6 PUFA-354 

rich meal in overweight men (45), whereas an increase relative to baseline was found in both 355 

postprandial sICAM-1 and sVCAM-1 after a SFA-rich meal in healthy and type 2 diabetic 356 

adults (48). Endothelial cell studies also support a differential effect of fatty acids on cell 357 

adhesion molecules, where fatty acids with the same chain length, but increasing double 358 

bonds accompanying the transition from MUFAs to n-6 PUFAs, had a greater inhibitory 359 
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effect of cytokine-induced expression of adhesion molecules, although the specific 360 

mechanisms of action are not clear (49).  361 

 One systematic review and meta-analysis has compared the effects of single oral fat 362 

tolerance tests with differing fatty acid compositions on postprandial TAG responses in men 363 

and women (50). Relative to a SFA-rich meal challenge, a PUFA-rich meal significantly 364 

reduced the postprandial lipemic response over 8 h, whereas there was only a trend for a 365 

reduced response following a MUFA-rich meal. In our study in postmenopausal women, meal 366 

fatty acids did not impact on postprandial lipid, glucose or insulin responses following 367 

sequential meals. However, Robertson et al (11) reported significantly higher levels of plasma 368 

NEFA and lower insulin sensitivity following a SFA-rich meal compared with other test oils. 369 

The sequential postprandial protocols used in these studies may provide an explanation for the 370 

differences observed on postprandial lipemia. In the Robertson study, volunteers ingested a 371 

high fat breakfast containing 40 g of the assigned test fat followed by a low fat, high 372 

carbohydrate lunch (5.4 g total fat) given 5 h later. The type of SFAs is also important when 373 

determining the lipemic response. In the Robertson study, the SFAs meal contained vegetable 374 

sources of SFAs (palm oil and cocoa butter), whereas the DIVAS-2 study used butter on 375 

account of it being a SFA-rich whole food that alone contributes to almost 9% of the total 376 

SFA intake in older females in the UK (51). However, unlike vegetable oils, the short and 377 

medium chain fatty acids in butter are transported rapidly to the liver for oxidation/TAG 378 

formation. Therefore, the fat content of the sequential meals and type of SFAs may impact on 379 

the postprandial outcome measures, and warrants further investigation.  380 

A strength of the study is the use of a two meal sequential postprandial protocol, 381 

which more closely mimics the habitual pattern of meal intake in Westernised societies, 382 

compared with a single test meal challenge (19, 20). When considering the postprandial 383 

summary measures, IAUC is considered to provide a more accurate representation of the 384 
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postprandial response to an oral fat load than AUC (52). Therefore, the significant effects of 385 

test fat on blood pressure, nitrite and sICAM-1 that were determined for IAUC, rather than 386 

AUC, support the robustness of these findings. However, there are some potential limitations 387 

of our study. As only postmenopausal women were included, the findings may not reflect the 388 

responses in men, premenopausal women or postmenopausal women with increased CVD 389 

risk. Furthermore, the SFA-rich meal naturally contained higher quantities of cholesterol and 390 

trans fatty acids compared with the two unsaturated fat rich meals. These differences could 391 

have contributed to the responses observed, although the amounts consumed in the SFA-rich 392 

meals were below that which has been associated with adverse effects on CVD risk factors. 393 

Other limitations may include the difficulty of accurately measuring plasma nitrite and nitrate 394 

(a complex process requiring careful sample handling), a low frequency of postprandial blood 395 

pressure measurements, and a lack of effects of the test fats on other markers of endothelial 396 

function, which may have been negated because the study sample size was not powered for 397 

secondary outcome measures. Therefore, continuous (beat-to-beat) blood pressure monitoring 398 

during the postprandial period in human studies that are adequately powered for the 399 

secondary outcome measures would confirm these findings. 400 

In conclusion, the findings of this study suggest that meal fatty acid composition does 401 

not affect FMD or other measures of vascular reactivity, although MUFA-rich meals had 402 

favourable effects on postprandial DBP, as well as maintaining a higher plasma nitrite 403 

response compared with sequential SFA-rich meals. Furthermore, n-6 PUFA rich meals 404 

reduced postprandial sICAM-1 concentrations relative to the SFA and MUFA-rich meals. 405 

Compared with SFAs, our chronic and acute DIVAS studies consistently show unsaturated 406 

fatty acids to have beneficial effects on blood pressure and specific biomarkers of endothelial 407 

activation. However, in relation to FMD (primary outcome measure), both studies did not 408 

show a benefit of replacing SFAs with unsaturated fat. These findings will contribute to the 409 
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evidence base for the potential benefit of unsaturated fatty acids compared with SFAs on 410 

postprandial blood pressure, sICAM-1 and nitrite responses and for the design of future 411 

studies examining the effects of meal fatty acids on postprandial CVD risk markers in 412 

postmenopausal women.  413 
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Table 1 Energy content and macronutrient composition of the sequential test meals consumed 

on the three study visits 

 Breakfast Lunch 

 SFAs MUFAs n-6 PUFAs 
 

SFAs MUFAs n-6 PUFAs 

Energy, MJ 3.8 3.8 3.8  3.0 3.0 3.0 

Fat, g 53.7 53.1 53.1  31.8 31.1 31.1 

     SFAs 32.9 9.4 7.6  19.1 6.1 5.4 

     MUFAs 13.3 35.2 6.7  7.7 19.4 4.1 

     n-6 PUFAs 1.8 5.1 36.2  1.3 3.4 20.0 

     n-3 PUFAs 0.6 0.9 0.1  0.3 0.6 0.1 

    Trans fatty acids 1.95 0.13 0.12  1.12 0.12 0.12 

Cholesterol, mg 150 12 12  90 12 12 

Carbohydrate, g 98.4 98.0 98.0  98.2 98.0 98.0 

Protein, g 19.6 19.2 19.2  19.5 19.2 19.2 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   29 
 

Table 2 Subject characteristics and mean baseline measures of the study participants1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Characteristic 
Mean ± SEM 

(Median (IQR)2) 
Range 

Age, y 58 ± 1 48-65 

Weight, kg 70.1 ± 2.1 47.6-91.9 

BMI, kg/m2 25.9 ± 0.7 17.6-33.9 

Waist circumference, cm 90.2 ± 1.6 70.0-108.3 

Body fat, % 36.8 ± 1.2 21.1-47.3 

Blood pressure, mm Hg 

   Systolic 136 ± 3 108-177 

   Diastolic  78 ± 1 64-94 

   Pulse pressure  58 (54-61) 41-85 

Heart rate, beats/min 59 ± 1 50-72 

Fasting serum biochemical profile   

  Total cholesterol, mmol/L 5.74 ± 0.12 4.30-7.09 

  HDL cholesterol, mmol/L 1.62 ± 0.05 1.15-2.17 

  Total cholesterol : HDL cholesterol ratio 3.63 ± 0.12 2.55-5.24 

  LDL cholesterol, mmol/L 3.51 ± 0.11 2.33-4.94 

  Triacylglycerol, mmol/L 1.25 (1.06-1.56) 0.76-2.42 

  C-reactive protein, mg/L 0.97 (0.35-1.40) 0.14-8.07 

  Glucose, mmol/L 5.09 (4.90-5.31) 4.36-6.57 

  Insulin, pmol/L 32.6 (23.2-43.6) 8.9-109.7 

  NEFA, µmol/L 597 (535-653) 406-1055 

  HOMA-IR 1.19 (0.84-1.84) 0.33-5.34 

  rQUICKI 0.42 ± 0.01 0.34-0.55 

10 y CVD risk score, % 4.7 ± 0.4 1.2-11.0 

Habitual macronutrient intake   

  Energy, MJ/d 7.3 ± 0.3 3.2-11.6 

  Total fat, %TE 35.4 ± 1.3 21.3-64.9 

     SFAs, %TE 13.1 ± 0.6 7.6-26.9 

     MUFAs, %TE 12.6 ± 0.5 7.1-23.3 

     n-6 PUFAs, %TE 5.2 ± 0.3 2.4-9.7 

     n-3 PUFAs, %TE 0.9 ± 0.1 0.4-1.5 

     Trans fatty acids, %TE 0.9 ± 0.1 0.1-1.6 

  Dietary cholesterol, mg/d 228 ± 18 45-466 

  Protein, %TE 15.9 ± 0.5 11.5-22.8 

  Carbohydrate, %TE 45.3 ± 1.3 21.0-65.4 

     Total sugars, %TE 19.7 ± 1.1 8.0-40.0 

  Dietary fibre (AOAC), g/d 22.1 ± 1.1 10.9-35.3 

  Alcohol, %TE 3.2 ± 0.5 0.0-9.3 
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1 Values are means ± SEMs, medians (IQRs), or ranges (n=32). Data represent the average of 

the three baseline visits, with the exception of the habitual macronutrient intake that was 

determined from a single 4-day weighed diet diary recorded prior to visit 1 (n=31). 2 Variables 

that were not normally distributed at baseline (pulse pressure, triacylglycerol, C-reactive 

protein, glucose, insulin, NEFA and HOMA-IR) are presented as median and IQR. %TE: 

percentage of total energy; CVD: cardiovascular disease; NEFA: non-esterified fatty acids; 

rQUICKI: revised quantitative insulin sensitivity check index. 
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Table 3 Fasting and postprandial vascular outcomes, blood pressure and circulating markers of endothelial activation in postmenopausal women 

after sequential meals rich in SFAs, MUFAs and n-6 PUFAs1 

  Test meal fat composition   

  SFAs MUFAs n-6 PUFAs P value 

Vascular function      
FMD (n=31) 

% FMD response     
     Fasting, % 4.69 ± 0.44 4.99 ± 0.60 4.74 ± 0.44 0.99 

     AUC, % x min 2025 ± 116 2313 ± 165 2117 ± 138 0.09 

     IAUC, % x min 55 ± 147 216 ± 183 127 ± 135 0.54 

Pre-occlusion artery diameter     
     Fasting, mm 3.32 ± 0.09 3.31 ± 0.10 3.34 ± 0.10 0.87 

     AUC, mm x min 1411 ± 39 1401 ± 39 1415 ± 39 0.66 

     IAUC, mm x min 10.4 ± 12.5 15.8 ± 13.8 12.6 ± 14.7 0.66 

Maximum change in artery 

diameter     
     Fasting, mm 0.15 ± 0.01 0.16 ± 0.02 0.15 ± 0.01 0.96 

     AUC, mm x min 66.7 ± 3.5 74.4 ± 4.6 69.1 ± 3.9 0.17 

     IAUC, mm x min 2.90 ± 5.12 8.51 ± 5.28 4.08 ± 4.08 0.42 

LDI (n=25)     
LDI-Ach     
     Fasting, AU 1633 ± 117 1786 ± 151 1805 ± 167 0.39 

     AUC, AU x min 736 ± 41 779 ± 65 778 ± 48 0.47 

     IAUC, AU x min 1.2 ± 29.4 -24.4 ± 49.1 -34.4 ± 46.1 0.60 

LDI-SNP      
     Fasting, AU 1651 ± 132 1832 ± 125 1655 ± 175 0.18 

     AUC, AU x min  745 ± 45 813 ± 63  721 ± 55 0.29 

     IAUC, AU x min 2.3 ± 46.2 -1.1 ± 45.5 -24.1 ± 50.7 0.53 
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DVP (n=32) 

Reflection index     
     Fasting, % 61.9 ± 1.5 60.7 ± 1.7 62.8 ± 1.8 0.64 

     AUC, % x min x 103 25.9 ± 0.7 25.2 ± 0.6 26.2 ± 0.7 0.37 

     IAUC, % x min x 103 -1.9 ± 0.6 -0.2  ± 0.6 -2.0 ± 0.5 0.69 

Stiffness index     
     Fasting, m/s 7.0 ± 0.3 7.3 ± 0.3 7.1 ± 0.2 0.50 

     AUC, m/s x min    3218 ± 96 3153 ± 75 3276 ± 106 0.60 

     IAUC, m/s x min 89.3 ± 79.1 -121.4 ± 87.3 90.7 ± 91.2 0.67 

Blood pressure (n=32)     
SBP     
     Fasting, mm Hg 134 ± 3 137 ± 3 136 ± 3 0.21 

     AUC, mm Hg x min x 103 57.1 ± 1.2 56.9 ± 1.1 57.5 ± 1.2 0.30 

     IAUC, mm Hg x min x 103   -3.4 ± 0.6 -4.8 ± 0.6 -3.8 ± 0.5 0.05 

DBP     
     Fasting, mm Hg 76.6 ± 1.4 78.3 ± 1.3 77.7 ± 1.5 0.14 

     AUC,  mm Hg x min x 103    33.0 ± 0.6 32.9 ± 0.6 33.3 ± 0.7 0.70 

     IAUC, mm Hg x min x 103    -1.5 ± 0.3b -2.3 ± 0.3a -1.7 ± 0.3ab 0.007 

Pulse pressure     

     Fasting, mm Hg 57.5 ± 2.1 58.9 ± 1.8 58.6 ± 2.1 0.49 

     AUC,  mm Hg x min x 103 24.0 ± 0.7 24.0 ± 0.6 24.2 ± 0.7 0.71 

     IAUC, mm Hg x min x 103 -19.1 ± 0.4 -25.5 ± 0.4 21.4 ± 0.4 0.76 

Heart rate     

     Fasting, beats/min 58.6 ± 0.8 60.7 ± 1.5 58.8 ± 1.0 0.16 

     AUC,  beats/min x min x 103 29.2 ± 0.4 30.0 ± 0.6 29.3 ± 0.5 0.0222 

     IAUC, beats/min x min x 103 28.1 ± 0.3 27.2 ± 0.3 28.3 ± 0.3 0.38 

Circulating plasma markers of endothelial activation (n=27) 

Nitrite3      
     Fasting, μmol/L 0.13 ± 0.01 0.13 ± 0.01 0.13 ± 0.01 0.31 
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     AUC,  μmol/L x min 52.8 ± 2.5 52.3 ± 2.6 52.4 ± 2.7 0.21 

     IAUC, μmol/L x min -1.23 ± 0.7a -0.17 ± 0.4b -0.66 ± 0.5ab 0.016 

Nitrate     
     Fasting, μmol/L 19.1 ± 1.5 18.8 ± 1.8 16.9 ± 1.9 0.13 

     AUC,  μmol/L x min 6094 ± 411 6057 ± 487 5659 ± 527 0.38 

     IAUC, μmol/L x min -1915 ± 248 -1835 ± 314 -1460 ± 301 0.05 

sVCAM-1      
     Fasting, ng/mL 633 ± 18 629 ± 20 625 ± 16 0.91 

     AUC,  mg/mL x min  266 ± 7 268 ± 8 259 ± 6 0.15 

     IAUC, mg/mL x min  0.5 ± 4.1 3.9 ± 3.9 -3.6 ± 2.4 0.72 

sICAM-1     
     Fasting, ng/mL 208 ± 7 204 ± 7 206 ± 5 0.69 

     AUC,  mg/mL x min  84.8 ± 2.5b 86.4 ± 2.9b 68.7 ± 4.1a <0.001 

     IAUC, mg/mL x min  -2.4 ± 1.1b 0.7 ± 1.2b -18.0 ± 3.3a <0.001 

E-selectin      
     Fasting, ng/mL 29.0 ± 1.7 28.0 ± 1.7 27.8 ± 1.9 0.23 

     AUC, mg/mL x min 11.3 ± 0.8 11.1 ± 0.7 10.8 ± 0.6 0.55 

     IAUC, mg/mL x min  -0.15 ± 0.3 0.05 ± 0.1 -0.06 ± 0.1 0.90 

P-selectin     
     Fasting, ng/mL 32.8 ± 1.4 31.6 ± 1.6 31.5 ± 1.6 0.17 

     AUC,  mg/mL x min 13.3 ± 0.6 13.5 ± 0.8 13.3 ± 0.7 0.93 

     IAUC, mg/mL x min -0.5 ± 0.2 0.2 ± 0.2 0.1 ± 0.2 0.08 
1 Values are mean ± SEM, n=25-32. The time interval for the AUC and IAUC: 420 min for FMD and circulating markers of endothelial 

activation; 450 min for blood pressure, DVP and LDI. Data was analyzed using one-way repeated-measures ANOVA (non-parametric for data 

that could not be normalized). If the effect of test fat was significant, a paired samples t-test with Bonferroni correction was performed; labeled 

means in a row without a common letter differ, P≤0.017.  
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2 Paired samples t-tests were not significant after Bonferroni correction.  

3 n=25 for plasma nitrite. 

Ach: acetylcholine; AU: arbitrary units; DBP: diastolic blood pressure; DVP: digital volume pulse; FMD: flow-mediated dilatation; IAUC: 

incremental AUC; LDI: laser Doppler imaging; SBP: systolic blood pressure; sICAM-1: soluble intercellular adhesion molecule-1; SNP: sodium 

nitroprusside; sVCAM-1: soluble vascular cell adhesion molecule-1. 
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Table 4 Fasting and postprandial serum lipid, glucose and insulin responses in postmenopausal women after the 

sequential meals rich in SFAs, MUFAs and n-6 PUFAs1  

 
  Test meal fat composition   

  SFAs MUFAs n-6 PUFAs P value 

TAG response     
   Fasting, mmol/L 1.35 ± 0.08 1.32 ± 0.07 1.42 ± 0.11 0.74 

   MaxC, mmol/L 2.87 ± 0.21 3.14 ± 0.20 3.19 ± 0.26 0.14 

   TMax, min 333 ± 15 333 ± 19 326 ± 13 0.91 

   AUC, mmol/L x min 981 ± 68 1020 ± 63 1058 ± 92 0.55 

   IAUC, mmol/L x min 333 ± 38 385 ± 41 377 ± 53 0.14 

NEFA response     
   Fasting, μmol/L 593 ± 32 623 ± 36 590 ± 32 0.61 

   MinC, μmol/L 122 ± 8 111 ± 8 124 ± 10 0.33 

   TMin, min 295 ± 34 260 ± 30 254 ± 29 0.73 

   Suppression, % 56 ± 5 62 ± 5 62 ± 5 0.82 

   MaxC, μmol/L 752 ± 37 710 ± 37 698 ± 36 0.22 

   TMax, min 231 ± 31 278 ± 26 264 ± 28 0.30 

   AUC120–480, mmol/L x min 136 ± 7 129 ± 8 128 ± 6 0.40 

   IAUC120–480, mmol/L x min 45.1 ± 10.2 50.4 ± 12.3 49.8 ± 10.6 0.09 

ApoB response     
   Fasting, µg/mL 999 ± 29 998 ± 40 995 ± 38 0.85 

   MaxC, µg/mL 1064  ± 35 1060 ± 40 1062 ± 40 0.91 

   TMax, min 218 ± 29 176 ± 26 148 ± 23 0.18 

   AUC, mg/mL x min 479 ± 14 481 ± 18 478 ± 18 0.89 

   IAUC, mg/mL x min -291 ±  3913 1290 ± 3585 262 ± 3812 0.89 

Glucose response     
   Fasting, mmol/L 5.19 ± 0.11 5.16 ± 0.10 5.15 ± 0.09 0.93 

   MaxC, mmol/L 8.88 ± 0.31 9.12 ± 0.38 9.13 ± 0.30 0.64 



   36 
 

   TMax, min 328 ± 25 321 ± 29 352 ± 24 0.50 

   AUC, mmol/L x min 2953 ± 63 2986 ± 91 2980 ± 80 0.93 

   IAUC, mmol/L x min 463 ± 53 508 ± 64 508 ± 64 0.30 

Insulin response     
   Fasting, pmol/L 42.5 ± 8.1 38.2 ± 4.0 35.7 ± 5.0 0.49 

   MaxC, pmol/L 457 ± 40 488 ± 40 434 ± 32 0.29 

   TMax, min 228 ± 33 245 ± 33 205 ± 32 0.74 

   AUC, μmol/L x min 102.1 ± 7.3 102.5 ± 8.4 98.4 ± 6.6  0.78 

   IAUC, μmol/L x min 81.7  ± 7.1 84.2 ± 7.0 81.3 ± 5.1 0.61 

 

1 Values are mean ± SEM, n=26. Unless specified, the time interval for AUC and IAUC responses was 480 min. Data were analyzed using one-

way repeated-measures ANOVA (non-parametric for data that could not be normalized by transformation); if the effect of test fat was significant, 

post-hoc analysis (paired sample t-test) was performed with Bonferroni correction (P≤0.017). ApoB: apolipoprotein B; IAUC: incremental AUC; 

maxC: maximum concentration; minC: minimum concentration; NEFA: non-esterified fatty acids; TAG: triacylglycerol; TMax: time to reach 

maxC; TMin: time to reach minC. 
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FIGURE LEGENDS 

Figure 1 Flow of participants through the different stages of the DIVAS-2 study 

 

Figure 2 Incremental (A) DBP and (B) SBP responses following sequential meals (0 min and 

330 min) enriched in SFAs, MUFAs and n-6 PUFAs in postmenopausal women. Values are 

means ± SEMs, n=32. The timing of the second meal (330 min) is denoted by a dashed line in 

the figure. Differences in the incremental responses between test fats were analyzed by 

repeated measures ANOVA. DBP, diastolic blood pressure; SBP, systolic blood pressure; Δ, 

change from 0 min. 

 

Figure 3 Postprandial plasma sICAM-1 responses in postmenopausal women following 

sequential meals (0 min and 330 min) enriched in SFAs, MUFAs and n-6 PUFAs.  Values are 

means ± SEMs, n=27. The timing of the second meal (330 min) is denoted by a dashed line in 

the figure. The plasma sICAM-1 responses following the test fats were analyzed by two-way 

repeated measures ANOVA. sICAM-1, soluble intercellular adhesion molecule.  

 

 

 


