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Concept of proteostasis

The three-dimensional organization and conformation of a crowded cellular environment [3]. The high con-
of a polypeptide chain is important for its cellular centration of macromolecules within most intracellular
function. Maintaining the correct folding state of a compartments strongly increases the tendency of mis-
protein is challenging particularly due to kinetic effects folding of non-native and structurally flexible proteins,
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AD, Alzheimer's disease; ALS, amyotrophic lateral sclerosis; ARTs, arrestin-related trafficking adaptors; BMP, bone morphogenetic proteins;
CAP, chaperone-assisted proteasomal degradation; CASA, chaperone-assisted selective autophagy; CFTR, cystic fibrosis transmembrane
conductance regulator; CHIP, C terminus of Hsc70-interacting protein; CMA, chaperone-mediated autophagy; CP, core particle; DUBs, deu-
biguitylating enzymes; ER, endoplasmic reticulum; ERBB2, erythroblastic leukemia viral oncogene homolog 2; GR, glucocorticoid receptor;
H3, Histone3; HD, Huntington's disease; HSF1, heat shock factor 1; HSP, heat shock proteins; Hul5, HECT ubiquitin ligase 5; IS, insulin/IGF
signaling; INM, inner nuclear membrane; LRR, leucine-rich repeat; MLPs, mislocalized membrane proteins; NAC, nascent polypeptide-asso-
ciated complex; ONM, outer nuclear membrane; PD, Parkinson’s disease; PML, promyelocytic leukemia; polyQ, polyglutamine; PRMTS,
protein arginine methyltransferase 5; Psh1, Pob3/Spt16/histone 1; RING, really interesting new gene; RP, regulatory particle; SCF, Skp1/Cul-
lin/F-box; Smad1, Sma-mother against decapentaplegic 1; SOD1, superoxide dismutasel; TPR, tetratricopeptide repeat; Ub, ubiquitin; UPS,
ubiquitin/proteasome system.
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often causing their polymerization and aggregate for-
mation [3]. Certain proteins only obtain an ordered,
native structure and adopt folded conformations upon
binding to the appropriate partner molecule or chaper-
one [4,5]. Cells are frequently exposed to proteotoxic
conditions, including heat or oxidative stress, which
makes it even more difficult to establish and preserve
native protein structures [6]. Genetic mutations might
also increase the tendency of protein aggregation
resulting in significant pressure on the cellular protein
quality control systems [7]. Intracellular pathways
involved in the maintenance of the proteome build a
complex proteostasis network. The term proteostasis
refers to the preservation of the proper concentration,
distribution, and function of proteins. The intricate
balance is mainly achieved by vigilant control and
safeguarding of protein synthesis, protein maturation,
and folding, protein transport, as well as the timely
disposal of unwanted and damaged proteins by the
main proteolytic routes: the ubiquitin/proteasome sys-
tem (UPS) or the lysosome-autophagy pathway [8—10].

With age, the ability of postmitotic cells to keep a
balanced proteome is gradually compromised particu-
larly by downregulation of molecular chaperones and
reduced efficiency of protein degradation [7]. As such,
impairment of proteostasis is seen as one major hall-
mark of aging, correlated with dementia and neurode-
generation, type 2 diabetes, cystic fibrosis, cancer, and
cardiovascular diseases [11,12]. Notably, longevity-pro-
moting pathways, such as dietary restriction, insulin/
IGF signaling (IIS), mitochondrial respiration, or germ
line immortality provide increased stability to the pro-
teome, delaying the onset of age-related diseases
[1,9,13,14]. One of the central nodes in the eukaryotic
proteostasis network is the interaction between molec-
ular chaperones and proteolytic machineries. To main-
tain the cellular proteome molecular chaperones and
ubiquitin (Ub)-dependent degradation pathways coor-
dinate protein refolding and removal of terminally
damaged proteins. Irreversibly affected proteins are
particularly recognized by chaperone-assisted E3 Ub
ligases, which target them for degradation by the UPS
or autophagy.

Protein degradation machineries

Ubiquitin/proteasome system (UPS)

Selective degradation of misfolded or aggregated pro-
teins is crucial to maintain functionality of the cell. A
fundamental proteolytic module of the cellular pro-
teostasis network is the UPS [9]. Substrates of the
UPS are earmarked by covalent attachment of Ub to
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internal lysine residues through the concerted action of
El Ub-activating enzymes, E2 Ub-conjugating
enzymes, and E3 Ub ligases [15-17]. Ubiquitylation is
a dynamic and reversible process as deubiquitylating
enzymes (DUBs) modulate the size and topology of
poly Ub chains and thereby influence the fate of the
conjugated substrate. DUBs that bind to the protea-
some either remove proteolytic Ub tags [18] or edit the
topology of Ub chains to generate efficient degrada-
tion signals [19,20]. Moreover, DUBs catalyze process-
ing of inactive Ub precursors and recycling of
inhibitory free Ub chains, which otherwise would inhi-
bit polyubiquitin—substrate binding at the proteasome
[21,22]. The 26S proteasome is a multicatalytic pro-
tease complex composed of a barrel-shaped 20S prote-
olytic core particle (CP) and a 19S regulatory particle
(RP) translocating substrates into the 20S CP where
they are degraded into short peptides [23]. Usually
polyubiquitin attachment is sufficient for targeting sub-
strate proteins for proteasomal turnover [17]. While
chains connected through Lys48 of Ub promote pro-
teasomal degradation, Lys63-linked chains provide
regulatory or targeting functions [24].

Despite the large number of structurally unrelated
substrates, Ub conjugation is remarkably selective. E3
Ub ligases represent the largest group of enzymes
within the UPS, which is linked to their key role in
substrate selection. Most E3 enzymes are not essential
for cell growth and exhibit only mild loss-of-function
phenotypes, suggesting the existence of similar func-
tional redundancy and adaptation mechanisms even
between degradation pathways of the UPS. The
detailed analysis of several classes of E3 ligases led to
identification of specific substrates and molecular path-
ways that they regulate [15,16]. Interestingly, a sub-
group of specialized quality control E3 ligases have
been identified to team up with a variety of molecular
chaperones in order to recognize and target particu-
larly damaged proteins for proteolysis (Fig. 1).

Selective autophagy

The other central component of the proteolytic system
is the autophagy-lysosome pathway, which supports
proteostasis by turnover of defective and aggregated
proteins, multimeric complexes, and even whole orga-
nelles that cannot be handled by the proteasome [25-
27]. A characteristic hallmark of macroautophagy
(hereafter autophagy) is the formation of double-mem-
brane autophagosomes, which engulf their particular
cargo substrate and deliver it to the lysosome for
degradation. Although nonselective autophagy is
mainly induced to recycle nutrients upon starvation,
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Fig. 1. lllustrative representation of subcellular localization of various PQC Ub ligases. E3 enzymes operating in quality control pathways
(e.g., CHIP, Doa10, HUWET1, Listerin, Rsp5, and San1) and associated chaperones (in green and gray) are widely distributed in most
subcellular compartments, including nucleus, cytoplasm, ER, and plasma membrane.

selective autophagy degrades specific cargos in
response to environmental stress conditions and physi-
ological changes including aging [28-30]. Substrate
selectivity is ensured by a cargo-ligand-receptor—scaf-
fold interaction [27]. As an initial step, the interaction
between receptor and scaffold recruits a specific cargo
to the phagophore assembly site for subsequent
autophagosome formation. Commonly, the receptor
proteins bind ATGS8/LC3, which couples the cargo
directly with the macroautophagy apparatus. Interest-
ingly, some branches of selective autophagy also use
Ub as recognition signal on target proteins, which
involves Ub-selective autophagy receptors and subse-
quent degradation of targets in the lysosome [31].

In higher organisms, selective degradation of single
proteins is also arranged via chaperone-mediated
autophagy (CMA) and chaperone-assisted selective
autophagy (CASA), initiating cargo uptake directly at
the lysosomal or endosomal membrane through a

specific protein translocation complex [32]. In both
variants of selective autophagy, chaperones, and qual-
ity control E3 ligases play a key role. For instance,
CMA-based degradation of the transcription factor
HIF1A requires the concerted action of HspA8/Hsc70
(heat shock 70 kDa protein 8) and the E3 ligase C ter-
minus of Hsc70-interacting protein (CHIP) [33].

Upon impaired capacity of the UPS and CMA, sub-
strates are degraded by CASA [34]. The CASA com-
plex contains the molecular chaperones Hsc70 and
HspB8, the cochaperone BAG3, and the E3 ligase
CHIP [35]. Under normal growth conditions, CASA is
the main route for chaperone-mediated lysosomal
degradation, whereas CMA is induced by proteotoxic
stress. CASA (like CMA) is also necessary for protein
quality control in aged cells, which is reflected by ele-
vated BAGS3 levels and increased targeting of oxidized
and ubiquitylated proteins to the lysosome in aged
neurons [36]. Substrates to be degraded by this
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complex include polyglutamine (polyQ)-expanded
huntingtin [37] and superoxide dismutase (SOD1) [38].
Furthermore, CASA is essential for muscle mainte-
nance especially during aging [39].

The chaperone network

With increasing genome size, the amount of pro-
teostasis guarding factors expressed in eukaryotic cells
has been adjusted to the growing complexity of the
proteome during evolution [40]. The coevolvement of
proteostasis networks helps to cope with the higher
burden of protein folding allocated to different sub-
cellular organelles, more complex developmental reor-
ganization of cell type-specific metabolism, and
unique stresses faced by multicellular, complex organ-
isms. Thus, it is not surprising that the human chap-
erome consisting of chaperones, cochaperones, and
adaptors possess more than 300 different members
[41]. Molecular chaperones are folding machines that
assist client proteins in acquiring and keeping their
active conformation, directing their folding, unfold-
ing, and refolding. In case of irreversible damage
chaperones also direct misfolded proteins toward spe-
cialized proteolytic systems of the cell [42]. Chaper-
ones coordinate lysosome-dependent degradation
pathways like CASA and CMA, and also target mis-
folded proteins to the 26S proteasome in chaperone-
assisted proteasomal degradation (CAP) [34,43.44].
Chaperones usually recognize exposed hydrophobic
protein surface and help client proteins to acquire
and keep their active conformation by directing (re)-
folding [45]. The biggest classes of chaperones are
named according to their molecular weight [Hsp100,
Hsp90, Hsp70, Hsp60, Hsp40, and small heat shock
proteins (HSPs)] [6] and form different subgroups
based on their mechanistic function.

The major de novo protein folding chaperones in
eukaryotes are Hsp90 and Hsp70. These ATP-depen-
dent chaperones appear as constitutively expressed and
stress-induced forms and team up with various cochap-
erones for substrate recognition, binding, and activation
[46-49]. Hsp70 and Hsp90 chaperone systems play a
role in different organelles of the eukaryotic cell and
regulate a wide range of events including folding of
de novo synthesized polypeptides, refolding, or degrada-
tion of misfolded proteins. Furthermore, they also show
disaggregation activity, facilitate protein translocation
through membranes and they are involved in remodel-
ing of multimeric protein complexes [50,51]. Hsp90 is
also involved in regulation of receptor-ligand binding or
assembly of protein complexes, and has been implicated
in regulatory pathways such as DNA repair or immune
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response [52]. The broader role of this chaperone is well
reflected by its various client proteins. In fact, it has
been shown that Hsp90 associates with more than 10%
of the total proteome [53].

The HSP60 chaperones are also known as chaper-
onins [54]. The mitochondria localized HSP60-HSP10
and the cytosolic TriC/CCT complex chaperonins act
as multimeric ring-shaped folding chambers that
encapsulate client proteins for folding [55,56]. Cochap-
erones, like HSP40/J-proteins, and BAG family
cochaperones regulate the activity of their cognate
chaperones through the modulation of their ATPase
cycle or via binding substrate proteins or other
cochaperones [50,57-59].

Age-dependent and disease-linked changes of
the chaperome

Molecular chaperones are vital for protein quality
assurance recognizing non-native proteins and dimin-
ishing their toxicity. In the presence of proteotoxic
conditions including heat stress, oxidative changes,
and aging, all cells induce a highly conserved gene
expression program, the heat stress response. This
stress response is tightly regulated in eukaryotes,
inducing expression of Hsp genes by the evolutionarily
conserved transcription factor heat shock factor 1
(HSF1) [9,60,61].

Studying the Caenorhabditis elegans and human
chaperome, Brehme et al. has shown that a conserved
subnetwork of chaperones safeguards the aging pro-
cess [41]. The expression of the major cytosolic chaper-
ones, including Hsc70, Hsp90s, CCT/TRiC complex,
Hsp40, and tetratricopeptide motif repeat (TPR)-
domain cochaperones, is repressed in old worms and
the adult human brain. This age-related chaperome
repression leads to accumulation of misfolded proteins
and increases the risk of proteotoxic diseases, such as
Parkinson’s disease (PD), Alzheimer’s disease (AD),
and Huntington’s disease (HD). On the contrary,
increased HSP expression have been attributed to
many human cancer types, providing the fast dividing
cells with ultimate protein folding capacity, thus pro-
moting tumor cell survival, proliferation, and invasion
[62,63]. A recent study sheds light on the underlying
chaperome reorganization event in the cell, which
could trigger the survival of tumors. Examining the
chaperone complexes of different tumor species,
Rodina and coworkers identified the formation of
tumor-specific chaperone subnetworks that are distinct
to physiological chaperone interactions [64]. This so-
called cancer epi-chaperome is based on enhanced
physical integration of the two major cellular
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chaperone networks of Hsc70 and Hsp90. The epi-cha-
perome of these cancer cells is nucleated by stable,
high molecular weight complexes of Hsp90 and Hsc70,
and supports the survival of fast dividing cells [64].

E3-chaperone interaction in proteostasis
maintenance

As a result of cellular and environmental stresses, the
eukaryotic cell is continuously confronted with han-
dling defective proteins. Compartmentalized degrada-
tion pathways are specifically involved in the removal
of misfolded proteins of the endoplasmic reticulum
(ER), mitochondrion, cytoplasm, and nucleus. In order
to target damaged proteins for degradation, specialized
E3 Ub ligases are recruited by targeting chaperones.
So far only a few E3—chaperone complexes have been
described mechanistically (Fig. 2 and Table 1). Quanti-
tative protein interaction analysis suggests that more
than 30% of all human E3 ligases interact with Hsp90
[65]. This observation indicates a highly complex and
intricate PQC network guided by diverse E3-chaper-
one teams. In the following section, we will discuss
PQC systems based on the coordination of protein
folding and degradation. We will focus on the recent
discoveries on cytosolic, nuclear, and membrane-direc-
ted PQC; ER- and mitochondrion-specific PQC regula-
tion was previously described [66-70].

CHIP

CHIP has been characterized as the first QC E3 Ub
ligase important for the cellular proteostasis network.
CHIP binds the molecular chaperones Hsp70/Hsp90 to
coordinate the cellular balance between protein folding
and degradation [71-75]. It was first identified as a
chaperone binding protein based on its N-terminal
tandem TPR [76]. The evolutionarily conserved U-box
domain of CHIP, responsible for its E3 ligase activity,
is a modified form of the more frequently found really
interesting new gene (RING) domain [77,78]. Notably,
the chaperone-directed recruitment of CHIP involves a
mutual allosteric interaction between the TPR and U-
box domains [79]. Structural diversity and dynamics
within CHIP are well described in the recent review by
VanPelt and Page [80].

Various studies provide evidence that CHIP tightly
regulates chaperone function. Upon acute stress, CHIP
facilitates nuclear translocation and activation of
HSF1 to protect against stress-induced apoptosis
[81,82]. CHIP also modulates the proteotoxic stress
response by reducing the level of Hsc70/Hsp70 chaper-
one after heat shock [72,80,83,84]. Furthermore, CHIP

Chaperone-assisted E3 ligases in proteostasis

modulates the activity of certain chaperones. For
instance, this E3 ligase stimulates the release of the
Hsp90 ATPase activity modulating cofactor p23 from
the Hsp90 complex, thereby suppressing the affinity
and folding activity of Hsp90, which results in Ub-
dependent degradation of substrate proteins [72,85].
On the other hand, CHIP competes for Hsp70 binding
with Hsp40, which attenuates Hsp40 ATPase activity
and suppresses protein folding by Hsp70 [76].

Importantly, CHIP orchestrates regulation of cellu-
lar proteins from folding to degradation, including a
coordinated degradation of substrates, which are
beyond the refolding range. In addition to misfolded
proteins of the cytoplasm, CHIP promotes degradation
of a broad array of substrates when bound to Hsps,
like cystic fibrosis transmembrane conductance regula-
tor (CFTR), glucocorticoid receptor (GR), androgen
receptor, estrogen receptor, erythroblastic leukemia
viral oncogene homolog 2 (ERBB2), or protein argi-
nine methyltransferase 5 (PRMTS5) [86-90] (Fig. 2A).
Hypothetically, all clients of HSP70 or HSP90 are
potential targets of CHIP. However, not all CHIP sub-
strates are recruited via interaction with Hsps. For
example, Sma-mother against decapentaplegic 1
(Smadl) level is regulated by CHIP, which subse-
quently influences bone morphogenetic proteins (BMP)
signal transduction [91]. Identified substrates of the
CHIP/Hsp complex are detailed in the recent reviews
by Paul and Gosh, and Joshi et al. [92,93].

Aside from ameliorating proteotoxicity, CHIP plays
a role in developmental regulation and aging. For
instance, CHIP is involved in osteoblast differentiation
by regulating the protein level of Runx2 [94]. In agree-
ment with its role in protein quality control, CHIP
knockout mice show reduced lifespan associated with
age-related pathophysiological defects [95]. However,
CHIP deletion mice exhibit normal embryonic develop-
ment and unaffected turnover of many known CHIP
substrates, suggesting functional redundancy among
quality control Ub ligases [95,96]. In contrast, CHIP
deficiency induces accelerated aging, which suggests the
existence of at least one critical CHIP-specific substrate
that controls longevity. We have recently revealed an
important function of CHIP-mediated proteolysis in
insulin/IGF-like signaling (IIS). CHIP triggers degrada-
tion of the insulin receptor (INSR), which regulates
metabolic changes and determines lifespan in metazoan
organisms. Upon proteotoxic stress and during aging,
CHIP preferentially functions in PQC, causing a stabi-
lization of the INSR. Accordingly, proteotoxic accu-
mulation of damaged proteins or aberrant CHIP
function attenuates INSR degradation and affects
metabolism and longevity through increased IIS [97].
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Fig. 2. E3 Ub ligases with different roles in PQC. (A) CHIP is a major PQC ligase of the cytosol. (left panel) In cooperation with Hsp70/90,
CHIP ameliorates proteotoxicity in various proteinopathies by referring aggregates of beta-amyloid, mutant SOD1, polyQ protein, or alpha-
synuclein for degradation. (right panel) In addition to misfolded proteins of the cytoplasm, CHIP promotes degradation of a broad array of
substrates when bound to Hsps, such as CFTR, GR, ERBB2, or HIF1A. (B) (left panel) Rsp5/Nedd4 participates in the removal of cytosolic
misfolded proteins. Upon heat stress Rsp5/Nedd4 associates with cochaperone Hsp40 (Ydj1), which supports recognition and degradation
of misfolded proteins. (right panel) Beyond its role in the removal of cytosolic substrates, Rsp5/Nedd4 also targets misfolded proteins at the
plasma membrane. ARTs enable Rsp5 to selectively target a wide range of plasma membrane proteins and initiate their endocytosis and
lysosomal degradation. (C) The E3 ligase Listerin directly associates with the 60s ribosomal subunit to specifically target newly synthesized
aberrant polypeptides expressing a translated polyA tail. Listerin collaborates with three cofactors for ribosomal binding and substrate
processing: NEMF, TCF25, and the Ub-selective chaperone p97. (D) The role of chaperone-directed E3 ligases in nuclear PQC. (left panel)
San1 cooperates with Hsp70 chaperones to recruit misfolded proteins from the cytosol for proteasomal degradation in the nucleus,
whereas Doal10 targets substrates independent of Hsp70/Hsp40. In addition, both Doa10 and San1 interact with Cdc48/p97 to facilitate
proteasomal degradation of a subset of their substrates. (right panel) The yeast E3 ligases Hell, Hel2, Snt2 together with the histone
chaperones Pep5 and Asf1 trigger ubiquitylation and subsequent proteasomal turnover of surplus histones.
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Table 1. List of quality control E3 ligases and their chaperone partners reviewed in this paper.

E3 ligase Chaperone Target References
Cytosol
CHIP Hsp70; Hsp90 Misfolded proteins; Hsp90 clients [72,73]
Ubr1/UBR1 Hsp110 (Ssel); Misfolded proteins [101-103,108,114]
Hsp70 (SSa1/2);
Hsp40 (Ydj1, Sis1)
Ubr2 Hsp110; Hsp70 Misfolded proteins [101,103]
Tom1/HUWE1 Hsp27; CDC48 Unassembled proteins [122-124]
E6-AP Hsp70/Hsc70 Misfolded, aggregated proteins [98]
RNF126 BAG6 complex Mislocalized ER proteins [116,117]
Rsp5/NEDD4 Hsp40 Heat-induced misfolded proteins; [133,143-147]
plasma membrane proteins
Cullins Hsp90 Hsp90 clients [99,100]
Hul5/UBE3C Heat shock-induced misfolded proteins [132,134-136,139,140,219]
SCF Hsp90-Sgt1 LRR domain proteins; kinetochore [125-131,220]
Hsp70-Sgt1
Nuclei
Pepb, Snt2, Hell, Hel2 Asf1 Surplus histones [186]
Rtt101Mms/ Asf1 H3 [192]
Cul4APPET Asf1a/Asf1b
Psh1 FACT CENP-A (H3) [191]
Doa10/MARCH6 Hsp70 (Ssa1/Ssa2), ER and INM [109,177]
Hsp40 (Ydj1, Sis1)
Asi ligase complex Mislocalized proteins at INM [175,176]

(Asi1-Asi3)
Cytosol/Nuclei
San1 Hsp70; CDC-48/p97
Ribosomes
Ltn1p/Listerin Cdc48/p97

Nuclear misfolded proteins

Aberrant nonstop polypeptides

[101,105,107,108,221]

[148,152,161]

Our observation suggests an evolutionarily conserved
coordination of proteostasis and aging regulated by
CHIP-assisted protein degradation.

Different strategies for targeting
misfolded proteins in the cytosol

The cytosol of the eukaryotic cell melds protein syn-
thesis, folding, and transport, all of which are continu-
ously defining cellular proteostasis. The key insights
into how E3 ligases and chaperones work together
have been uncovered by research directed towards
understanding the role of CHIP in degradation of mis-
folded proteins. As described above CHIP is the most
extensively studied E3 Ub ligase associated with
molecular chaperones [83], but not the only one main-
taining proteostasis. PQC pathways deploy a variety
of E3 ligases linked to various degradation routes to
cope with the constant protein folding stress applied
by physiological or stress-related processes. Similarly
to CHIP, E6-AP—a HECT-domain Ub ligase found
in higher eukaryotes—interacts with Hsp70/Hsc70
chaperones and ubiquitylates their client proteins, such

as aggregated proteins [98]. Multisubunit Cullin-based
E3 ligases have also been implicated in PQC within
the cytoplasm. The mammalian Cullin5-RING E3 Ub
ligase interacts with the Hsp90 chaperone and medi-
ates Ub-dependent degradation of Hsp90 client pro-
teins, including protein kinases (such as ERBB2) or
transcription factors (like HIF1a) [99,100].

Although CHIP is thought to be the major PQC E3
ligase in the cytosol of higher eukaryotes, budding
yeast lacks this enzyme. Instead, Ubrl, Ubr2, and Sanl
are major PQC E3 ligases in Saccharomyces cerevisiae
which ubiquitylate misfolded proteins to maintain pro-
teostasis [101-103]. Interestingly, these enzymes evolved
two different strategies to safeguard the proteome.
Sanl has been first described as nuclear PQC E3 ligase
with intrinsic capacity to bind aberrant proteins in the
nucleus [104]. As Rosenbaum and coworkers have
shown, Sanl can directly bind to its substrates through
its disordered N-terminal and C-terminal domains,
which provide conformational flexibility and serve as
substrate recognition sites for misfolded proteins [105].
In yeast, where proteasomal degradation capacity of
the cell is highly concentrated in the nucleus [106],
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numerous cytosolic PQC substrates are degraded on
Sanl-dependent clearance mechanisms. Misfolded pro-
teins in the cytosol are delivered to the nucleus by
Hsp70 where San-1-driven ubiquitylation initiates pro-
teasomal degradation [101,107,108]. This suggests a
major role of Sanl in proteostasis by removing a wide
range of cytoplasmic and nuclear misfolded proteins.
So far no mammalian Sanl homolog has been identi-
fied, but recent bioinformatic analysis suggests the exis-
tence of several mammalian E3 ligases that bear
related, disordered regions and thus might function in a
similar way [109].

The E3 ligases Ubrl and Ubr2 have been first
characterized in the N-end rule pathway regulating
degradation of short-lived proteins presenting N-term-
inal destabilizing amino acids [110-113]. The Ubrl/
Ubr2-dependent yeast PQC pathway operates in the
cytosol, where Ubrl employs the Hsp70 chaperones
Ssal/Ssa2, the Hsp40 cochaperone Ydjl or Sisl, and
the Hspll0 chaperone Ssel for target recognition
[101,103,114]. Similar quality control function has
been recently attributed to the mammalian UBR1 (N-
recognin 1) E3 ligase targeting HSP90 client proteins
[115].

While the CHIP-Hsp70/Hsp90 complex directs the
degradation of a multitude of different misfolded pro-
teins, other ligase—chaperone complexes adopted more
specialized strategies to bind target proteins, revealing
a set of E3 ligases dedicated to distinct PQC path-
ways. RNF126 is an interesting example of a special-
ized PQC E3 ligase, which cooperates with the Bag6
chaperone [116]. Eukaryotic cells have extensive
endomembrane systems, hosting a significant portion
of the cellular proteome. Ultilizing specific signal
sequences, the newly synthesized membrane proteins
are rapidly integrated into the ER membrane. How-
ever, those that fail to target to the ER must be
removed from the cytosol to avoid protein aggrega-
tion. Rodrigo-Brenni ef al. identified RNF126 as the
key component of Bag6-dependent degradation of
mislocalized membrane proteins (MLPs) in the cytosol
[117]. The Bag6 chaperone preferentially binds to mis-
folded proteins with extensive hydrophobic domains
[116], while the typical client proteins of Hsp70/Hsp90
characteristically expose shorter hydrophobic stretches
[118,119]. This suggests that the Hsp70/Hsp90 chaper-
one system provides a different role in PQC compared
to the Bago6-driven pathway. RNF126 specifically
ubiquitylates lysine residues located directly next to
the hydrophobic segment of the MLPs [117]. Interest-
ingly, positively charged residues, such as lysines often
flank chaperone-recognized hydrophobic regions in
membrane proteins [120,121]. This observation
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supports the idea that the RNF126/Bag6 complex
implements a degree of specialization in substrate
recognition and binding.

Quality control of multiprotein complexes

Proteins destined to work in multimeric protein com-
plexes often expose unshielded segments of hydropho-
bic residues on their surface that mediate their
assembly into higher order molecular machineries.
Excess of free subunits of unassembled protein com-
plexes either cause protein aggregation or interfere
with their normal function. Using a model substrate
to study the degradation of unassembled soluble
polypeptides of multisubunit complexes HUWEI has
been identified as novel PQC Ub ligase [122].
HUWEI] targets both cytosolic and nuclear subunits
in human cells, providing a constant quality control
and removal of incomplete protein assemblies. Simi-
larly, the yeast HUWEI] homolog Toml facilitates
ubiquitylation and proteasomal degradation of
unassembled ribosomal proteins [123]. Although
HUWEI-dependent degradation of unassembled pro-
teins is linked to the Ub-selective chaperone p97, the
possible involvement of other chaperones engaged in
recognizing and presenting misfoldled HUWEI targets
is not addressed yet. A recent proteomic study identi-
fied HUWEI-Hsp27 interaction, which might link
HUWEI1 to chaperone-dependent degradation of
hydrophobic polypeptides [124].

As discussed above, chaperones are not only impor-
tant for folding of proteins but also play vital roles in
supporting accurate assembly of multiprotein com-
plexes. The presence of available components in
proper stoichiometric ratios is critical to facilitate the
build-up of functional protein complexes. As such, the
Hsp90-Sgt1 chaperone has a critical role in the assem-
bly of kinetochores, the multivalent microtubule bind-
ing sites in the cells [125]. Sgtl acts as an adaptor and
cochaperone for Hsp90 and Hsp70 to connect to mul-
tiple client proteins during their folding and assembly
into protein complexes [126]. Sgtl also links Hsp90 to
the Skpl/Cullin/F-box (SCF) E3 ligase via direct bind-
ing to Skpl, thereby regulating assembly and activity
of the SCF complex [127-129]. The client proteins of
Sgtl and the Skpl component of the SCF ligase share
similar sequence feature, the leucine-rich repeat (LRR)
domain that supports recognition and interaction with
the cochaperone Sgtl [130]. Recent studies also sug-
gested that Sgtl client proteins are often ubiquitylated
by SCF to facilitate their removal, although this regu-
latory function needs further experimental evidence
[125,131].
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Heat stress E3 ligases

Heat stress increases protein unfolding and acutely
overloads the cell with misfolded proteins. It has been
shown that heat shock primarily increases the ubiqui-
tylation of cytosolic proteins [132]. HECT ubiquitin
ligase 5 (Hul5) and Rsp5 have been identified in yeast
as major E3 ligases that regulate ubiquitylation and
proteasomal degradation of heat-induced misfolded
proteins [132,133]. Although degradation of many
unfolded yeast proteins depends on the Hsp70 (SSA1-
5) chaperones, Hul5 recognizes target proteins without
the help of these chaperones. It is a critical challenge
to discriminate between terminally or temporarily mis-
folded proteins and only target those for degradation
that cannot be refolded and used anymore. Hul5-
dependent ubiquitylation of terminally misfolded pro-
teins occurs when mono-ubiquitylated proteins are not
refolded for a longer time window. Hul5 directly asso-
ciates with the 19S RP of the proteasome where it acts
as an E4 enzyme elongating Ub chains on proteasome-
bound substrates [134-138]. UBE3C, the human
homolog of Hul5, is also a proteasome-associated E3
ligase which further ubiquitylates proteins that are dif-
ficult to degrade thereby assisting proteasomal degra-
dation [135,139,140]. The potential involvement of the
mammalian Hul5 homologs in heat stress-induced
PQC is not verified yet. In addition to Hul5, the yeast
Rsp5 and its mammalian homolog Nedd4 have major
roles in the removal of cytosolic misfolded proteins
upon heat stress [133] (Fig. 2B). Overexpression of
Rsp5 increases thermotolerance in yeast [141], which is
in agreement with its important role in response to
heat-induced damage. In contrast to HulS5, Rsp5/
Nedd4 uses a bipartite mechanism for recognition of
its cytosolic misfolded substrates. Upon heat stress,
Rsp5 associates with Hsp40 (Ydjl) cochaperone pro-
moting ubiquitylation and degradation of misfolded
proteins. On the other hand, Rsp5 can bind some of
its targets directly. These substrates typically contain
short stretches of amino acids, which are proline-rich
motifs (called the PY or PY-like) that confer binding
to the WW-domains of Rsp5 [133]. These motifs act as
degrons promoting heat stress-induced substrate—Rsp5
interaction.

Degradation of plasma membrane proteins

In contrast to cytosolic or ER proteins, plasma mem-
brane anchored or integral proteins are mainly
degraded by the endolysosomal degradation pathway
[142]. Proteotoxic stress dramatically changes the land-
scape of membrane proteins as a result of the
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endocytic removal of damaged proteins. Beyond its
role in removal of cytosolic heat-induced misfolded
proteins, Rsp5/Nedd4 has also been reported to target
misfolded plasma membrane proteins for lysosomal
degradation [143-145] (Fig. 2B). Furthermore, Rsp5 is
also involved in a range of cargo-sorting events within
the endosomal and Golgi transport pathway. In yeast,
arrestin-related trafficking adaptors (ARTs) enable
Rsp5 to specifically target a wide range of plasma
membrane proteins and initiate their endocytosis and
lysosomal degradation [144,146,147]. Defects of this
PQC pathway result in severe loss of plasma
membrane integrity.

Ribosome-associated quality control

Protein synthesis is a highly error-prone process. In
eukaryotic cells, a fraction of the newly synthesized
proteins is immediately degraded by the 26S protea-
some, indicating the existence of a strictly cotransla-
tional PQC to ensure elimination of aberrant proteins
[148]. The ribosomal Ltnl/Rkrl and Hel2 E3 ligases
together with the nonribosomal Ub ligases DoalO,
Hrdl and Hul5 mediate ubiquitylation and proteaso-
mal degradation of nascent proteins, which escaped
cotranslational folding control of newly synthesized
proteins directed by the ribosome-bound nascent
polypeptide-associated complex (NAC) chaperone
[148—151]. The recently described conserved PQC path-
way requires the yeast Ltnl Ub ligase, or its mam-
malian homolog Listerin, which directly associates
with ribosomes to specifically target newly synthesized
aberrant polypeptides expressing a translated polyA
tail [152]. Ltnl-dependent polyubiquitylation and sub-
sequent proteasomal degradation of nonstop proteins
is triggered by stalling them at the translation machin-
ery [153]. Ltnl/Listerin utilizes three cofactors for
binding to the ribosome and for processing the targets:
Tae2/NEMF, Rqcl/TCF25, and Cdc48/p97 (Fig. 2C).
Tae2 (NEMF) recognizes the stalled ribosomes and
recruits Ltnl to the 60S—peptidyl-tRNA complex,
which together with Rqcl enables binding of the
Cdc48/p97 Ub-selective chaperone [154,155]. Cdc48/
p97 mediates segregation/unfolding of ubiquitylated
substrates from the ribosomal complex and their pro-
teasomal degradation [156-158]. Tae2 (Rqc2) also
recruits an enzyme that generates chloramphenicol
acetyltransferase tail on aberrant nascent peptides,
which is crucial for induction of translational folding
stress response [159]. When Cdc48 is not recruited, the
Ltnl-Rcql-Cdc48 PQC pathway fails to initiate the
degradation of aberrant translation products arising
from ribosomes. Consequently, the chloramphenicol
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acetyltransferase-tailed ubiquitylated peptides localize
to aggregates, which are specifically associated with
Sis1, Sgt2, Ssal/2, and Hsp82 chaperones [160]. Hence,
Ltnl Ub ligase-driven PQC of ribosomal translation is
also essential in prevention of cytosolic aggregate for-
mation [161]. A recent study using a large set of model
substrates in yeast revealed that besides its role in
ribosomal PQC, Ltnl also mediates degradation of
substrates bearing different degradation signals (de-
grons) fused to their C terminus, suggesting a broader
role for Ltnl in cellular PQC [162].

E3-chaperone complexes in the
nuclear protein quality control

Although it is spared from folding burden of nascent
polypeptides, when it comes to the nucleus, the PQC
pathways face unique folding problems. PQC of the
nucleus should have rigorous control over the identity
and folding of nuclear membrane proteins as well as
chromatin-associated proteins [163]. The nuclear PQC
is exceptionally important because failure to repair or
remove misfolded nuclear proteins can lead to a deteri-
oration of the nuclear genome and mRNA integrity.
In addition, the nucleus is especially enriched in pro-
teins possessing low complexity and intrinsically disor-
dered regions [164]. Compared to regulation in the
cytosol, nuclear PQC is also governed by the coopera-
tive action of HSPs, molecular chaperones, associated
E3 ligases, and proteasomal degradation. In addition,
increasing evidence suggests that nuclear envelope
components are also degraded by autophagy [165,166].

Exposed hydrophobic protein stretches are key deter-
minants of nuclear quality control degradation pathways.
Sanl is a central PQC E3 ligase of the yeast nucleus,
involved in ubiquitylation and proteasomal degradation
of a wide range of misfolded nuclear and imported
cytosolic proteins [104] (Fig. 2D). Recognition of mis-
folded proteins by Sanl is triggered via surface exposure
of a few contiguous hydrophobic residues [167]. Lacking
Sanl, mammalian cells employ other nuclear PQC E3
ligases, such as UHRF2, which associates with and ubiq-
uitylates nuclear polyQ aggregates [168].

Asi protein ligase preserves the identity of the
inner nuclear membrane

The double-membrane-based nuclear envelope has cru-
cial function in providing compartmentalization for
the genomic DNA. As the outer nuclear membrane
(ONM) is contiguous with the ER, the quality control
of proteins localized in this membrane layer is gener-
ally performed by the ER-associated PQC systems. As
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such, E3 ligase complexes based on Hrdl and Doal0
drive ubiquitylation and proteasomal degradation of
the majority of misfolded ER proteins through the
yeast ERAD pathway [68,169-171]. The protein con-
tent of the inner nuclear membrane (INM) is distinct
from that of the outer layer and it is thought that
nuclear quality control mechanisms are in charge to
maintain its integrity. The INM is connected to the
outer membrane—ER system at the nuclear pores
which, in addition to restricting protein exchange
between the cytosol and nuclei, also regulates protein
transport from the ER membrane to the INM [172].
In yeast, the Ub ligase Asi complex consisting of Asil,
Asi2, and As3 is involved in the process that controls
promoter access of two transcription factors Sptl and
Spt2 [173,174]. Recently, Foresti et al. and Khmelin-
skii et al. found that the INM-localized Asi E3 ligases
regulate degradation of mislocalized proteins that are
not destined to INM, defining a novel PQC pathway
of the eukaryotic cell that maintains and safeguards
the identity of the INM [175,176]. Notably, ER mem-
brane bound Doal0 has been linked to ubiquitylation
of soluble and INM-associated nuclear proteins, by
recognizing hydrophobic patches of proteins exposed
to the nucleoplasm [177]. Doal0 targets proteins in an
Hsp70/Hsp40-dependent manner [178], and teams up
with Cdc48/p97 for proteasomal targeting of a subset
of its substrates [179,180].

Aggregation-prone proteins, such as the pathogenic
polyQ-exposing proteins, represent another major
threat for the nucleus. Guo and coworkers recently
described a dedicated nuclear team responsible for
recognition and removal of polyQ aggregates [181].
This interesting mechanism is based on the promyelo-
cytic leukemia protein (PML) that selectively recog-
nizes and interacts with the nuclear, misfolded polyQ
proteins and sumoylates them. In turn, the Ub ligase
RNF4 attaches polyubiquitin chains to the aggregates,
which targets them for proteasomal degradation. The
role of E3 ligase-associated chaperones in nuclear pro-
tein quality control is not as well established as in the
ER or cytoplasmic PQC. While Sanl might use Hsp70
chaperones for delivering cytosolic misfolded proteins
for nuclear degradation by the proteasome [107], chap-
erone partners of the Asi complex have not been
described yet.

Histone chaperone-E3 complexes safeguard
genome stability

In eukaryotic cells, the genomic DNA is packed by
histones, building a compact chromatin structure. His-
tone complexes act as spools as DNA winds up
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around them to form the basic structural elements of
the chromatin, the nucleosomes. Histone proteins
dynamically regulate chromatin structure to adapt its
activity status to the cellular demand [182]. Chro-
matin-bound histones appear to be very stable [183];
however, nonchromatin-bound histones are rapidly
degraded with a short half-life [184]. Degradation of
excess histones is essential because they interfere with
cellular viability and promote toxic effect leading to
genomic instability [185]. The yeast E3 ligases Toml,
Pep5, Snt2, Hell, and Hel2 are involved in ubiquityla-
tion and subsequent proteasomal degradation of sur-
plus histones, where Hell, Hel2, Snt2, and Pep5 works
together with the Asfl histone chaperone [186]
(Fig. 2D). Other histone chaperones such as FACT,
NAPI, HIRA, and DAXX are involved in histone
shuttling between the cytoplasm and the nuclei, as well
as histone deposition into and extraction from chro-
matin [187-190]. Notably, the histone chaperone
FACT cooperates with Pob3/Sptl6/histone 1 (Pshl)
E3 ligase that targets ectopically localized Histone3
(H3) variant CENP-A (Cse4) for degradation, to
maintain centromere identity, and to support proper
chromatin segregation, and genomic stability [191].
Recently, Han and coworkers described a novel
player in nucleosome maintenance, the mammalian E3
Ub ligase CuldAPPB! and its yeast homolog
Rtt101M™! [192]. Nucleosomes are dynamically
formed and disassembled in order to allow the gene
transcription and DNA replication machinery to
access distinct regions of the genomic DNA on a tem-
porally regulated fashion [182]. During nucleosome
assembly, the CuldAPPB! (Rtt101M™!) E3 ligase pref-
erentially binds to and ubiquitylates newly synthesized
Lys*-acetylated H3. This promotes H3 dissociation
from the Asfla or Asflb (Asfl) chaperone and facili-
tates its binding to downstream processing histone
chaperones, such as the mammalian CAF-1 for H3.1
or Daxx and HIRA for H3.3, to support nucleosome
formation. The Cul4 E3 ligase-driven histone hand-off
between chaperones does not lead to histone degrada-
tion, but it stands as an interesting example of the
nonproteolytic E3 ligase—chaperone role [192].

Conclusions and perspectives

Selective degradation of misfolded or aggregated pro-
teins is crucial for maintaining functionality of the cell.
PQC mechanisms are present at all steps of a protein’s
lifetime and specialized enzyme complexes safeguard
distinct steps of proteostasis processes. Molecular
chaperones are vital in the protein quality assurance
pathways recognizing the non-native proteins and

Chaperone-assisted E3 ligases in proteostasis

preventing their interference with the cellular func-
tions. To deliver damaged proteins to the cellular
degradation pathways, dedicated E3 ligases cooperate
with a variety of chaperones (Table 1). Environmental
threats, endogenous stress, and aging constantly chal-
lenge the cellular proteome, and ultimately affect
organismal viability. As we described above, eukary-
otic cells adopted various mechanisms to cope with
proteotoxic insults, which put pressure on their limited
protein folding capacity. The implications of the
eukaryotic proteostasis pathways in human disease are
far reaching, as failure of any components of the PQC
pathways could lead to disease [7].

It is commonly thought that an age-related impair-
ment of protein degradation affects general proteosta-
sis networks, causing enhanced accumulation of
damaged proteins that can be cytotoxic and shortens
lifespan [28,193-199]. During aging, the cellular pro-
teostasis network shows significant changes in expres-
sion, mainly causing an overall reduction in protein
synthesis, which reflects age-dependent remodeling of
an imbalanced proteome [200]. Progressive decline of
proteostasis can lead to the development of various
diseases [201]. An apparent consequence of PQC
downregulation is the appearance of various forms of
neurodegeneration. The formation of protein aggre-
gates is universally observed in about 30 different
human diseases [197,202-204]. Accordingly, the age-
dependent deposition of protein aggregates linked to
disturbed proteasomal degradation of misfolded pro-
teins is a major hallmark of neurodegenerative pro-
teinopathies such as AD, HD, or Parkinsons’s disease
[11,205]. Along with molecular chaperones, PQC E3
Ub ligases associate with dysfunctional proteins in dif-
ferent neurodegenerative disorders. CHIP for example
marks alpha-synuclein in PD [206], beta-amyloid in
AD [207], phosphorylated tau, mutant SOD1 aggre-
gates in amyotrophic lateral sclerosis (ALS) [75,208—
210], and polyQ aggregates in polyQ diseases
[211,212], for their proteasomal degradation. There-
fore, failure of chaperone-assisted degradation of these
misfolded proteins might aggravate various neurode-
generative disorders. Chaperone upregulation is widely
observed in different cancer types providing a cell with
increased protein folding capacity [213-215]. Such
deregulation in chaperone level may also lead to
impaired or to excessive recruitment of E3 ligases that
can significantly change the selectivity and pace of sub-
strate degradation. Hsp90 client proteins, including
various kinases, have been implicated in malignant
transformation [52]. Therefore, Hsp inhibition has
emerged as a central strategy in cancer treatment
[216,217].
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Although special E3 ligase—chaperone partners
involved in different PQC pathways have been identi-
fied, it is still far from being understood how much
these pathways overlap in target recognition and pro-
cessing, and how substrate selectivity is driven by the
chaperones or the E3 ligases involved. It is especially
interesting regarding the diverse cytosolic PQC path-
ways, where numerous E3—chaperone complexes work
in parallel. For instance, interaction of chaperones
with cochaperones could provide another layer of reg-
ulating the activity of chaperone—E3 ligase complexes.
While E3 ligases are continuously being identified, the
role of DUBs counteracting the activity of PQC E3
ligases is fairly unknown. Although their role in fine
tuning the ubiquitylation processes is well established,
only few DUBs have been assigned to PQC pathways
so far [218]. Tt would be also interesting to examine
the potential consequences of disturbed proteostasis on
the function of PQC E3 ligases and determine how the
imbalance in protein folding alters substrate process-
ing. Recent identification of the human chaperone net-
work supports the idea that tight temporal and spatial
regulation of the activity and abundance of chaperone
groups, and potentially of their cofactors, armors the
cell against specific challenges during aging. Therefore,
future characterization of tissue-, age-, or disease-spe-
cific chaperomes might reveal important mechanistic
insights into how E3 ligases team up with chaperones
to safeguard the proteome especially in multicellular
organisms. Future research on tissue-specific PQC
pathways and their role in tissue functionality will
enable therapeutic intervention strategies against age-
related protein aggregation diseases.
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