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Abstract

The haptophyte algae are a cosmopolitan group of primary producers that contribute significantly to the marine car-
bon cycle and play a major role in paleo-climate studies. Despite their global importance, little is known about carbon
assimilation in haptophytes, in particular the kinetics of their Form 1D CO,-fixing enzyme, Rubisco. Here we examine
Rubisco properties of three haptophytes with a range of pyrenoid morphologies (Pleurochrysis carterae, Tisochrysis
lutea, and Paviova lutheri) and the diatom Phaeodactylum tricornutum that exhibit contrasting sensitivities to the
trade-offs between substrate affinity (K,,,) and turnover rate (k.. for both CO, and O,. The pyrenoid-containing T. lutea
and P, carterae showed lower Rubisco content and carboxylation properties (K¢ and k°_,;) comparable with those of
Form 1D-containing non-green algae. In contrast, the pyrenoid-lacking P. lutheri produced Rubisco in 3-fold higher
amounts, and displayed a Form 1B Rubisco k°_,~K relationship and increased CO,/0, specificity that, when modeled
in the context of a C; leaf, supported equivalent rates of photosynthesis to higher plant Rubisco. Correlation between
the differing Rubisco properties and the occurrence and localization of pyrenoids with differing intracellular CO,:0,
microenvironments has probably influenced the divergent evolution of Form 1B and 1D Rubisco kinetics.

Key words: Algae, carbon-concentrating mechanisms, Haptophyta, pyrenoid, Rubisco.

Introduction

The CO,-fixing enzyme Rubisco (EC 4.1.1.39) evolved in the (2.5 Gya), atmospheric O, increased while the CO, concentra-
Archaean Eon when the atmosphere lacked O,, and CO, was tion declined (Canfield, 2005) (Fig. 1). The diminishing atmos-
estimated to be 50-fold higher than current levels (Berner and  pheric CO,:0, ratio negatively influenced Rubisco catalysis, as
Canfield, 1989; Berner, 2006; Tabita et al., 2008). With the evolu- its photosynthetic CO,-fixing function is competitively inhibited
tion of O,-producing photosynthesis around the early Proterozoic by O, to produce 2-phosphoglycolate (2-PG) (Tcherkez et al.,
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Fig. 1. Rubisco evolution and catalysis. Geological history of the past versus present atmospheric [CO,] (gray) and percentage atmospheric O, (%
v/v) (black; modified from Berner and Canfield, 1989; Badger et al., 2002; Whitney et al., 2011) highlighting the estimated appearance of key primary
producers (horizontal lines) (Yoon et al., 2002, 2004; Liu et al., 2010) their differing Form 1B or ID Rubisco lineages they produce, and the predicted
timing when algal carbon-concentrating mechanisms (CCMs; gray shading) evolved (Badger et al., 2002; Moritz and Griffiths, 2013).

2006; Whitney et al., 2011; Sharwood, 2017). Recycling of 2-PG
to 3-phosphoglycerate (3-PGA) by photorespiration consumes
energy and loses fixed CO,. A further limitation to Rubisco func-
tion in the modern atmosphere is a low affinity for CO, and a
slow catalytic rate that necessitates high Rubisco concentrations
to support adequate rates of photosynthesis (Reinfelder, 2011;
Whitney et al., 2011; Long et al., 2015; Sharwood et al., 2016b).

The catalytic limitations of Rubisco are exacerbated in
aquatic ecosystems due to restraints on aqueous CO, avail-
ability because of slow rates of gas diffusion in water (~10000
times slower than in air) and reliance on mixing of the water
column (Badger et al, 1998). In addition, increased par-
titioning of inorganic carbon to HCO;™ with higher pH in
aquatic systems diminishes aqueous CO, availability. There
is evidence of catalytic adaptation by Rubisco in algae to
the changing atmospheric CO, (and O,) conditions over
geological time scales (Young et al, 2012). Recent work,
however, showed that the characteristic faster CO, fixation
rates (k) and lower CO, affinities (i.e. higher K, for CO,;
K¢) observed in Form 1A and Form 1B Rubisco [e.g. in
Chlamydomonas with a pyrenoid-based CO,-concentrating
mechanism (CCM)] (Badger et al, 1998; Ghannoum et al.,
2005; Sharwood et al., 2016a) are not shared by diatom Form
1D Rubisco (Hanson, 2016; Young et al., 2016; see also Fig.
3A). This has led to calls for a more expansive analysis of
Rubisco’s natural kinetic diversity so that we can fully under-
stand the correlative interactions between specificity for CO,
as opposed to O, (Sco), kCeu» and K. The one-dimensional,
linear correlations previously proposed (Tcherkez ez al., 2006;
Savir et al., 2010) may actually vary with photosynthetic taxa
(Tcherkez, 2013, 2016; Hanson, 2016; Sharwood, 2017).

In photosynthetic organisms, the CCM arose multiple
times in response to a declining atmospheric CO,:0O, ratio as
a means to increase the CO,/O, environment around Rubisco
(Fig. 1). Data on the anatomical, biochemical, and genomic
detail for CCMs in vascular plants with C, and Crassulacean

acid metabolism (CAM) physiologies are highly detailed (von
Caemmerer and Furbank, 2016). The high CO, environment
reduces Rubisco oxygenation and the associated energy costs
of photorespiration, allowing the plant to work with lower
stomatal conductance and reduced amounts of Rubisco
(Sage et al., 2012). These features allow more efficient use of
water, nitrogen, and light, and permit these plants to survive
in more arid and nutrient-limited environments (Sage, 2002;
Ghannoum et al., 2005; Lara and Andreo, 2011; Long et al.,
2015). The CCM in plants also allowed Form 1B Rubisco to
evolve a higher K, at the expense of a higher K¢ (i.e. lower
CO, affinity) with little or no effect on S, (Sharwood et al.,
2016a, b). Curiously this k., —K trade-off is not shared by
Form 1D Rubisco from diatoms where relatively higher K
values have been retained as a consequence of other environ-
mental pressures (low nutrient and extracellular CO, availabil-
ity) that pose limitations to resource investment into Rubisco
(Young et al., 2016). It is likely that resources other than CO,,
such as nitrogen and light availability, have a strong influence
on CCM evolution and regulation (Raven ez al., 2008, 2012).

Understanding how microalgal Rubisco catalysis has dif-
ferentially evolved remains limited by our understanding of
the structural components and effectiveness of the CCM in
microalgae. The last few years have seen significant advances
in our understanding of CCM in the model freshwater green
alga, Chlamydomonas reinhardtii (Engel et al., 2015; Wang
et al, 2015; Yamano et al., 2015; Mackinder et al., 2016;
Mangan et al., 2016; Wang et al., 2016). To what extent this
knowledge is translatable to the CCM of the structurally dif-
fering and evolutionarily distinct marine microalgae (e.g.
diatoms and haptophytes) remains unclear (Bedoshvili ef al.,
2009; Hopkinson et al., 2011, 2013). Currently a completed
nuclear haptophyte genome is available for the Isochrysidale
Emiliania huxleyi (Read et al., 2013) and a draft genome for
the Prymnesiale Chrysochromulina tobin (Hovde et al., 2015).
Although less understood, the CCMs of marine microalgae are
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known typically to employ a pyrenoid, Rubisco activase, car-
bonic anhydrase (CA), and inorganic carbon (C;) transporters
to elevate CO, levels around Rubisco (Hopkinson ez al., 2011;
Reinfelder, 2011; Loganathan et al., 2016). The pyrenoid is a
proteinaceous body that appears electron dense when exam-
ined by TEM and contains most, sometimes all, of the cellular
Rubisco (Engel et al., 2015; Mackinder et al., 2016).

In C. reinhardtii, HCO; transport occurs via thylakoids and
C; transporters that work in association with pyrenoid CAs to
elevate CO, around Rubisco (Karlsson et al., 1998; Trimborn
etal.,2007; Lee et al., 2013; Wang et al., 2015; Yamano et al.,
2015). Physiological and genetic evidence in model diatoms
imply that HCO;™ is pumped into the chloroplast stroma and
diffuses into the pyrenoid where it is converted to CO, by CA
to elevate the [CO,] around Rubisco (Hopkinson et al., 2011,
2016). Recent identification of a thylakoid lumen-localized
CA in P, tricornutum further suggests that the pyrenoid-pene-
trating thylakoids probably provide an important CO, supply
within the pyrenoids (Kikutani et al., 2016).

What remains unclear is how the pyrenoid structure influ-
ences CCM efficiency. In C. reinhardtii, the pyrenoid contains
a starch sheath (Moroney et al., 2011; Engel et al., 2015) while
in diatoms it can comprise a lipid membrane (Bedoshvili

(A) Pyrenoid localization in the cell

et al., 2009), lack a delimiting structure (Bendif ef al., 2011),
vary in number and shape, and differ in the presence/struc-
ture of traversing thylakoids (Badger et al., 1998). To better
understand the relationships between Rubisco kinetics, con-
tent, and pyrenoid biology in marine microalgae, we have
expanded on our previous study of diatom Rubisco (Young
et al., 2016) to include three marine haptophytes that contain
bulging (Pleurochrysis carterae), immersed [Tisochrysis lutea,
formerly Isocrysis sp. strain CS-177 (Bendif et al., 2013)], or
no pyrenoid (Paviova lutheri) within their chloroplast and
varying numbers and location of pyrenoid-traversing thyla-
koids (Fig. 2A).

Materials and methods

Algae culturing

Cultures of the haptophytes P. lutheri (CS-182), P. carterae (CS-287),
T lutea [CS-177; original strain name Isochrysis sp. (Bendif et al.,
2013)], and the diatom, Phaeodactylum tricornutum (CS-29) were
obtained from the Australian National Algae Culture Collection
CSIRO  (https://www.csiro.au/en/Research/Collections/ ANACC)
and grown at 20 °C in 0.2 pm filtered and autoclaved seawater con-
taining /2 (Guillard and Ryther, 1962) or GSe (P, carterae; Blackburn
et al., 2001) nutrients, vitamins, and trace metals. The cultures were

Bulging pyrenoid

No pyrenoid Immersed pyrenoid

(B) Evidence for CCM

CCM parameter P. lutheri P. carterae T. lutea P. tricornutum

(1. galbana)

Pyrenoid No Yes (bulging) Yes (immersed) Yes (immersed)
Ci affinity affected by AZA or EZA n.m. AZA and EZA EZA EZA

CA activity stimulated in light n.m. n.m. Yes Yes
Cellular Ci pool increase n.m. n.m. 6 fold 5-6 fold
&6-CA detected No Yes Yes No

Fig. 2. Microalgae pyrenoid and CCM composition. (A) TEM images were compiled from the literature to represent the range of pyrenoids presented

in this. To represent a pyrenoid lacking Pavlovale, we use Pavilova viridis from Bendif et al. (2011) (Protist, 162, Bendif EM, Probert |, Hervé A, Billard C,
Goux D, Lelong C, Cadoret JP, Véron B. Integrative taxonomy of the Pavlovophyceae (Haptophyta): a reassessment, 738-761, ©2011, with permission
from Elsevier) as the TEM image clearly represents the lack of pyrenoid. Paviova lutheri is visualized in the same study; however, the TEM image does
not show the chloroplast (Ch) lacking a pyrenoid as clearly. TEM image of . carterae from Beech and Wetherbee (1988) [republished with permission
of the International Phycological Society from Observations on the flagellar apparatus and peripheral endoplasmic reticulum of the coccolithophorid,

Pleurochrysis carterae (Prymnesiophyceae), Beech PL, Wetherbee R, Phycologia 27, 1988; permission conveyed through Copyright Clearance Center,
Inc.] illustrates pyrenoids (Py) bulging toward the center of the cell, and the two species T. lutea (Bendif et al., 2014) (Journal of Applied Phycology,
Erratum to: On the description of Tisochrysis lutea gen. nov. sp. nov. and Isochrysis nuda sp. nov. in the Isochrysidales, and the transfer of Dicrateria to
the Prymnesiales (Haptophyta), 26, 2014, 1617, Bendif EM, Probert |, Schroeder DC, de Vargas C. With permission of Springer) and R tricornutum (Allen
et al., 2011) (Allen AE, Moustafa A, Montsant A, Eckert A, Kroth PG, Bowler C. Evolution and functional diversification of fructose bisphosphate aldolase
genes in photosynthetic marine diatoms. Molecular Biology and Evolution 2012, 29, 367-279, by permission of Oxford University Press) show pyrenoids
immersed within the chloroplast. (B) Summary of published experimental evidence for the presence of a CCM in the species with a pyrenoid. Evidence
for a CCM is detectable by: (i) inhibition of CO, assimilation by the impermeable acetazolamide (AZA) or membrane-permeable ethoxyzolamide (EZA)
CA inhibitors (Burns and Beardall, 1987; Okazaki et al., 1992; Badger et al., 1998; Hopkinson et al., 2013); (i) stimulation of CA activity following cell
illumination (Badger et al., 1998); (i) whether the intercellular C; pool is higher than the external environment (Badger et al., 1998); or (iv) the preliminary
detection of 6-CA using methods described in the Materials and methods.
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grown in polycarbonate culture flasks under 150 £ 50 pmol photons
m~ s illumination on a 16:8 h light:dark cycle.

Pyrenoid morphology and CCM characterization.

Details of pyrenoid morphology and estimates of C; and CA pools
for the microalgae were compiled from the literature (Manton and
Peterfi, 1969; Billard and Gayral, 1972; Green, 1975; Green and
Pienaar, 1977; Borowitzka and Volcani, 1978; Hori and Green,
1985; Badger et al., 1998; Bendif et al., 2011, 2013). A preliminary
screen for putative 6-CA genes was carried out using PCR. 6-CA isa
functional carbonic anhydrase, as demonstrated in vitro by Del Prete
et al. (2014) and Lee et al. (2013). It is regulated by CO,, and is thus
important in inorganic carbon acquisition (Lane and Morel, 20004).

Genomic DNA was extracted as described (Richlen and Barber,
2005) and candidate 8-CA genes were amplified by PCR using prim-
ers Afwd (5-GTTGGCGAGACGTACGAGGTGCACTGG-3")
and Arev (5'- GCGATCGACCTGCCAGGTGATGGG-3") that
were designed to the conserved C-terminal amino acid sequences
VGETYEVHW and PITWQVDR, respectively. The ~370 bp DNA
product amplified from P. carterae and Isochrysis galbana (for com-
parison with 7. lutea) was sequenced by Source BioScience (Oxford,
UK). Confirmation that the absence of 8-CA from our P. tricornu-
tum (strain CCAP1055/1 a monoclonal culture derived from a fusi-
form cell in May 2003 from strain CCMP632) was further supported
by analysis for 5-CA homologs within the fully sequenced genome
of P tricornutum (Bowler et al., 2008) and its predicted protein
products. Similarly, the absence of 6-CA was further confirmed by
a search of the Pavlovales sp. CCMP2436 (JGI) genome sequence.

A BLAST search of the genomes was carried out using the d-
CA protein sequence from Thalassiosira pseudonana (BAO52718)
and Thalassiosira weissflogii (AAV39532), both centric diatoms, and
Fragilariopsis cylindrus CCMP1102 (OEU11320), a pennate diatom,
as query sequences. The BLAST search yielded no hits. Together
with our PCR, we concluded that there were no 8-CA homologs
in this strain of P. tricornutum. A BLAST search was also carried
out on the genome of Pavlovales sp. CCMP2436 (JGI), an environ-
mental isolate using the 8-CA protein sequence from 7. pseudonana
(BA052718) and the haptophytes Emiliania huxleyi (ABG37687),
I galbana (EC146202, EC142695), and Chrysochromulina sp.
CCMP291 (KO021563, KO028292). Although this genome is not
fully curated and the culture has not been taxonomically described,
the preliminary search yielded no hits.

Rubisco extraction and kinetic assessment

Algal cells were harvested via centrifugation (2000 g for 10 min) and
the pelleted cells snap-frozen in liquid nitrogen and stored at —80 °C
until assay. The crude soluble cell extracts were obtained by ruptur-
ing cells using a French press as described previously (Young ef al.,
2016). As detailed in the same study, Rubisco content was quanti-
fied by ['*C]JCABP (2-carboxyarabinitol 1,5-bisphosphate) binding
within the crude extract and concentrations of soluble protein were
quantified using the Bradford assay against BSA. Rubisco catalytic
parameters: maximum carboxylation rate (k<) and half-saturation
constants for CO, and O, (K¢ and K, respectively) were measured
at 25 °C using '“CO, fixation assays employing crude extract that
had been activated for 10-15 min at 25 °C with 10 mM MgCl, and
10 mM NaHCOs;. The CO, concentrations in the '*CO, assays were
calculated using the Henderson—Hasselbalch equation and the
parameters detailed in (Sharwood et al., 2016a). Measurements of
Scio were made using Rubisco rapidly purified from ~1 g of pelleted
algal cells as described (Young et al., 2016).

Simulating the influence of microalgae Rubisco on Cs plant
photosynthesis

The carboxylase activity-limited assimilation rates were simulated
according to Farquhar et al. (1980) using the equation:

(Cc.sc ~0.5° )kcaf.B
A= - -
Cose + K(1+ %)

assuming a CO, solubility in H,O (s.) of 0.0334M bar™!, an O of
267 uM, a Rubisco content (B) of 20 pmol catalytic sites m™, and
a non-photorespiratory CO, assimilation rate (Ry) of 2 pmol m™
s”!. Under higher chloroplast CO, pressures (C,), the photosynthetic
rate becomes light- (or electron transport rate, ETR-) limited and is
modeled according to the equation:

(Cc.xc -0.5; )
A=~ -/
4(Cc.sC +i )

assuming an electron transport rate (J) of 150 pmol m2s'.

- R,

Results and Discussion

The differing pyrenoid morphologies within the
microalgae studied

A central objective of this study was to examine the corre-
lations between pyrenoid morphology, evidence of a CCM,
and the content and catalysis of Rubisco in microalgae.
As summarized in Fig. 2A, T lutea possesses a pyrenoid
immersed in the center of the plastid with 1-2 thylakoids
traversing the center of the pyrenoid (Bendif ez al., 2013;
Borowitzka and Volcani, 1978). In contrast, the pyrenoid
in P. carterae bulges out from the plastid toward the center
of the cell, with 5-6 continuous thylakoids traversing the
plastid and pyrenoid (Manton and Peterfi, 1969; Beech and
Wetherbee, 1988). Immersed versus bulging pyrenoids differ
in the location within the cell, relative separation from the
plastid (i.e. the presence of a lipid membrane has been sug-
gested from TEM observations), and the connectivity to plas-
tid thylakoids. A lipid membrane has been observed around
the immersed/semi-immersed pyrenoids of two other mem-
bers of the Isochrysidales—Chrysotila lamellosa (Billard and
Gayral, 1972; Green and Parke, 1975) and Isochrysis galbana
(Green and Pienaar, 1977). However, Bendif ez al. (2013) did
not detect a membrane around the pyrenoid of 7' lutea nor
has one been observed around pyrenoids of the bulging mor-
photype in any haptophyte species, including P. carterae. In
the Pavlovophyceae, the pyrenoids are often bulging towards
the exterior of the cell—albeit not in P. lutheri where no pyr-
enoid is apparent (Green, 1975; Burris, 1981; Bendif et al.,
2011). Phaeodactylum tricornutum was included in this study
and, like many members of the lineage, has pyrenoids that are
fully immersed within the chloroplast with 1-2 pyrenoid-tra-
versing thylakoids (Borowitzka and Volcani, 1978; Bedoshvili
et al., 2009) (Fig. 2A).

Experimental evidence for a CCM

A key component of a CCM is the enzyme CA that cata-
lyzes the rapid interconversion between CO, and HCOj;™. In
marine primary producers, the CA activity of a CCM is par-
ticularly beneficial for accessing CO, from the high oceanic
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HCO; concentrations. The effects of two CA inhibitors,
the membrane-permeable ethoxyzolamide (EZA) and the
relatively impermeable acetazolamide (AZA), are commonly
used to test for CCM activity (Okazaki et al., 1992). This is
undertaken by examining the influence of EZA and AZA on
the affinity of photosynthesis for plasma membrane-based
inorganic carbon (C;) (Okazaki et al, 1992; Badger et al.,
1998) and light-stimulated CA activity (Burns and Beardall,
1987).

Using modern cell biology tools, there have been significant
advances in understanding the CCM components in microal-
gae (Engel, 2015) which includes the discovery of novel CA
isoforms and their intercellular localization (Jin et al., 2016;
Kikutani et al., 2016). While a comparable detailed analysis
of haptophyte CCM components is beyond the scope of this
work, Fig. 2B summarizes the known CCM features in the
microalgae studied here. EZA treatment reduces the affinity
for C; in photosynthesis for the pyrenoid-containing 1. gal-
bana (as a proxy for T. lutea), P. tricornutum, and P. carterae
species, with the external CA inhibitor AZA also affecting
the C; affinity in P. carterae (Badger et al., 1998; Chen et al.,
2006; Hopkinson et al., 2013). We note that other diatoms
with fully immersed pyrenoids have been shown to be sensi-
tive to AZA (Hopkinson et al., 2013). The influence of EZA
or AZA on the photosynthetic carbon assimilation rate in
P, lutheri, the species lacking a pyrenoid, remains untested.
Similarly, the light-stimulated CA activity found in P, tricor-
nutum and T. lutea has yet to be examined in P. carterae and
P, lutheri (Fig. 2B). It is estimated that the CCMs associated
with immersed pyrenoids can increase intracellular C; pools
~6-fold higher than that permissible by passive diffusion (Fig.
2B (Burns and Beardall, 1987; Colman and Rotatore, 1995;
Badger et al., 1998).

The 9 isoform of CA (or TWCAL), whose expression in
the diatom T. weissflogii is modulated by extracellular CO,
levels (Morel et al., 1994; Lane and Morel, 2000a, b) and in
marine dinoflagellates functions as an external CA (Lapointe
et al., 2008), holds the potential as a key component of a
CCM in microalgae. The catalytic activity and inhibition of
0-CA demonstrate the functionality of the CA in the diatom
Thalassiosira pseudonana and the haptophyte Emiliania hux-
leyi (Soto et al., 2006; Lee et al., 2013; Del Prete et al., 2014).
Using sequence homology searches, we were able to detect -
CA homologs in genome data sets for P. carterae and T. lutea,
but not in P. tricornutum or P. lutheri (using the Pavlovale
sp. CCMP2436 genome as a proxy). Importantly the absence
of detectable sequence homology does not disqualify these
microalgae from producing 6-CA or alternative CA isoforms,
especially considering that new CAs are still being discovered
(Jin et al., 2016; Kitkanti et al., 2016). Indeed, a number of
other CA types are expressed in P tricornutum that include
one localized in the pyrenoid (Tachibana et al, 2011), an
extracellular CA (Hopkinson et al., 2013), and a 0-type CA
located in the thylakoid lumen (Jin et al., 2016). Our BLAST
search of the Pavlovale sp. CCMP2436 genome supports the
absence of a 8-CA in P, [lutheri; however, further investigation
is required (e.g. whether P. lutheri contains other forms of
CA). Overall, the existing evidence suggests that the presence

of a pyrenoid coincides with the presence and activity of CA
(Fig. 2B), consistent with their role in the microalgae CCM.

The carboxylation properties of haptophyte Rubisco

Form 1B Rubisco from organisms operating a CCM char-
acteristically show higher rates of maximum carboxylation
k€. and a reduction in CO, affinity (i.e. an increase in Kc)
than the Rubisco from their non-CCM relatives. For exam-
ple, the Rubisco from C, plants typically have a higher k<,
and higher K- than C; plant Rubisco (Sage, 2002; Savir
et al., 2010; Sharwood et al., 2016a, c; Tcherkez, 2016). As
shown in Fig. 3A, the K. diversity among Form 1B vascu-
lar plant Rubisco spans a limited range in values relative to
the Form 1D Rubisco from diatoms (Hanson, 2016; Young
et al., 2016). Moreover, the relationship between K. and
k€., at 25 °C for the Form 1D Rubisco differs from Form 1B
Rubisco (Fig. 3A).

For comparison of different CCM effectiveness on Rubisco
kinetics within organisms containing the 1D Rubisco, we
examined the kinetics of the Form 1D Rubiscos from freshly
lysed P carterae, T. lutea, and P lutheri cells. The Rubisco
activity in the cellular extract was stable at 25 °C for at
least 20 min following extraction (see Supplementary Fig.
S1 at JXB online). The CO,~Mg>" activation status of the
extracted Rubisco varied between 50% and 60%, compara-
ble with that seen in the cellular extract of diatoms (Young
et al., 2016). To ensure full activation of all eight catalytic
sites in each LgSg molecule, the cellular extract was incubated
for 10-15 min at 25 °C in buffer containing 10 mM MgCl,
and 10 mM NaHCO;, before assaying k., under varying CO,
concentrations by “CO, fixation. By this approach, the val-
ues of k., and K extrapolated from fitting the data to the
Michaelis—Menten equation were reproducible between repli-
cate cellular preparations (Table 1).

Significant kinetic diversity at 25 °C was observed among
each haptophyte Rubisco relative to P. tricornutum (model
diatom species) and Nicotiana tabacum (tobacco, model plant
Rubisco used in kinetic comparisons; Whitney et al., 2001;
Sharwood et al., 2016a, b) (Table 1). The k<., of P cart-
erae, P tricornutum, and tobacco were similar and each
~50% higher than those of 7. lutea and P. lutheri Rubisco.
Comparable levels of variation in K- were also observed
among the haptophyte Rubiscos (14.5-24.1 uM) that are
notably lower and spanning a smaller range than the K val-
ues of diatom Rubiscos (22-70 pM; Fig. 3A). This suggests
haptophyte Rubisco may experience a lower CO, microen-
vironment relative to diatoms. This is probably the case for
Rubisco in P lutheri that lacks a pyrenoid (Burris, 1981;
Bendif et al., 2011) and whose Rubisco has the lowest K- and
highest S¢o (i.e. a greater selectivity for CO, over O,; Table 1).

A correlative analysis of haptophyte Rubisco kinetics

A comparison of Rubisco kinetics of each haptophyte identi-
fied contrasting relationships when compared with the 25 °C
properties of Form 1B and 1D LgSg Rubisco from a range
of eukaryotic phototrophs (Fig. 3A-E; data compiled in
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Fig. 3. The diversity in the kinetic properties of haptophyte Rubisco at 25 °C. Comparative relationships between the kinetic properties measured in

this study for Rubisco from R, lutheri (Pl), P, carterae (Pc), T. lutea (Tl), the diatom P, tricornutum (Pt), and from tobacco (Tob) with those of other Form

1B and 1D Rubiscos (see key) as curated by Young et al. (2016). The plotted maximal carboxylation and oxygenation turnover rates (k. kK°..), relative
specificity for CO, over O, (S¢/0). and the Michaelis constants (K|,,) for CO, and O, (K¢, Ko) are from Table 1. Linear regressions are shown for the differing
(A) K°55—K and (B) k°4,—K relationships displayed for Form 1B and 1D Rubiscos. No statistically significant relationships were evident among correlative
analyses of (C) k., and k°.,; Kc or between (D) K and Ko. (E) An exponential relationship was apparent when comparing the kinetic trade-off between
Sco With KC, with the differing phylogenetic Rubisco groupings aggregated at differing positions along the gradient

Table 1. Rubisco kinetic parameters measured at 25 °C

SpeCies kccat (5_1) Kc (“M) Ko (FM) sc/o (ITIOl K021% oz kocat (5_1) kocat/KO (ITIM_1 CE
mol™) (uM) s™)
kccat/Kc (mM-1 kccat K021%02
s™) (mM's™)
Haptophytes
P, carterae 3.3+04 17.7+1.5 366 + 60 102 +1 30.6 0.7 1.8 186 108
T lutea 22 +0.1 241+05 800 + 55 89 +1 32.2 0.8 1.0 91 68
P, lutheri 25+0.1 145+1.6 1146 + 212 125+2 17.8 1.6 1.4 172 140
Diatom?
P, tricornutum 3.3+0.5 411 +13 664 + 54 116+ 2 57.6 0.5 0.7 80 55
C; plant®
N. tabacum 3.1+0.3 9.7 +0.1 283+ 15 81«1 18.9 1.1 3.9 319 164

CE, carboxylation eﬁioien}%/.
The rate of oxygenation (k°.) was calculated using the equation k°,=(k®..:xKo)/(KoxScio)xKs at 25 °C under ambient atmospheric O, levels;
K21%92 was calculated as Ko(1+[0,)/Ko) assuming an O, solubility of 0.00126 mol (I bar)™" and an atmospheric pressure of 1.013 bar resulting in
an [O,] value of 267 uM in solution.

Values shown are average of measurements from n>3 (+SD) biological repeat samples.

#Data from Young et al. (2016).

Supplementary Table S1). An examination of the Kk .,
relationship for ‘green’ Form 1B (vascular plants, CCM-

bisphosphate (RuBP) enolization energies and/or mecha-
nistic differences in their multistep carboxylation chemistry

positive green algae) and ‘non-green’ Form 1D (diatoms,
haptophytes, and red algae) Rubisco suggests they follow
differing trajectories (Fig. 3A). As suggested previously, this
might arise from lineage-dependent variation in ribulose

(Tcherkez, 2013, 2016; Young et al., 2016).

With regard to haptophyte Rubisco, the Kk, relation-
ship of P lutheri and P. carterae Rubisco appeared to align
more closely with Form 1B Rubisco (Fig. 3A). Consequently,
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their carboxylation efficiencies under both anaerobic
(kC./Kc) and ambient O, (k€. /K*'"0?) are higher than those
of T lutea Rubisco (Table 1) whose Kk, relationship
closely aligns with red algae and diatom Form 1D Rubiscos
(Fig. 3A), and lower carboxylation efficiency of P. tricornu-
tum Rubisco (Table 1). These findings suggest that there may
be differences in the CCM effectiveness between the bulging
pyrenoids in P. carterae relative to the immersed pyrenoids of
diatoms and 7. lutea. 1t also raises questions regarding how
differences in the CCM and/or cellular metabolism in phyto-
plankton with immersed pyrenoids have led to the evolution
of atypical Form 1D Rubisco kinetics.

Somewhat analogous to their differing Kk, relationships,
both Form 1B and 1D enzymes showed differing linear correla-
tions between K, and k°,, (Fig. 3B) but no identifiable corre-
lations between their k<, /k°,, (Fig. 3C) and K-/K, (Fig. 3D)
relationships. This finding is consistent with increasing experi-
mental evidence that changes in the carboxylation and oxygena-
tion properties are not coupled in an obligatory manner (Savir et
al.,2010; Whitney et al., 2011; Sharwood et al., 2016a; Sharwood,
2017). This unfastening of carboxylation and oxygenation has
enabled significant Rubisco kinetic diversity to have evolved
in nature, in particular with regard to CO,/O, selectivity (Sco)
whose correlative trade-off with k€, follows a diffuse exponen-
tial relationship (Fig. 3E; Sharwood, 2017) rather than the linear
response previously postulated (Tcherkez et al., 2006; Savir et al.,
2010). Within the k<, —Sc/o relationship, the haptophyte Rubisco
localizes in a region comparable with diatom Rubisco between
the high Scyo, low k<, of Form 1D red algae Rubisco and the
lower S¢o, higher k€, of Form 1B Rubisco (Fig. 3E).

Interpreting the differing O, sensitivities of haptophyte
Rubisco

While the CCMs of phototrophic organisms function to
elevate the CO,:0, ratio around Rubisco through increased
CO, supply, it is unclear how the ratio is dependent on
complementary mechanisms to lower O,. In many organ-
isms employing a CCM, the O,-generating components
are located away from Rubisco. For example, the Rubisco-
containing bundle sheath cell (BSC) chloroplasts in C, plants
within NADP-malic enxyme (NADP-ME) subtypes charac-
teristically lack the O,-evolving PSII complexes (Sage et al.,
2014; von Caemmerer and Furbank, 2016). Similarly, the thy-
lakoids traversing the pyrenoid of the red algae Porphyridium
cruentum lack PSII (McKay and Gibbs, 1990), while in the
dinoflagellate Gonyaulax polyedra during times of high car-
bon fixation the Rubisco is spatially relocated to pyrenoids
near the cell center away from the O,-evolving light-harvest-
ing reactions (Nassoury et al., 2001). Similarly in cyanobac-
teria, the carboxysomes localize to the cell interior away from
the PSII thylakoids lining the cell periphery (Liberton et al.,
2011). These strategies for spatially separating O, produc-
tion away from Rubisco appear to be key components of
the CCM. Unfortunately, measuring the O, concentration in
bundle sheath cell chloroplasts, cyanobacteria carboxysomes,
or inside the pyrenoid of algae remains an insurmountable
challenge.

As indicated above, the oxygenation properties of Rubisco
show significant natural variation. Drawing correlations
between their O, sensitivity (i.e. Ky) and CCM efficiency is
therefore quite challenging. An additional complexity is that
the extent of O, solubility is reduced by the highly proteina-
ceous matrix of pyrenoids, chloroplasts, and carboxysomes
(Tcherkez, 2016) and by the increasing pressures experienced
by microalgae down the water column. Interestingly the
higher K, of T lutea, P. tricornutum, and P. lutheri Rubisco
lend to limiting the influence of changing O, concentrations
on carboxylation efficiency relative to Rubisco from tobacco
and P carterae (Fig. 4). This implies that the variable O,
concentrations experienced by diatoms and haptophytes
within the water column might have influenced their Rubisco
kinetic evolution. Furthermore, pyrenoid morphology and
ultrastructure may also have influenced the evolved oxyge-
nase properties. For example, P. lutheri Rubisco exhibits a
low affinity for O, (Ko ~1150 pM), implying that its Rubisco
experiences higher O, concentrations than the Rubisco from
algae possessing immersed (e.g. 7. lutea, P. tricornutum, Kg
~650-800 uM) or bulging (P. carterae, Ko ~366 pM) pyre-
noids (Table 1).

These observations could be interpreted to suggest that
the pyrenoids, in particular those with a bulging morphol-
ogy, might be lowering the O, environment to augment the
CO,:0, ratio around Rubisco. Possibly internally bulging
pyrenoids may locate Rubisco closer to the reducing chem-
istry of the cytosol or the mitochondria and their respired
CO,. Other mechanisms for altering pyrenoid CO,:0, include
reducing thylakoid number within the pyrenoid, reducing
the O,-producing PSII activity (McKay and Gibbs, 1990),
or employing pyrenoid tubules for diffusion (Engel et al.,
2015). Challenging these hypotheses is the observed high Ko
(~2000 pM, indicating an insensitivity to O,) for Rubisco
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Fig. 4. The differential effect of O, on Rubisco carboxylation efficiency.
Variation in the response of carboxylation efficiency (CE; k°../Ko) to O,
levels (O) for Rubisco from tobacco (tob, vascular plant control), the diatom
P, tricornutum (Pt, dotted line), and the haptophytes P, lutheri (PI, solid

gray line), P carterae (Pt, solid black line), and T. lutea (Tl, dashed black
line). Lines were fitted to the equation CE=K®_,/{K-x[1+(O/Ko)]} using

the parameters listed in Table 1. Arrows indicate the differing O, levels in
fresh water and the ocean surface [assuming ~3.5% (w/v) salinity] at an
atmospheric pressure of 1.013 bar.
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from the pyrenoid-containing diatom Thalassiosira weissflogii
(Young et al., 2016) and that multiple thylakoids traverse the
pyrenoid of P. carterae, albeit with untested levels of PSII
activity (Manton and Peterfi, 1969).

The influence of a CCM on the Rubisco requirement in
haptophytes

A characteristic feature of the CCM in C, plants is that it
reduces the requirement for Rubisco, allowing for increased
nitrogen use efficiency (Ghannoum et al., 2005). In diatoms,
the Rubisco content was found to correlate with K¢, sug-
gesting that the allocation of resources into the enzyme may
depend on CCM efficiency (Young et al., 2016). For example,
the low K¢ of Rubisco from Phaeodactylum and Chaetoceros
diatom species correlated with increased investment in
Rubisco content, while in Thalassiosira and Skeletonema spe-
cies it was hypothesized that resources were instead allocated
to the CCM rather than Rubisco to saturate the enzymes low
CO, affinity (Young et al., 2016).

Among the three haptophyte species examined here, we
identified a negative relationship between increasing CO,
affinity (i.e. reducing K-) and increasing Rubisco content
(dashed line, Fig. 5). The trajectory of this relationship
poorly correlated with the Rubisco content and K of P. tri-
cornutum. While it is known that Rubisco content in dia-
toms can be influenced by growth stage (Losh et al., 2013),
our measurements comprised replicate algae samples from
cultures growing under non-nutrient limiting conditions
and resulted in reproducible measures of Rubisco content
(Fig. 5). While future experiments are aimed at examining
these properties from a wider range of microalgae species, it
is apparent that in the pyrenoid-lacking P. lutheri cells there
is ~3- to 4-fold higher investment of soluble cellular protein
in Rubisco (Fig. 5). Likewise, the Rubisco content in horn-
worts also shows a comparable correlation with the presence/
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Fig. 5. Rubisco content is reduced in pyrenoid-containing phytoplankton.
The Rubisco content (quantified by ['“CJCABP binding and expressed

as a percentage of the cellular soluble protein) in cells grown at 20 °C
under saturating nutrients was higher (11.4 + 1.2%) in the pyrenoid-
lacking P, lutheri cells relative to that in P carterae (3.0 = 0.8%), T. lutea
(8.5 £ 0.9%), and P, tricornutum (3.2 = 0.6%).

absence of pyrenoids (Hanson et al., 2002). Similarly, in C;
plants, Rubisco comprises a larger resource investment [25—
50% (w/w) total soluble protein] relative to C, plants where
the CCM and higher k€, reduces the amount of Rubisco
required [i.e. 8-15% (w/w) of the soluble cellular protein
(Ghannoum et al., 2005; Sharwood et al., 2016a, c)].

How suited is phytoplankton Rubisco to supporting
photosynthesis in C5 plants?

Improving the catalytic efficiency of Rubisco is a key target
for improving the rate of photosynthesis and growth in key
C; crops such as rice and wheat (Long et al., 2015; Sharwood
et al., 2016b). This has led to considerable interest in iden-
tifying whether the natural catalytic diversity of Rubisco
can be exploited to deliver improvements in crop Rubisco
performance. The faster Rubisco from Synechococcus
PCC7942 (cyanobacteria) and the photosynthetic bacte-
rium Rhodospirillum rubrum are not able to support faster
C; plant growth, even under elevated CO,, due to their low
carboxylation efficiencies under ambient O, (k<. /K:>'"9?)
and their low S¢o (Sharwood, 2017). In comparison, the
higher k<, /K:*'"°% and S¢o of the Form 1D Rubisco from
Griffithsia monilis (filamentous red algae) would support
faster rates of photosynthesis in C; crops with the potential
to improve productivity by up to 30% (Long et al., 2015).
Realizing this benefit is impeded by the incompatible assem-
bly requirements of Form 1D Rubisco in plant chloroplasts
(Whitney et al., 2001). Nevertheless, it is hoped solutions to
improving crop Rubisco may be achieved through increased
understanding of natural kinetic diversity among all Rubisco

tobacco P. lutheri P.carterae P.triconutum T. lutea

30 T T T T 30
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Fig. 6. The varying potential of phytoplankton Rubisco in a Cs leaf. The
influence of each Rubisco analyzed in Table 1 on CO, assimilation rates
(A) at 25 °C in a Cj leaf as a function of C, was modeled according to
Farquhar et al. (1980) as described in the Materials and methods. For the
tobacco Rubisco, the photosynthetic rate became light limited (indicated
by 1*) at C,>320 pbar.
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forms (Whitney et al, 2011; Sharwood, 2017). We there-
fore used the modeling approach of Farquhar ez al (1980)
to simulate how each microalga would influence C; photo-
syntesis under varying chloroplast CO, concentrations (Cy;
Fig. 6). The low k€, /K*""©? of T lutea (and P. tricornutum)
Rubisco (Table 1) impeded their simulated effect on C; pho-
tosythesis at 25 °C. In contrast, the high S¢ of P lutheri
Rubisco improved the simulated photosynthetic rates relative
to tobacco Rubisco under low C, but not above 150 pbar of
CO, due to its lower k€, and k<. /K:>'"°? (Table 1). This
finding suggests hat future kinetic surveys to identify micro-
algae Rubisco better suited to operating in C; plant chloro-
plasts might best focus on microalgae that lack a pyrenoid
and a CCM.

Conclusions and future directions

Due to their importance at the base of the marine food
chain, global biogeochemical cycling, and interpretation
of paleo-chemical signals in marine sediments, it is essen-
tial that we better understand the diversity and function of
the algae CCMs. In this pilot study, we provide preliminary
evidence for correlations between Rubisco content, kinetics,
and pyrenoid morphology within the chloroplast of differ-
ent haptophytes and the diatom P. tricornutum. Recent work
has highlighted the lack of knowledge on the components
and variable efficiency of the CCM across environmentally
important microalgae (Hanson, 2016; Hopkinson et al.,
2016; Young et al., 2016). Previous models of the algal CCM
relied on correlations with distant photosynthetic organisms
and limited Rubisco kinetic data. Elucidating the diversity
and biological relevance of CCMs in these species will pro-
vide the groundwork necessary for understanding primary
production in the world’s oceans.

Our study provides evidence for the potential to use the
binding affinities of Rubisco as a probe to gauge the intracel-
lular CO,:0, ratio around Rubisco and which might include
an oxygen exclusion function by the pyrenoid. Future cor-
relative analyses of Form 1D and Form 1B Rubisco kinetics
from microalgae lacking pyrenoids and with differing pyr-
enoid morphologies are needed to yield a more robust func-
tional understanding of the intrapyrenoid microenvironment
and the natural diversity in carbon fixation in both terrestrial
and aquatic ecosystems. Although challenging to measure,
these Rubisco analyses are essential for understanding both
(1) the different evolutionary histories of Form I Rubisco
whose kinetics appear to have divergently evolved and (ii) the
extent to which the competing carboxylation and oxygenation
properties can be decoupled. Refining the existing assump-
tions about diversity and trends in photosynthetic evolution
are paramount. Included in such endeavors are whether the
non-canonical correlation between K. and k©,, is limited to
Form 1D Rubisco from microalgae with immersed pyrenoids
(Fig. 3A), if resource allocation to Rubisco is elevated in spe-
cies with a less effective CCM (Fig. 5), and to what extent
increases in k€, /K>, Sco, and Ky, (i.e. a reduced O, sen-
sitivity) can be used as a proxy to gauge the effectiveness of
microalgae CCMs.

Supplementary data

Supplementary data are available at JXB online.

Fig. S1. Measurement of Rubisco activation status and sta-
bility in vitro at 25 °C.

Table S1. Rubisco kinetics at 25 °C as shown in Fig. 3.
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