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satellite remote sensing how it is faring and what can be done to efficiently mitigate further biodi-
versity loss and the associated loss of ecosystem services are at an all-time
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structural and compositional features of ecosystems despite growing evidence
that ecosystem functions are key to elucidating the mechanisms through
which biological diversity generates services to humanity. This monitoring
gap can be traced to the current lack of consensus on what exactly
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ecosystem functions are and how to track them at scales beyond the site
level. This contribution aims to advance the development of a global biodi-

versity monitoring strategy by proposing the adoption of a set of definitions
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and a typology for ecosystem functions, and reviewing current opportunities

and potential limitations for satellite remote sensing technology to support
the monitoring of ecosystem functions worldwide. By clearly defining ecosys-
tem processes, functions and services and their interrelationships, we provide

doi: 10.1002/rse2.59

a framework to improve communication between ecologists, land and marine

managers, remote sensing specialists and policy makers, thereby addressing a

major barrier in the field.

Introduction

Biodiversity is in crisis, as wildlife populations decline
(McCauley et al. 2015; WWF Living Planet Report 2016),
species extinction rates surge (Ceballos et al. 2015; Alroy
2015; Webb and Mindel 2015), and ecosystems fragment,
degrade and collapse (Valiela et al. 2001; Hansen et al.
2013). To halt further depletion of the Earth’s biological
diversity and avoid detrimental impacts on human well-
being (Millennium Ecosystem Assessment 2005), there is
an urgent need not only to improve our ability to track
changes in biodiversity and the pressures affecting it (Hal-
pern et al. 2008; Pettorelli et al. 2014), but also to further
our understanding of the relationships between biodiver-
sity and ecosystem services (Geijzendorffer and Roche
2013; Harrison et al. 2014). Key to elucidating the mecha-
nisms through which biological diversity generates ser-
vices to humans is the concept of ecosystem functions
(Duncan et al. 2015).

What ecosystem functions are and how they relate to
biodiversity has been subjects of debate for decades, due
partly to much confusion over definitions (Paterson et al.
2012; Roe et al. 2013). Biodiversity, as defined in the
seminal paper by Noss (1990), possesses three primary
attributes — composition, structure, and function — which
can be tracked at multiple levels of biological organiza-
tion, from ecosystem to population/species and genetic.
This definition, which underpins the definition adopted
by the United Nations Convention on Biological Diversity
(CBD), makes it clear that biodiversity is a fundamentally
multidimensional concept that includes ecosystem func-
tions (Culman et al. 2010).

Interestingly, ecosystem functions are rarely measured,
particularly over large areas, with biodiversity monitoring
as a whole having historically been primarily based on
structural and compositional features of the observed sys-
tems, rather than functional features (Callicott et al. 1999;
Magurran 2004; Schroter et al. 2016). Past attempts to
measure ecosystem functions have indeed been primarily
undertaken at relatively small spatial extents, and can be
grouped into four broad categories, namely: (i) proxy-

based monitoring based on population and species data
(Drever et al. 2008; Kehinde and Samways 2012), (ii)
process-based monitoring (such as using primary produc-
tivity to track changes in pollination; Werling et al.
2014), (iii) proxy-based monitoring based on genetic
information (such as determining functional connectivity
of populations; Braunisch et al. 2010) and (iv) trait-based
monitoring [assuming either that high trait or functional
diversity is a proxy for good ecosystem functioning (see
e.g. Moretti and Legg 2009) or that dominant trait values
determine the rates of functions (see e.g. Queirés et al.
2013; Solan et al. 2004)]. Most ecosystem assessments
and conservation efforts then fail to account for functions
due to a perceived lack of adequate spatial data to map
these features (Tulloch et al. 2016), instead relying on
species and structural data as surrogates for processes.

This reliance on compositional and structural features
to track changes in ecosystem functions, as well as the
current inability to map multiple functions across broad
scales not only hampers our ability to expand our under-
standing of biodiversity-ecosystem services relationships,
but also hinders the development of conservation man-
agement strategies (e.g. no-net loss strategies), impairs
environmental impact assessments and limits our compre-
hension of what sustainable development should take into
consideration (Fuhlendorf et al. 2006; Kollmann et al.
2016). Ecosystem functions may indeed sometimes
respond more quickly to environmental change than
structural or compositional attributes (McNaughton et al.
1989; Milchunas and Lauenroth 1995), and as such, could
be among the most sensitive indicators of change when
monitoring ecosystems globally (Daily et al. 2009; Haines-
Young et al. 2012; Koschke et al. 2012).

Despite extensive discussion of the need for coordi-
nated monitoring of ecosystem functions (Oliver et al.
2015), the practical implementation of such an approach
is still lacking. Progress to recognize and fill this biodiver-
sity monitoring gap has, however, been made in the past
10 years. Notably, the Red List of Ecosystems assessments,
which are based on a set of criteria for performing evi-
dence-based assessments of the risk of ecosystem collapse,

2 © 2017 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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explicitly refer to the monitoring of ecosystem function-
ing (Keith et al. 2015). However, assessments undertaken
thus far have highlighted the relative lack of data on
ecosystem functioning, with 50% of them not assessing
functional criteria (L. Bland, pers. comm.). In parallel to
this, the Group on Earth Observations — Biodiversity
Observation Network (GEO BON) developed a frame-
work for biodiversity monitoring based on the concept of
essential biodiversity variables (EBVs) (Pereira et al.
2013), which includes a class for ecosystem functions.
However, so far no scientific consensus has been reached
on what exactly ecosystem functions are and how to track
them at scales beyond the site level; this lack of clarity
has hampered progress in terms of identifying opportuni-
ties for ecosystem function monitoring globally.

To address these gaps, we propose the adoption of a
set of definitions and typology for ecosystem functions
relevant to both terrestrial and marine ecologists, build-
ing on previous efforts to identify and monitor ecosystem
functions (Petter et al. 2012; Meyer et al. 2015). Because
satellite remote sensing is the only methodology currently
able to provide global coverage and continuous measures
across space at relatively high spatial and temporal reso-
lutions (Skidmore et al. 2015; Pettorelli et al. 2016), we
subsequently provide an up-to-date perspective on the
current and future prospects of satellite remote sensing
for monitoring ecosystem functions in both the terrestrial
and marine realms, reviewing established products, high-
lighting new developments that have the greatest poten-
tial to make a difference to practitioners and policy
makers, and discussing potential limitations. We con-
clude by stressing opportunities for the proposed moni-
toring framework to inform relevant global policy
initiatives.

Agreeing on What Ecosystem
Functions Are

Ecosystem processes, ecosystem functions
and ecosystem services

Ecosystem functions mean different things to different
people. Multiple definitions of ecosystem functions can
indeed be found in the literature and the term is often
used synonymously with ecosystem services (Srivastava
and Vellend 2005; Lamarque et al. 2011), ecological pro-
cesses (Lawton and Brown 1993) and ecosystem processes
(Dominati et al. 2010; Mace et al. 2012; see Table 1). Yet
without agreement on what ecosystem functions are
(Table 1), progress on our ability to monitor them is
likely to be slow and erratic.

To help identify an implementable framework for the
monitoring of ecosystem functions globally, we here

Satellite Remote Sensing of Ecosystem Functions

suggest adopting the following definitions of ecological
processes, ecosystem processes, ecosystem functions and
ecosystem services, which are applicable across all ecologi-
cal realms and integrate these concepts into a common
framework consistent with Noss’ (1990) definition of bio-
diversity (Fig. 1). Specifically, we considered three criteria
to select appropriate definitions of these terms, namely (i)
the proposed definitions should clearly separate functional
and structural/compositional properties of ecosystems; (ii)
they should clearly distinguish between organism- and
ecosystem-level properties; and (iii) they must allow inte-
grating all concepts (i.e. ecological processes, ecosystem
processes, ecosystem functions and ecosystem services) in
a common framework.

An overview of existing definitions of ecological pro-
cesses, ecosystem processes, ecosystem functions and
ecosystem services are provided in Table 1, together with
the rationale behind retaining or rejecting a given defini-
tion. Based on this approach, we here define ecological
processes as activities that result from interactions among
organisms and between organisms and their environment,
following Martinez (1996). Examples of ecological pro-
cesses thus include competition, herbivory, carnivory and
photosynthesis. Ecosystermn processes are then understood as
transfers of energy, material, or organisms among pools
in an ecosystem, following the definition introduced by
Lovett et al. (2006). Examples of ecosystem processes
include primary production, decomposition, hetero-
trophic respiration and evapotranspiration. Similarly, we
propose to adopt the definition of ecosystem functions put
forward by Lovett et al. (2006), which states that ecosys-
tem functions are attributes related to the performance of
an ecosystem that are the consequence of one or multiple
ecosystem processes. Specifically, we understand ecosys-
tem functions as the direct and indirect benefits of
ecosystem processes for a range of species, including
humans. Under this definition, examples of ecosystem
functions include nutrient regulation, food production
and water supply. Ecosystem services are finally defined as
the benefits human populations derive, directly or indi-
rectly, from ecosystem functions, following the definition
introduced by Costanza et al. (1997). Examples of ecosys-
tem services include food (refers to any nutritious sub-
stance that people, and/or other species that people value,
eat to maintain life and growth, such as game, fish, crop)
production, raw material production (referring here to
raw material that people use, such as skin, fuel wood,
fodder), carbon sequestration, recreational experience and
cultural services. The key distinction between ecosystem
functions and services, as noted by Petter et al. (2012), is
that functions can have both intrinsic and potential
anthropocentric values, while services are defined only in
terms of their benefits to people.

© 2017 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 3
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Table 1. Coexisting definitions pertinent to the concepts of ecological processes, ecosystem processes, ecosystem functions and ecosystem

services.
Concept Definition Reference Benefit/Drawback
Ecological  Activities that result from interactions among Martinez (1996) This definition separates organism level
processes  organisms and between organisms and their processes from ecosystem level processes
environment
An interaction among organisms; ecological processes Mace et al. (2012) Incomplete: ecological processes should also
frequently regulate the dynamics of ecosystems and include interactions between organism and
the structure and dynamics of biological communities their abiotic environment, since these have an
important impact on organism-level attributes
(such as survival)
Ecosystem  Transfer of energy, material, or organisms among Lovett et al. (2006) Clearly excludes organism-level processes;
processes  pools in an ecosystem does not refer to stocks of materials
Complex physical and biological cycles and interactions ~ Brown et al. (2007) Vague; fails to establish the distinction between
that underlie what we observe as the natural world ecological and ecosystem processes
Changes in the stocks and/or flows of materials in an Mace et al. (2012) Fails to establish the distinction between
ecosystem, resulting from interactions among ecological and ecosystem processes
organisms and with their physical-chemical
environment
Ecosystem  Refer variously to the habitat, biological or system Costanza et al. (1997)  Vague: fails to establish the distinction between
functions properties or processes of ecosystems ecosystem functions and ecosystem processes
Ecosystem processes and ecosystem stability Bengtsson (1998) Fails to establish the distinction between
ecosystem functions and ecosystem processes
Stocks of energy and materials (e.g. biomass), fluxes of  Pacala and Kinzig Subsumes ecosystem structure (‘stock’) under
energy or material processing (e.g. productivity, (2002) the concept of ‘function’; fails to establish the
decomposition), and the stability of rates or stocks distinction between ecosystem functions and
over time ecosystem processes
The capacity of natural processes and components to De Groot et al. (2002)  Fails to establish the distinction between
provide goods and services that satisfy human needs, ecosystem functions and ecosystem services
directly or indirectly
Attributes related to the performance of an Lovett et al. (2006) Explicitly relates the concept of ecosystem
ecosystem that is the consequence of one or of processes to ecosystem functions
multiple ecosystem processes
The subset of the interactions between biophysical Kumar (2010) Conflates structural and compositional
structures, biodiversity and ecosystem processes that attributes of biodiversity (‘stocks’) with
underpin the capacity of an ecosystem to provide functional aspects (‘fluxes’)
ecosystem services
The ecological processes that control the fluxes of Cardinale et al. (2012) Fails to establish the distinction between
energy, nutrients and organic matter through an ecosystem processes, ecological processes and
environment ecosystem functions
The energy, matter, and information fluxes linking Meyer et al. (2015) Fails to establish the distinction between
ecosystem compartments ecosystem processes and ecosystem functions
The biological underpinning of ecosystem services Oliver et al. (2015) Vague; does not clearly separate function from
structure
Ecosystem  The conditions and processes through which natural Daily (1997) Vague; the relationship between ecosystem
services ecosystems, and the species that make them up, functions and services is unclear
sustain and fulfil human life
The benefits human populations derive, directly Costanza et al. (1997) Provides a clear link to ecosystem
or indirectly, from ecosystem functions functions
The benefits people derive from ecosystems Millennium Ecosystem Vague; the relationship between ecosystem
Assessment (2005) functions and services is unclear
Ecosystem services are the aspects of the ecosystems Fisher et al. 2009 Vague; the relationship between ecosystem
utilized (actively or passively) to produce human well- functions and services is unclear
being
Direct and indirect contributions of ecosystems to TEEB (2010) Vague; the relationship between ecosystem
human well-being functions and services is unclear
(Continued)
4 © 2017 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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Table 1. Continued.

Concept Definition Reference Benefit/Drawback
Outputs of ecosystem processes that provide benefits Oliver et al. (2015) The relationship between ecosystem functions
to humans (e.g. crop and timber production) and services is unclear
Those functions and products of an ecosystem that Meyer et al. (2015) Definition not as well-known as that of
directly or indirectly benefit humans. Often ecosystem Costanza et al. 1997, but does not contradict
functions are considered a service when they can be it

attributed an economical value

The definitions adopted for our framework appear in italic bold.

Heterotrophic
respiration

Evapo-
transpiration/
autotrophic
respiration

W 4 L

Consumers

Decomposers

Organic product
assimilation
Competition

Herbivory
Camivory
Competition

Primary
production

Primary producers

Decomposition

Photosynthesis
Organic and
inorganic product
assimilation
Competition

Ecosystem
functions

Ecosystem
component

Ecological
process

Human
values

Ecosystem
process

Figure 1. Simplified representation of the links between ecological processes, ecosystem processes, ecosystem functions and ecosystem services.
Decomposers, consumers and primary producers represent the main pools of a given ecosystem. Ecological processes mostly occur within each
pool; examples of ecological processes are listed under each pool. Ecosystem processes capture the transfer of energy, material, or organisms
among pools; examples of ecosystem processes appear in circles. Ecosystem functions represent attributes related to the performance of an
ecosystem; they are the consequence of one or of multiple ecosystem processes. Finally, ecosystem services are those elements of ecosystem
functions that benefit people.
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Introducing a typology of ecosystem
functions

Although the concept of ecosystem function is not new
(Odum 1969), only recently have attempts been made to
identify and classify ecosystem functions. The first
attempt to comprehensively identify and classify ecosys-
tem functions can be traced to de Groot and colleagues
in 2002; their list has been used by many as a starting
point for establishing monitoring protocols for ecosystem
functions and ecosystem services (see e.g. Wallace 2007;
Petter et al. 2012). The main issue with this original clas-
sification is the confusion between ecosystem functions
and ecosystem services, which led de Groot and colleagues
to include ‘information functions’, such as aesthetic infor-
mation, recreation, cultural and artistic information, spir-
itual and historic information, as well as science and
education, in their typology of ecosystem functions. De
Groot et al.’s typology was later refined by others, includ-
ing Petter et al. (2012), who identified 19 terrestrial
ecosystem functions. This typology is particularly relevant
to developing an implementable global monitoring frame-
work for ecosystem functions, as it was used by the
authors to map these individual functions for the South
East Queensland region in Australia. However, it does
mention the existence of a cultural function, which
reflects the interests of the authors in using ecosystem
function mapping as a way to derive information about
spatial variation in ecosystem services for this region.
Because this cultural function was clearly based on
anthropocentric values, it does not fit our definition of
ecosystem functions. In the marine realm, typologies of
ecosystem functions are also rarely discussed. One excep-
tion is the work by Boero and Bonsdorft (2007) who dis-
tinguished three broad groups of functions based on basic
cycles of matter and energy, namely (i) extraspecific cycles
(biogeochemical cycles), (ii) intraspecific cycles (life cycles
and histories), and (iii) interspecific cycles (food webs).
However, their definition of ecosystem functions does not
distinguish between organism- and ecosystem-level pro-
cesses.

We here propose a new ecosystem function typology,
which broadens the definitions of the candidate functions
identified by Petter and colleagues in 2012, making them
relevant to all ecological realms. This new typology lines
up with the widely accepted Millennium Ecosystem
Assessment typology for ecosystem services (MEA 2005),
thus allowing clear links between the two frameworks.
Because we vetted our list against Lovett et al. (2006)’s
definition of ecosystem functions (Table 2), our proposed
typology excludes cultural functions (as they are ecosys-
tem services), and thus only distinguishes 18 ecosystem
functions, which are all shaped by different ecological and

N. Pettorelli et al.

ecosystem processes (Table 2). These 18 functions can be
broadly classified into regulating functions (which control
the magnitude of ecosystem processes, such as climate
regulation and biological control), provisioning functions
(which provide all organisms with the resources necessary
for their survival and reproduction, such as water supply
and provision of food), and supporting functions (which
underpin the continued functioning of the ecosystem,
such as the formation and retention of soil and sediment,
and pollination/larval and seed dispersal). A definition of
each of these functions, as well as examples of ecological
and ecosystem processes that underpin the delivery of
these functions can be found in Table 2 and Figure 2.

Satellite Remote Sensing of
Ecosystem Functions

Opportunities

A wealth of methods is currently available to monitor vari-
ous ecosystem functions that rely on the collection of field
data (Meyer et al. 2015); however, on their own, none can
realistically be scaled up to reach global coverage on a regu-
lar (daily, weekly, monthly) basis. For example, Steenweg
et al. (2017) suggest a framework for global monitoring of
biodiversity with large-scale camera networks but major
limitations include inconsistent metadata, data access,
intellectual property and privacy considerations. Satellite
remote sensing measurements, on the other hand, are
widely accessible, and offer a relatively inexpensive and ver-
ifiable means of deriving complete spatial coverage of envi-
ronmental information for large areas at different spatial
and temporal resolutions in a consistent manner (Pettorelli
et al. 2014), holding great potential for tracking changes in
ecosystem functions (Cabello et al. 2012; Nagendra et al.
2013; Pettorelli 2013).

An agreed methodology for satellite remote sensing of
ecosystem functions could offer many opportunities to
advance ecology and conservation, allowing, for example,
to test emerging theories and unveil the processes shaping
the impacts of anthropogenic threats on biodiversity more
rapidly. For example, selective defaunation of tropical for-
ests from bushmeat hunting can lead to loss of above-
ground biomass, reduced forest carbon sequestration and
impacts on climate regulation (Jansen et al. 2010). Tradi-
tionally, these processes would be measured in the field
(Camargo-Sanabria et al. 2015) at great expense (e.g.
using plot-based tree censuses) but at scales that might
not suffice to distinguish between changes in above-
ground biomass and carbon storage (Harrison et al
2013). In situations like this, the ability to track changes
in these functions across broad regions using satellite data
could enable more rapid detection of potential secondary

6 © 2017 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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Satellite Remote Sensing of Ecosystem Functions

Table 2. Continued.

Examples of underpinning

Ecosystem processes

Ecological processes

Description

Function

Type

Primary production

Herbivory

Self-maintaining diversity of organisms developed over evolutionary time (capable of

Production of

Secondary production

Predation

continuing to change)

genetic resources

Competition

Primary production

Root zone competition

Erosion

Role of vegetation root matrix and soil biota in soil/sediment retention

Soil/sediment retention

Supporting

Decomposition

Organic and inorganic product

Role of biota in transport, storage and recycling of organic and inorganic wastes

Waste treatment

Hypertrophication

assimilation
Filter feeding

Predation

(defined here as by-products generated by a given set of organisms)

and assimilation

Primary production

Role of biota in movement of floral gametes and seeds, or aquatic/marine spores,

Pollination/dispersal

Herbivory

eggs and larvae

(of seed and larvae)

Nectarivory

Primary production

Coral reef calcification

Vegetation/structures impedes the movement of airborne and waterborne

Barrier effect of

substances such as particulate matter, dust and aerosols (including agricultural

chemicals and industrial and transport emissions), enhances air mixing and

mitigates noise
Facilitation of soil/sediment formation processes

vegetation/coral
structures

Primary production
Decomposition

Biological weathering of rocks

Sediment trapping

Soil/Sediment formation

N. Pettorelli et al.

effects of defaunation on tropical forest functions, allow-
ing for more targeted field data collection and faster
development and implementation of effective manage-
ment actions (Osuri et al. 2016; Peres et al. 2016).

As with most conceptual frameworks that inform our
understanding of the natural world (Stephens et al. 2015),
ecosystem functions ultimately relate to entities that can
be hard to measure directly and are the result of multiple
ecosystem processes (Table 2; Fig. 2). Hence, the moni-
toring a given ecosystem function will mostly depend on
the tracking of many relevant indicators. Table 3 provides
a non-exhaustive list of open-access satellite remote sens-
ing products that could contribute to the dynamic, global
monitoring of ecosystem functions: as one can see, a
range of ecosystem function indicators is already well
supported by existing products (Table 3). In addition,
upcoming satellite missions will increase the level of detail
and accuracy with which we can map ecosystem func-
tions, as well as opening new monitoring opportunities
(Table 4). The Sentinel missions in particular could
become a game changer for comprehensive global ecosys-
tem function monitoring, since they (i) carry a range of
sensors relevant to land, ocean and atmospheric monitor-
ing; (ii) provide the only global, open-access radar ima-
gery (Sentinel 1); (iii) allow gathering data at both high
temporal (5 days) and spatial resolutions (5-10 m).
Future spaceborne hyperspectral sensor missions (such as
the Environmental Mapping and Analysis Program
(EnMAP), the Hyperspectral Infrared Imager (HyspIRI),
and the Hyperspectral Precursor of the Application Mis-
sion (PRISMA - Italian Space Agency) could moreover
provide unprecedented opportunities to characterize sur-
face chemistry and structure in great detail (Chambers
et al. 2007). Data collected by these missions could
indeed expand ecosystem monitoring capacity signifi-
cantly, especially with regard to carbon and water vapour
flux modelling (Fuentes et al. 2006), chemical composi-
tion of foliage (Schlerf et al. 2010), early detection of
defoliators (Fassnacht et al. 2014), accurate mapping of
burned areas (Veraverbeke et al. 2014), permafrost moni-
toring (Buchhorn et al. 2013) and measurements of
ecosystem methane emissions (Thompson et al. 2015),
complementing the monitoring capacity of existing sen-
sors (Guanter et al. 2015). Monitoring of biomass (Hyde
et al. 2007; Nelson et al. 2007) and canopy structure
(Vierling et al. 2008; Lefsky 2010; Enflle et al. 2014) are
also likely to be facilitated by the availability of global
LiDAR data from spaceborne missions (e.g. ICESat-2 and
GEDI; Patterson and Healey 2015; Brown et al. 2016).
Beyond new satellite missions, advances in data process-
ing are also likely to expand ecosystem function monitor-
ing capacities. For instance, image fusion techniques allow
combining imagery with high spatial, low temporal

© 2017 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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Figure 2. Example of ecological and ecosystem processes underpinning the food provision function. Different ‘types of food' (e.g., vegetal,
animal) can be produced by ecosystems, and each type can be tracked using indicators related to the two major ecosystem processes
underpinning the production of these food (namely primary and secondary productivity). Each ecosystem process is itself shaped by multiple
ecological processes, such as photosynthesis, competition, herbivory, predation and mineralization.

resolution (e.g. Landsat) and imagery with low spatial,
high temporal resolution (e.g. MODIS) into time series
with high spatial, high temporal resolution (Gao et al.
2006; Schmidt et al. 2015), which could support a better
characterization of vegetation phenology.

Limitations

Monitoring ecosystem functions, using satellite data or
ground-based information, first necessitates agreement on
what ecosystem functions are, but also on what ecosys-
tems are and where their boundaries lie (Likens 1992).
Such difficulties are not limited to ecosystems, with simi-
lar discussions arising when considering populations or
species (see e.g. Mallet 1995; Berryman 2002). The Red
List of Ecosystems offers a comprehensive framework for
defining and monitoring ecosystems (Bland et al. 2016),
and as such could be used as a reference point for agree-
ing on where boundaries should be set. Doing so would
allow complementarity and effectiveness in efforts to
monitor, and report on, the state of ecosystems globally.
As demonstrated in Table 3, monitoring ecosystem
function then involves making a number of choices in
terms of which indicators and which proxies to consider;
these choices may all have implications for the reliability
of the inferred trends. Satellite remote sensing is more-
over associated with intrinsic limitations, which have been
discussed at length (see e.g. Pettorelli 2013; Pettorelli
et al. 2014, 2016); one can thus expect data product

characteristics (spatial, temporal, spectral resolutions) to
influence mapping accuracy and monitoring opportunities
for certain ecosystem functions in certain environments.
Integrated use of multiple remote sensing sources and
increased remote sensing capacity can help overcome
many of these known challenges, as long as data and pro-
duct requirements are clearly identified: the prioritization
of new satellite missions associated with freely accessible
data for scientific use might indeed be facilitated by the
formulation of clear, consensual demands from ecosystem
researchers (Paganini et al. 2016).

Discussions around the monitoring of ecosystem func-
tions will need to involve clarity on which processes are
being monitored for each considered ecosystem function;
what the reliability and sensitivity of each considered
proxy are; what aggregation method is being used (if any)
to integrate the collated information relating to the
ecosystem processes that shape a given ecosystem func-
tion; and how the choices made affect decision-making
robustness in a given context (Stephens et al. 2015).
Remote sensing proxies will often need to be combined
with field measurements to accurately represent the
desired ecosystem function (e.g. Tong et al. 2004).
Indeed, joint analysis of satellite data with in situ mea-
surements, or process measurements in the lab, may be
essential steps to the refinement and increased capacity
and utility, of satellite-based indicators for ecosystem
function monitoring (Racault et al. 2014). This is likely
to be a non-trivial task, particularly in highly dynamic

© 2017 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 9
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receive this type of training (Cabello et al. 2012; Pettorelli
et al. 2014). Conceptual models of ecosystem functions
are a possible nexus of ecosystem process and remote
sensing expertise (see Fig. 2), similar to and/or informed
by the conceptual ecosystem models developed as part of
Red List of Ecosystems assessments (Bland et al. 2016).
Potential differences in the conceptual understanding of
causality in the drivers of ecosystem processes across dis-
ciplines may in this way become apparent, and clarity of
understanding promoted across different foci of expertise.
By making the variables underpinning ecosystem func-
tions and the relationships between them explicit, such
models can help identify a minimum set of agreed vari-
ables needed to monitor a given ecosystem function.
Opportunities for monitoring these variables via remote
sensing could then be systematically identified, focussing
on user needs, and gaps in monitoring capacity priori-
tized. Ultimately, without common references and defini-
tions, and centralized, jointly developed platforms such as
these, rapid advances are unlikely.

Policy Implications

In 2011, parties of the CBD adopted a strategic plan for the
period until 2020 based on 20 targets of which two address
the conservation (Target 11) and restoration (Target 15) of
ecosystems services, whose monitoring partially relies on
ecosystem function monitoring (Fig. 1). Currently, very lit-
tle information on the state of ecosystem functions and ser-
available from the Biodiversity Indicators
Partnership, a global initiative to promote and coordinate
the development and delivery of biodiversity indicators for
use by the CBD and other biodiversity-related conventions,
the Intergovernmental Science-Policy Platform on Biodi-
versity and Ecosystem Services, the Sustainable Develop-
ment Goals and national and regional agencies. While
satellite remote sensing could help track progress towards
the CBD targets on ecosystems services (Secades et al.

vices is

2014), considerations have so far been limited to carbon
and water-based ecosystem services. Satellite applications
to the monitoring of ecosystem function and services are
also exceptionally well placed to support the achievement
of Target 14. A of the United Nations Sustainable Develop-
ment Goal 14, aimed at the development of research capac-
ity and transfer of marine technology in support of ocean
health and the development of nations reliant on living
marine resources. But achievement of the aims of the Sus-
tainability Agenda under the United Nations system are
currently heavily focused on regional cooperation for data
acquisition in support of development policies, and
improving access to technology by developing nations.
Focusing on the use of satellite remote sensing to mon-
itor ecosystem functions and deconstructing these into

N. Pettorelli et al.

ecological and ecosystem processes should help identify
the processes to be monitored and greatly ease the design
of the more complex models required to assess the soci-
etal benefits underpinned by biodiversity. There is a
growing push towards use of ecosystem accounting in
policy development and economic analysis from the Uni-
ted Nations Statistical Commission. Similarly, the Euro-
pean Union’s first priority objective of the 7th
Environment Action Programme to 2020 is to protect,
conserve and enhance the Union’s natural capital, further
highlighting the need to integrate economic indicators
with environmental and social indicators, including by
means of natural capital accounting (European Commis-
sion 2017). This accounting approach would measure
changes in the stock of natural capital at a variety of
scales and integrate the value of ecosystem services into
accounting and reporting systems at the European Union
and national levels. It should be seen as a tool supporting
the mainstreaming of biodiversity in economic decision-
making.

An integrated system for natural capital and ecosystem
services accounting is currently in development by the
European Union (DG ENV 2015) to explicitly account
for the range of ecosystem services and demonstrate in
monetary terms the benefits of investing in nature and
the sustainable management of resources, allowing assess-
ment of benefits beyond growth of domestic product.
Such an integrated accounting system is designed as a
shared platform of linked data sets and tools for covering
georeferenced information on ecosystems and their ser-
vices. It will allow assessment of ecosystems’ economic
importance and value, which can be linked to standard
national accounts. It includes layers of data based on (i)
earth observation (e.g. land cover), (ii) statistical collec-
tions including physical data about human activities (e.g.
land use, industrial use), biomass production, water use
and availability, (iii) environmental monitoring data
including data reported under relevant legislation and (iv)
models that quantify ecosystem services such as water, air
and soil regulation, pollination, carbon release and
sequestration. Here again, providing a clear way for satel-
lite remote sensing to help characterize ecosystem func-
tions would not only allow identification and design of
the products that would fit such a system, but the
approach itself would greatly ease the identification of the
different variables required by the platform when provid-
ing quantitative assessments with documented uncertain-
ties.

Conclusions

With a policy agenda increasingly focused on ecosystem
service provision (Perrings et al. 2010), understanding the
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ecology of ecosystem functioning and its implications for
the delivery of ecosystem services has never been more
important. This contribution both provides a theoretical
framework that articulates clear monitoring aims and
delivers a list of globally available, standardized remote
sensing data sets that relates to ecosystem function moni-
toring. The structured approach we propose here is par-
ticularly important given the ongoing evolution of remote
sensing technologies and data availability, and can help
progress multiple initiatives (such as the EBV process or
the integrated system for natural capital and ecosystem
services accounting) aimed at improving global biodiver-
sity monitoring and supporting global conservation tar-
gets. This contribution is also intended to catalyse a
much needed discussion on how best to capitalize on cur-
rent and future opportunities associated with satellite
remote sensing for monitoring ecosystem functions.
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