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The André-Oort conjecture via o-minimality

Christopher Daw *

May 15, 2017

1 Introduction

Shimura varieties are a distinguished class of algebraic varieties that param-
eterise important objects from linear algebra called Hodge structures. Often
these Hodge structures correspond to families of so-called Abelian varieties.

Additional structure on a Shimura variety S arises through the existence
of certain algebraic correspondences on S, i.e. subvarieties of S x S, called

Hecke correspondences. We can think of these as one-to-many maps
T:5— 8.

We endow S with a set of so-called special subvarieties, defined as the set of
all connected components of Shimura subvarieties and the irreducible com-

ponents of their images under Hecke correspondences. This is analogous to
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the case of Abelian varieties (respectively algebraic tori), where special sub-
varieties are the translates of Abelian subvarieties (respectively subtori) by
torsion points. A key property of special subvarieties is that connected com-
ponents of their intersections are themselves special subvarieties. Thus, any
subvariety Y of S is contained in a smallest special subvariety. If this hap-
pens to be a connected component of S itself, then we say that Y is Hodge
generic in S.

We refer to the special subvarieties of dimension zero as special points.
Special subvarieties contain a Zariski (in fact, analytically) dense set of spe-
cial points. The André-Oort conjecture predicts that this property charac-

terises special subvarieties:

Conjecture 1.1 (André-Oort) Let S be a Shimura variety and let ¥ be
a set of special points contained in S. FEvery irreducible component of the

Zariski closure of Usexs in S is a special subvariety.

A connected component of S arises as a quotient I'\D, where D is a
certain type of complex manifold called a Hermitian symmetric domain, and
[ is a certain type of discrete subgroup of Hol(D)" called a congruence
subgroup. From now on, we will use S to denote this component.

By [10], §3, there exists a semi-algebraic fundamental domain F C D for

the action of I'. By [10], Theorem 1.2, when the uniformisation map
m:D—=S

is restricted to JF, one obtains a function definable in the o-minimal structure
Ranexp. Through these observations, the André-Oort conjecture becomes

amenable to tools from o-minimality.



The purpose of this article is to explain the so-called Pila-Zannier strategy
for proving the André-Oort conjecture. This strategy first arose in a proof
of the Manin-Mumford conjecture [20] and was first adapted to Shimura
varieties by Pila [16]. We will follow the outline given by Ullmo [24] for Aj,
where A, is the moduli space for principally polarised Abelian varieties of
dimension g.

The first step is to show that, if Y is an irreducible, Hodge generic sub-
variety of S, then the union of all positive-dimensional, special subvarieties
contained in Y is not Zariski dense in Y. The second step is to show that all
but finitely many special points in Y lie on a positive-dimensional, special
subvariety contained in Y.

Both steps require the hyperbolic Az-Lindemann-Weierstrass conjecture,
a geometric statement itself amenable to proof via o-minimality. Other ar-
ticles in these proceedings will explain this conjecture in detail along with
its analogue in the case of an Abelian variety. Let us just mention that the
conjecture was first proven in the cocompact case by Ullmo and Yafaev [25],
then by Pila and Tsimerman for A, [18], and finally by Klingler, Ullmo and
Yafaev in the general case [10].

Ullmo demonstrates the first step in his article [24]. Therefore, the focus
of this article will be the second step. The strategy will be to compare lower
bounds for the size of Galois orbits of special points with upper bounds for
the height of their pre-images in the fundamental domain. One concludes
by applying the Pila- Wilkie counting theorem [19], which states that the
number of algebraic points of degree at most k£ and height at most 7', in the

complement of all connected, positive-dimensional, semi-algebraic subsets of



a set X, definable in an o-minimal structure, is <., x T°.

First, however, we will provide a brief introduction to the theory of
Shimura varieties, as formulated by Deligne in his foundational articles [4]
and [5]. Our introduction is not by any means intended to be a full treatment
of the topic but rather a preparatory guide for graduate students approaching
it for the first time. We refer the reader to [12] for a comprehensive account
of Shimura varieties and for further details regarding the topics introduced

here.

2 Hermitian symmetric domains

We are primarily interested in the connected components of Shimura vari-
eties. These initially arise as quotients I'\ D, where D is a certain type of
complex manifold called a Hermitian symmetric domain, and I' is a con-
gruence subgroup, acting via holomorphic automorphisms. The protypical

example is the case of the upper half-plane
D=H:={z€C:¥(z) >0}
and I' = SLy(Z), where any element of SLy(R) acts on H by

a b az+b

¢ d - cz+d

We refer the reader to [12], §1 for a detailed introduction to Hermitian
symmetric domains. We merely summarise the key points. Unfortunately,

the definition is not particularly enlightening:



Definition 2.1 A Hermitian symmetric domain is a connected complex man-

ifold D such that
e D is equipped with a Hermitian metric.
e The group Aut(D) of holomorphic isometries acts transitively on D.

o There exists a point T € D and an involution ¢ € Aut(D) such that T

1s an 1solated fixed point of ¢.
e D is of non-compact type.

For any topological group G, we deonte its neutral component by G*. By
this we mean the connected component of GG containing the identity element
id € G. By [12], Lemma 1.5, Aut(D)" acts transitively on D and, by [12],
Proposition 1.6, it coincides with Hol(D)*, where Hol(D) denotes the larger
group of all holomorphic automorphisms. Note that, given the transitivity
of the Aut(D) action, the third condition is true for all points 7 € D.

Returning to our earlier example,
Hol(H) = SLy(R)/{=£id}.

Since SLy(R) is connected, so is Hol(H) and it therefore coincides with

Aut(H). The element

0 1
Y= € SLy(R)
-1 0
fixes only i € H, whereas p? = —id. Hence, the image of ¢ in Aut(H) is an

involution of H with an isolated fixed point.



However, from the definition follows a key property of Hermitian sym-
metric domains: by [12], Theorem 1.9, if we denote by U(R) the circle group
{z € C: |z] = 1}, then for each point 7 € D there exists a unique homomor-

phism
u, : U(R) — Hol(D)™"
such that, for all z € U(R),
o u (z)(1)=r".
e u,(z) acts as multiplication by z on the tangent plane of D at 7.

For example, consider the point ¢ € H and let

b
hi : U(R) — SLo(R) : 2 = a +ib s
—b a
Then, for all z € U(R), h;(z) fixes i and
d (az+b a4V oz
dz \=bz+a)|, (a—bi> z

Therefore, if we define
u; : UR) — SLy(R)/{=+id} : z — h;(v/z) mod + id,

which is well-defined since h;(—1) = —id, then wu;(z) acts on the tangent
plane of H at ¢ as multiplication by z.

Furthermore, note that, if g € Hol(D)" and 7 € D, then the uniqueness
of u,, implies that it must be the conjugate

gurg~" sz gus(z)g

Therefore, since Hol(D)* acts transitively on D, if we fix a point 75 € D, we
have a Hol(D)"-equivariant bijection between D and the Hol(D)*-conjugacy

class of u,.



3 Conjugacy classes

By [12], Proposition 1.7, for any Hermitian symmetric domain D, there exists

a unique, adjoint, semisimple algebraic group G over R such that
G(R)* = Hol(D)™.

By a linear algebraic group G over R, we simply mean a group that can be
defined as a subgroup of GL,(R) by real polynomials in the matrix coeffi-
cients. For example, U(R) is a linear algebraic group over R whose elements

may be realised as those

a b
c d

€ GLy(R)

such that a = d, b = —c and a® + b? = 1 (in particular, U(R) is contained
in SLy(R)). However, since U(R) is defined by polynomials, we can think
of U(R) as the real points of what is usually considered the algebraic group,
which we denote U. Then, for any R-algebra A, U(A) is simply the group of
solutions in A to the above polynomials.

By a semisimple algebraic group we mean a connected (for the Zariski
topology), linear algebraic group that is isogenous to a product of almost-
simple subgroups. By a simple algebraic group we mean a connected, linear
algebraic group that is not commutative and has no proper, normal, algebraic
subgroups other than the identity. By an almost-simple subgroup we mean a
subgroup that is a simple algebraic group modulo a finite centre. An isogeny
between semisimple algebraic groups is a surjective morphism with finite

kernel. Two semisimple algebraic groups H; and Hs are called isogenous if



there exist isogenies
Hy + G — HQ,

for some semisimple algebraic group G. This is an equivalence relation.
By adjoint we are referring to a group with trivial centre and, for a linear
algebraic group G, we write G for G modulo its centre.

As shown in [12], §1, every representation
U(R) — GL,(R)

is algebraic i.e. the image is given by polynomials in the matrix entries and
can be written U — GL,,. In particular, for any 7 € D, we may consider the

homomorphism
u, : UR) - G(R)*"

as an algebraic morphism u, : U — G, yielding a morphism
u, : U(A) — G(A)

for any R-algebra A.
The group U is connected, commutative and consists entirely of semisim-

ple elements. By the latter condition we mean that, for any representation
U — GL,,

any element in the image of U(C) can be diagonalised by an element of
GL,(C). The fact that U is also commutative implies that the elements in
the image of U(C) can be simultaneously diagonalised by a single element of

GL,(C). We refer to a linear algebraic group of this sort as a torus.
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For any representation of U, the eigenvalues are given by homomorphisms
Uc — G, called characters, where we write Uz for U considered as an
algebraic group over C and G, for the algebraic group such that, for any

C-algebra A,
Gm(A) = A" :={a € A: ais invertible in A}.

The characters are algebraic since, by definition, they are one-dimensional
representations. In this case, each character is of the form z — 2", where
n € Z.

By [12], Theorem 1.21, the homomorphism w, always satisfies the follow-

ing three properties:

e Only the characters z +— 1, z = z and z — 2z~ ! occur in the represen-

tation of U(R) on the Lie algebra g¢ of Gc.
e Conjugation by u,(—1) is a Cartan involution of G.
e u,(—1) maps to a non-trivial element in every simple factor of G.

The Lie algebra of G is the tangent plane of G(C) at the identity. One

definition is the kernel of the map
G(Cle])) = G(C)

induced by € — 0, where €2 = 0. Then G(C) acts on g¢ by conjugation. For
the definition of a Cartan involution see [12], §1.
On the other hand, if GG is any adjoint, semisimple algebraic group over R

and u : U — G is a homomorphism satisfying the above three properties, then



the G(R)"-conjugacy class of u naturally has the structure of a Hermitian

symmetric domain D, for which
G(R)* = Hol(D)*

and u(—1) is the involution associated to v when regarded as a point of D.

4 The Deligne torus

Let S denote the linear algebraic group over R such that S(R) = C*. Similar

to the case of U we may realise the elements of S(R) as those

a b
€ GLy(R)
c d
such that a = d, b = —c. This is also a torus, usually referred to as the

Deligne torus, and we have a short exact sequence
1-G, >S—>U-=1,

which on real points corresponds to

15 R 270 ¢ 225 gR) - 1.
Therefore, any homomorphism v : U — G yields a homomorphism
h:S— G,

defined by h(z) = u(z/z). Furthermore, U(R) will act on g¢ via the char-
acters z — 1, 2 — z and 2z — 2z~ ! if and only if S(R) acts on g¢ via the

characters z +— 1, z — z/Z and z — Z/z.
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Conversely, let h : S — G be a homomorphism such that S acts on g¢
via the characters z — 1, z — z/z and z — Zz/z. Then w(G,,(R)) acts
trivially on g¢, which implies that h is trivial on w(G,,(R)), since the adjoint
representation of G on g is faithful. Thus, h arises from a homomorphism
u:U— G.

Therefore, to give a G(R)"-conjugacy class D of homomorphisms u :
U — @ satisfying the above three properties is the same as to give a G(R)"-

conjugacy class X+ of homomorphisms h : S — G satisfying the following:

e Only the characters z +— 1, z + z/Z and z + Z/z occur in the repre-

sentation of S(R) on gc.
e Conjugation by h(i) constitutes a Cartan involution of G.

e The element h(i) maps to a non-trivial element in every simple factor

of G.

5 Hodge structures

Therefore, the question should be why are we interested in such conjugacy
classes of morphisms h : S — G¢ To understand this, we require the notion
of a Hodge structure. Below is a brief summary of the relevant definitions.
For a more comprehensive account, we refer the reader to [12], §2.

For a real vector space V', we define complex conjugation on

V(C):=VgC

11



by v ® z :=v ®Z. A Hodge decomposition of V is a decomposition
vie)= € v
(P,a)EZXZ
such that VP4 = V9P A Hodge structure is a real vector space V with a
Hodge decomposition. The set of pairs (p,q) such that V77 # 0 is called
the type of the Hodge structure and we refer to a Hodge structure of type
(—1,0), (0, —1) as a complex structure.
For each n € Z,

@ VP

ptq=n

is stable under complex conjugation and equal to V,,(C) for some real sub-
space V,, of V. The decomposition V' = &¢,,V,, is called the weight decompo-
sition of V. If V. =1V,,, then V is said to have weight n. The Hodge filtration

associated with a Hodge structure V' of weight n is
F = { DO FP D Fp+1 BDEEE }7 FP -— @szvr,n—r.

A Z-(respectively Q-)Hodge structure is a free Z-module (respectively
Q-vector space) V' of finite rank (respectively dimension) equipped with a

Hodge decomposition of
VR)=V®R

such that the weight decomposition is defined over Q.
Recall that we can identify S with a closed subgroup of GL, as follows:

for any R-algebra A, we realise S(A) as those matrices of the form

a b
—b a

€ GLy(A).

12



Diagonalising, Sc is isomorphic to G2, with complex conjugation on S(C)

corresponding to (21, z2) +— (2Z3,21). Therefore, the elements of S(R) map to
the elements (z, %), stable under conjugation. More generally, the characters

of S¢ are the homomorphisms
pq
(21, 29) V> 2723,

for any (p,q) € Z x Z, with complex conjugation acting as (p, q) — (¢, p).

Consequently, to give a representation of S on a real vector space V is
the same as to give a Z x Z-grading of V(C) such that VP4 = VP for all
p and ¢, which is precisely the definition of a Hodge structure on V. We
thus define morphisms, tensor products and duals of Hodge structures as
morphisms, tensor products and duals of representations of S. We normalise
the relation so that (21, 29) acts on VP47 as z; 72,9, A complex structure on a
real vector space V is then precisely a Hodge structure S — GL(V') coming
from a homomorphism C — End(V).

Forn € Z and R = Z, Q or R, we let R(n) be the (R-)Hodge structure
V = R, where S acts on V(R) = R by the character (zZ)" and, hence,

This is referred to as a Tate twist. For an (R-)Hodge structure V' of weight

n, a Hodge tensor is a multilinear form ¢ : V" — R such that the map
VeV -V — R(—nr/2)

is a morphism of Hodge structures.

If we denote by C' := h(i) the Weil operator, then a polarisation on V is

13



a Hodge tensor
Y:VxV >R
such that
Yo V(R) x V(R) = R: (z,y) — ¢(z, Cy)

is symmetric and positive definite. A polarisation on an (R-)Hodge structure

V =®,V, is a system (1), of polarisations on the V.

6 Abelian varieties

Consider an Abelian variety A over C of dimension g. Then A is isomorphic
to a complex torus C9/A, where A is the Z-module generated by an R-basis
for CY9. The isomorphism A ® R = CY defines a complex structure on A ® R

and there exists an alternating form
V:AXA—Z

such that Yg(z, Cy) is symmetric and positive definite and

wR<C$> Cy) = wR($7 y)?

for all z,y € A ®@R. In other words, A = H;(A,Z) is a Z-Hodge structure
of weight —1 equipped with a polarisation. In fact, by [12], Theorem 6.8,
the functor A — H;(A,Z) is an equivalence from the category of Abelian
varieties over C to the category of polarised Z-Hodge structures of type

(—1,0),(0,—1). Therefore, the answer to the question of the previous section

14



is that one can study the problem of parameterising Abelian varieties in terms
of Hodge structures.

Consider the case of Abelian varieties of dimension one, otherwise known
as elliptic curves. An elliptic curve over C is the quotient of C by a free
Z-module A of rank 2. Two elliptic curves C/A and C/A’ are isomorphic
if and only if A’ = aA for some @ € C*. We summarise the perspective
explained in [9]:

Often, when considering elliptic curves, we fix C and vary A. Instead,
however, we may fix A := Z? and vary the complex structure on Z2 @R = R?

i.e. we vary the morphism
h:C* — GLy(R)

extending to a homomorphism C — Mjy(R) of R-algebras. Given such a

morphism, we obtain an isomorphism of complex vector spaces iy : R? — C

defined by
i, ' (2) = h(2) - i, ' (1) :== h(2) - eo,

where we choose ¢g = (1,0) € R?. The quotient C/ij,(Z?) is an elliptic curve.
Therefore, let

a b
ho: C* — GL2(R) : a +ib —
—b a
and let h := vhoy !, where
Yy +
Y= S G’LQ(R)
w oz

15



Note that, for any such h, the standard symplectic form given by

is a polaristion for the corresponding Z-Hodge structure.
For hy(z), the z-eigenspace in R? @ C is the complex subspace generated
by (—i,1). The Z-eigenspace is its complex conjugate, generated by (i,1).

Therefore, for h(z), the z-eigenspace is generated by

xr Yy —1 —Ti+y

w oz 1 —wt + 2

or, equivalently, (Tj, 1), where 7, :== xi + y/wi + z, and the Z-eigenspace is
generated by (75,,1). Note that this latter subspace is precisely the middle
term in the filtration associated to the Z-Hodge structure given by h.

Now, 7, extends C-linearly to a map

T T,
Z'h@:RQ@C:(C' " @ C- " —C
1 1

and, since it commutes with the action of C on both sides, we deduce that
inc is the quotient of R? ® C by the z-eigenspace. Therefore, since iy (eg) = 1

and zh(((), 1)) = ih(—Theo + (Th, 1)) = —Th,
ih(ZQ) = Z@ZTh.

We conclude that C/ij,(Z?) varies over all isomorphism classes of elliptic
curves as h varies over the GLy(R)"-conjugacy class of hg. The map h +— 7,

is a GLo(R)T-equivariant bijection between this conjugacy class and H.

16



For Abelian varieties of dimension g, the situation is similar. We replace

72 by Z?9 and fix the standard symplectic form given by

We let
ho : C* — GLgy(R) : @+ bi — a + bJ,
which factors through the group
GSpyy(R) = {g € GLgy(R) : g'Jg = v(g)J},

where v : GSpy, — Gy, is a homomorphism of linear algebraic groups. The
GSp,, (R)*-conjugacy class of hy corresponds to the set of Z-Hodge structures
on Z* having type (—1,0), (0, —1) for which J induces a polarisation. Using
the description of the Hodge filtration, as in the case of elliptic curves, one
can identify this set in a GSp,,(R)"-equivariant manner with a Hermitian

symmetric domain
H,:={Z=X+1iY € My,,(C): Z=2"Y >0}

called the Siegel upper half-space of genus g.

7 The Siegel upper half-space

Let us return then to our account of Hodge structures. Having fixed a g € N,
we denote the Hodge structure corresponding to a point 7 € H, by V; and we

denote the corresponding Hodge filtration by F.. For any given (p, q) € ZXZ,

17



the dimension d(p,q) of V9 is constant as 7 varies over H, and we have a

continuous map
7= VP Hy = Gag,g) (V(C)),

from H, to the complex, projective variety of d(p, ¢)-dimensional subspaces
of V(C).

The subspace dimensions of F. are then also constant as 7 varies over H,
and, if we denote by F4(V (C)) the complex, projective variety parameterising

such filtrations of V(C), then the map
[ [Fr]H, = Fg(V(C))

is holomorphic. In light of these properties, we refer to the set of Hodge
structures corresponding to the points of H, as a holomorphic family of Hodge
structures.

Finally, the differential of f at 7 is a C-linear map
le.,- : TTHQ — T[FT]Fd(V((C))

from the tangent plane of H, at 7 to the tangent plane of F,(V(C)) at [F].
By [12], (17), Tip, 1 Fa(V(C)) is a subset of

P Hom(F?,V(C)/F?)
p
but, in this case, the image of df. is actually contained in the space
P Hom(F?, P~ /FP)
p

and we say that this holomorphic family of Hodge structures is a variation

of Hodge structures.

18



8 Families of Hodge structures

The above situation can be abstracted as follows: let V' be a finite dimen-
sional R-vector space and let T" be a finite set of tensors on V, including a

nondegenerate bilinear form ty. Fix an n € N and let
d:7x7Z—N

be a symmetric function such that d(p,q) = 0 for almost all (p, q), including
every (p,q) such that p + ¢ # n.

Consider the set S(d,T) of Hodge structures on V such that, for all
(p,q) € Z X Z,

dim V*4 = d(p, q),

every t € T is a Hodge tensor and t; is a polarisation. This is naturally a

subspace of

I[I Guwa(V(C).

(p,q):d(p,q)#0
Therefore, S(d,T’) can be given the subspace topology and, by [12], Theorem
2.14, (assuming it is non-empty) any connected component has a unique com-
plex structure such that the corresponding set of Hodge structures constitute
a holomorphic family. Furthermore, if such a family is actually a variation
of Hodge structures, then the corresponding connected component S* has
the structure of a Hermitian symmetric domain. In fact, every Hermitian

symmetric domain is of the form S* for a suitable V, T and d.
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9 The algebraic group

Recall the topological space S(d,T) from the previous section and let S*
be a connected component. Fix a point hy € ST and let G be the smallest

algebraic subgroup of GL(V') such that
h:S— GL(V)

factors through G for every h € ST i.e. the intersection of all subgroups
having this property. As in the proof of [12], Theorem 2.14 (a), for any
g € G(R)*", ghog™! € ST and, in fact, the map

g+ ghog™ ' : GR)T — S

is surjective. In other words, S* is the G(R)'-conjugacy class of hy.

10 Shimura data

Motivated by our example of Abelian varieties, we want to consider Z-(or
Q)-Hodge structures. This will be achieved by choosing an algebraic group
G defined over Q and embedding this into GL(V') for some Q-vector space

V. The Z-structure will come from the choice of a lattice in V.

Definition 10.1 A Shimura datum is a pair (G, X), where G is a reductive
group over Q and X is a G(R)-conjugacy class of morphisms h : S — Gg
such that, for one (or, equivalently, all) h € X,

e Only the characters z — 1, z — z/Z and z — Z/z occur in the repre-

sentation of S on the Lie algebra of G24.

20



o Conjugation by h(i) is a Cartan involution of G*.
e For every simple factor H of G*, the map S — Hy is not trivial.

By a reductive algebraic group we refer to a connected, linear algebraic group
with trivial unipotent radical. The unipotent radical of a linear algebraic
group is the unipotent part of its radical, where its radical is the neutral
component of its maximal normal, solvable subgroup. The semisimple groups
are those linear algebraic groups with trivial radical. In particular, they are
reductive.

Now let (G, X) be a Shimura datum. By the first of the axioms above,
Gm(R) = R*, which is naturally a subgroup of S(R) = C*, acts trivially on
gc. As the action of G on g factors through G*! and the action of G* is
faithful, the image of R* in G(R) must belong to the centre. In particular,
the restriction of any h € X to G,, is independent of h and we refer to
its reciprocal w as the weight homomorphism since, for any representation
p: Grg — GL(V), pow defines the weight decomposition of the Hodge
structure given by po h on V.

Now let p : Gg — GL(V') be a faithful representation. By [12], Proposi-
tion 5.9, X has a unique structure of a complex manifold such that the family
of Hodge structures induced on V' by poh as h varies over X is holomorphic.
In fact, the first axiom implies that it is a variation of Hodge structures.
Therefore, from our earlier discussion of families of Hodge structures, X is a
finite disjoint union of Hermitian symmetric domains.

Alternatively, consider a connected component X of X. By [12], Propo-
sition 5.7 (a), we may consider X as a G*(R)"-conjugacy class of mor-

phisms S — G&. Let h € XT and decompose G into a product of simple

21



factors H; so that h = (h;);, where h; is the projection of h to H;. By [12],
Lemma 4.7, if H;(R) is compact then h; is trivial. Otherwise, given the con-
ditions satisfied by h, there exists a Hermitian symmetric domain D; such
that H;(R)™ coincides with Hol(D;)™ and D; is in natural one-to-one corre-
spondence with the H;(R)*-conjugacy class X, of h;. Therefore, the product
D of the D; is a Hermitian symmetric domain on which G*(R)* acts via
a surjective homomorphism G#(R)™ — Hol(D)* with compact kernel and

there is a natural identification of D with X+ =[], X'
Definition 10.2 A morphism of Shimura data
(G1, X1) = (Go, X2)

is a morphism ¢ : Gu — Go such that, for every h € X1, poh € Xs. If ¢ is

a closed immersion, we refer to (G, X1) as a Shimura subdatum.

Definition 10.3 Let (G, X) be a Shimura datum. Let X* be the G*(R)-
conjugacy class of morphisms S — G233 containing the image of X. Then

(G2, X2 is a Shimura datum called the adjoint Shimura datum and
(G, X) = (G*, X

1s a morphism of Shimura data.

11 Congruence subgroups

Let G be a reductive subgroup of GL,, defined over Q. We denote by G(Z)
the group G(Q) N GL,(Z). Recall the following definition, independent of
the embedding of G in GL,,:
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Definition 11.1 A subgroup T' of G(Q) is arithmetic if ' N G(Z) has finite
index in I' and G(Z) i.e. if ' and G(Z) are commensurable.

Now suppose that (G, X) is a Shimura datum. We would like to consider
the corresponding Hodge structures up to isomorphism and this is the role
of the group I''  We may also wish to distinguish additional structure to
that already encoded in the group G. The most obvious such structure is

distinguished by the following class of arithmetic subgroups:

Definition 11.2 The principal congruence subgroup of level N is defined as
the group

I'(N):={9 € G(Z):g=1id mod N},
where the congruence relation is entry-wise.

In the case of Abelian varieties, where G = GSp,, and we consider the Z-
Hodge structure on A = Hy(A,Z), the group I'(N) also distinguishes between
different bases for the N-torsion subgroup %A/A, rather than simply the
isomorphism class of A along with its polarisation.

Of course, the definition of the principal congruence subgroup depends on
the embedding of G in GL,,. Therefore, we define a congruence subgroup of
G(Q) to be a subgroup containing some I'(N) as a subgroup of finite index.
This notion does not depend on the embedding.
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12 Adeles

The ring of finite (rational) adéles Ay comprises the elements
a=(ap) € H Qp
P

such that, for almost all primes p, a,, € Z,. It is endowed with the topology
for which a basis of open sets are those of the form Hp U,, where U, is open
in Qp, and U, = Z, for almost all p. Similarly, for an algebraic group G,
defined over @, one can choose an embedding into GL,, and define G(Ay) as

those elements
9= 1(9p)p € H G(Qyp)
p

such that g, € GL,(Z,) for almost all p. However, this definition of G(Ay)
is independent of the embedding into GL,, and so is the basis of open sets,
defined analogously to the above.

By [12], Proposition 4.1, for any compact open subgroup K of G(Ay),
K N G(Q) is a congruence subgroup I' of G(Q) and every congruence sub-
group arises this way. Loosely speaking, considering the congruence relation
defining I' prime-by-prime gives rise to K and vice-versa.

Later, we will also need the more general definition of Ag f, the finite
adeles over a number field I/, which we define as Ay ® E or, equivalently, as

the ring of elements

a=(ay) € HE”’

over all finite places v of F such that, for almost all v, o, € Op,. The adéle
ring A g arises when we include factors for the infinite places of E. Therefore,

any a € Ag can be written as a pair (ae, of), where ay € Ag ;.
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13 Neatness

Let G be an algebraic subgroup of GL, defined over Q. The following defi-
nition is independent of the embedding into GL,:

Definition 13.1 An element g € G(Q) is neat if the subgroup of @X gener-

ated by its eigenvalues is torsion free.

One says that a congruence subgroup I' is neat if all of its elements are
neat. There is also a notion of neatness for compact open subgroups of
G(Ay), for which we refer the reader to [11], 4.1.4. In particular, if K is neat
then so is the congruence subgroup G(Q)NgK g, for any g € G(A;). Every
compact open subgroup K of G(Ay) contains a neat compact open subgroup

K’ with finite index.

14 Shimura varieties

Finally, we give the definition of a Shimura variety:

Definition 14.1 Let (G, X) be a Shimura datum and let K be a compact
open subgroup of G(Ay). The Shimura variety attached to (G, X) and K is

the double coset space
Shg (G, X)(C) := GQ\X x (G(Ay)/K).

This definition invariably seems abstruse at first. However, it is a simple

calculation to see that

Shi (G, X)(C) = [[ T\ X,

geC
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where C is a set of representatives for the double coset space G(Q)\G(Af)/K
and I, = G(Q) N gKg™! is a congruence subgroup. Note that, by [21],
Theorem 5.1, C is a finite set. However, since we are interested in connected

components, choose a connected component Xt of X and denote by G(Q)

its stabiliser in G(Q). Then

Sh (G, X)(C) = ] To\XT,

geCt

where Cy is a set of representatives for the double coset space G(Q)\G(Af)/ K
and I, := G(Q); NgKg!'. By [12], Lemma 5.12, C4 is also a finite set.

15 Complex structure

Any arithmetic subgroup I' of G(Q) acts on X through G*(Q) and, by [12],
Proposition 3.2, its image is also arithmetic. For any arithmetic subgroup I'
of G(Q), the intersection 'NG(Q), acts on X . We say that its image under
the map G*(R)™ — Hol(X1)T is an arithmetic subgroup of Hol(X )T.

If T is neat then the image of I' N G(Q)4 in Hol(X™)T is neat and, in
particular, torsion free. By [12], Proposition 3.1, such an arithmetic sub-
group of Hol(X )" acts freely on X and the corresponding quotient has a
unique complex structure such that the quotient map is a local isomorphism.
In general then, T\ X ™ has the structure of a (possibly singular) complex

analytic variety.
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16 Algebraic structure

The fundamental result of Baily and Borel [1] states that the quotient of
X" by any torsion free, arithmetic subgroup of Hol(X )" has a canonical
realisation as a complex, quasi-projective, algebraic variety. In particular, if
K is neat, Shi (G, X)(C) is the analytification of a quasi-projective variety
Sh (G, X)c.

A further theorem of Borel [3] states that, for any smooth, quasi-projective
variety V' over C, any holomorphic map from V(C) to Shi (G, X)(C) is reg-
ular. For example, given any inclusion K; C K, of neat compact open

subgroups of G(Ay), we have a natrual morphism of algebraic varieties
Shg, (G, X)¢c — Shg, (G, X)c.
Therefore, varying K, we get an inverse system of algebraic varieties
(Shi (G, X)c)k

and we write the scheme-theoretic limit of this system as Sh(G, X)¢. On the

system there is a natural action of G(Ay) given by
-g : Shi (G, X)(C) = Shy-1x,(G, X)(C) : [z,a]x — [z, a9],-1k,

where we use [-, -]k to denote a double coset belonging to Shy (G, X)(C). By
the theorem of Borel, this action is regular on components. Therefore, for

any given g € G(Ay), we obtain an algebraic correspondence
Shi (G, X)e < Shgngrg—1 (G, X)e % Shy-1ggni (G, X)e — Shr (G, X)e,

where the outer maps are the natural projections. We refer to this corre-

spondence as a Hecke correspondence.
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Finally, if we have a morphism
f : (Gl,X1> — (GQ,XQ)

of Shimura data and two compact open subgroups K7 C G1(Ay) and Ky C
G (Ay) such that f(K;) C K», then we obtain a morphism

ShKl (Gl, X1>(C> — Sth (GQ, XQ)(C),
which, again by the theorem of Borel, is a regular map
ShK1 (Gl, Xl)(C — ShKQ(G27 XQ)(C.

We refer to the images of such maps as Shimura subvarieties. We also have

an induced morphism
Sh(Gl, Xl)(C — Sh(GQ, XQ)(C

of the limits, by which we mean an inverse system of regular maps, compatible

with the actions of G1(Af) and Ga(Ay).

17 Special subvarieties

Special subvarieties constitute the smallest class of irreducible algebraic sub-
varieties containing the connected components of Shimura subvarieties and
closed under taking irreducible components of images under Hecke correspon-

dences. The precise definition is the following:

Definition 17.1 Let Shi (G, X)c be a Shimura variety. A closed irreducible

subvariety Z is called special if there exists a morphism of Shimura data

(G, X') = (G, X)
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and g € G(Ay) such that Z is an irreducible component of the image of
Sh(G’, X")¢ — Sh(G, X)c % Sh(G, X)e — Shg (G, X)e.

The situation is analogous to the case of Abelian varieties, where the
special subvarieties are the Abelian subvarieties and their translates under
torsion points.

By definition, if we let K’ C G(Ay) be a compact open subgroup con-

tained in K and consider the natural morphism of Shimura varieties
YL ShK/(G, X)(C — ShK(G, X)(C,

e if Z is a special subvariety of Shg/(G, X)c, then 7(Z) is a special
subvariety of Shy (G, X)c.

e if Z is a special subvariety of Shx (G, X)c, then any irreducible com-

ponent of 7717 is a special subvariety of Shx/ (G, X)c.

18 Special points
The natural definition of a special point is then the following:

Definition 18.1 A special point in Shx (G, X)c is a special subvariety of

dimension zero.

However, we can characterise special points in a more concrete manner: con-
sider a special point [h,g]x € Shg(G,X)(C). Let M := MT(h) be the
Mumford-Tate group of h i.e. the smallest algebraic subgroup H of G (de-
fined over Q) such that h : S — Gy factors through Hgr and let X, denote

29



the orbit M (R)-h inside X. Then (M, Xj,) is a Shimura subdatum of (G, X)
and, if we let X, be the connected component M(R)* - h of Xy, then the
image of X}, x {g} in Shx(G, X)(C) defines the smallest special subvariety
containing [h, g|r. Therefore, X); must be zero dimensional and so M must
be commutative. It is a general fact that any subgroup of GG defined over Q
and containing h(S) is reductive. Therefore, M is a torus.

On the other hand if T is a torus in G and h € X factors through Tk
then [h, 9|k € Shi(G, X)(C) is clearly a special point for any g € G(Ay).
Therefore, we may define a special point as any point [h, gk € Shg (G, X)(C)
such that MT(h) is a torus. Of course, the choice of h is only well-defined up
to conjugation by an element of G(Q), but this doesn’t affect the property
of MT(h) being a torus.

19 Canonical model

It is possible to define a model for Shx (G, X )¢ that is canonical in a sense one
can make precise. As we have seen, Shx (G, X)(C) is often a moduli space
for Abelian varieties and the main theorem of complex multiplication gives
us a description of how Galois groups act on sets of CM-Abelian varieties.
Therefore, we would like the Galois action on Shx (G, X)(C) to agree with
this description, whenever it applies. In order to achieve this, the canonical
model satisfies a generalised version of this description given in terms of
Deligne’s group-theoretic (G, X) language. We provide a very brief summary
of the theory explained more thoroughly in [12], §12, §13 and §14.

Recall that a model over a number field E for a complex algebraic variety
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V is a variety V{ defined over E with an isomorphism ¢ : Vjc — V, though
we will follow convention and omit any mention of this isomorphism. First
we define the field of definition E := E(G, X) of the canonical model. It is
referred to as the reflex field and, as we will see, it does not depend on K.
This independence is one reason for having several connected components in
the definition of a Shimura variety.

For a subfield k of C, we write C(k) for the set of G(k)-conjugacy classes

of cocharacters of G5, defined over k i.e.
C(k) = G(k)\Hom(G,, x, Gi).

Any homomorphism k — £’ induces a map C(k) — C(k'), so Aut(k’/k) acts
on C(K').

For h € X, we obtain a cocharacter
z2—(z,1) ~ h
JO Gm@ —_— an’(c = Sc = Gc

of G¢ and so the G(R)-conjugacy class X of h maps to an element ¢(X) €
C(C). The reflex field E is then the fixed field of the stabiliser of ¢(X) in
Aut(C). By what follows, we will see that F is a number field.

Suppose that
[h7 g]K S ShK(Gv X)(C)

is a special point i.e. M := MT(h) is a torus. Therefore, since all cocharacters
of M are defined over Q and i, factors through Mg, ju, is defined over a finite
extension Ej of Q. Note that Ej does not depend on the choice of h. By
[12], Remark 12.3 (b), E is contained in Ej,.
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For any t € M(E}), the element
I «®
0:Ep—Q

is stable under Gal(Q/Q) and so belongs to M (Q). The so-called reciprocity
morphism is defined by

i Ag > M(Ay) tam H o(un(a)).

0:Ep—Q

Finally, recall the (surjective) Artin map
Artg, : A — Gal(E/E)
from class field theory and let Artgi denote its reciprocal.

Definition 19.1 We say that a model of Shi (G, X)¢ over E is canonical if

every special point [h, gk in Shx (G, X)(C) has coordinates in EX* and
U[ha g]K = [ha rh(sf)a]Ka
for any o € Gal(E;"/Ey) and s = (S«,57) € Af, such that Artg (s) = 0.

By [12], Theorem 13.7, if a canonical model exists, it is unique up to unique
isomorphism. The difficult theorem is that canonical models actually exist.
For a discussion, see [12], §14.

A model of Sh(G, X )¢ over E is an inverse system of varieties over E, en-
dowed with a right action of G(Ay), which over C is isomorphic to Sh(G, X)¢
with its G(Ay) action. Such a system is canonical if each component is canon-

ical in the above previous sense.
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By [12], Theorem 13.7 (b), if for all compact open subgroups K of G(Ay)
Shy (G, X)c has a canonical model, then so does Sh(G, X)¢ and it is unique
up to unique isomorphism. In particular, by [12], Theorem 13.6, the action
of G(Ay) is defined over E. By [12], Remark 13.8, if (G',X’) — (G, X) is
a morphism of Shimura data and Sh(G’, X')¢ and Sh(G, X )¢ have canonical

models, then the induced morphism
Sh(G/, X/)(C — Sh(G, X)(C

is defined over E(G', X') - E(G, X).

20 The André-Oort conjecture

The André-Oort conjecture is the following statement regarding the geometry

of Shimura varieties:

Conjecture 20.1 Let (G, X) be a Shimura datum, K a compact open sub-
group of G(Ay) and ¥ a set of special points in Shy (G, X)(C). Then every
irreducible component of the Zariski closure of Usexs in Shg (G, X)c is a

special subvariety.

In the remainder of this article, we are going to apply the Pila-Zannier
strategy to the André-Oort conjecture. The André-Oort conjecture is anal-
ogous to the Manin-Mumford conjecture (first proved by Raynaud [22]), as-
serting that the irreducible components of the Zariski closure of a set of
torsion points in an Abelian variety are the translates of Abelian subvari-

eties by torsion points. The task at hand is essentially to combine a number
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of different ingredients. We follow the outline given by Ullmo in [24], §5 for
the case of Ajg.

21 Reductions

Let Y denote an irreducible component of the Zariski closure of Ugexns in
Shi (G, X)c. Let [h,g|lk € Y denote a point such that M := MT(h) is
maximal among such groups. Note that the maximality is independent of
the choice of h. We say that such a point is Hodge generic in Y.

Let Xy := M(R)-h. Then, by [8], Proposition 2.1, Y is contained in the

image of the morphisms
Shic, (M. Xar)e = Shyrg-1(G, X)e = Shi (G, X)e,

where K); := M(A;) N gKg™. Denote by f their composition and let
Yy be an irreducible component of f~'Y. Then Y is a special subvariety
of Shg (G, X)¢ if and only if Yy, is a special subvariety of Shg,, (M, Xu/)c.
Furthermore, Y}, is Hodge generic in Shg,, (M, Xur)c. Therefore, we may
assume that Y is Hodge generic in Shg (G, X)c.

Let (G*, X?d) be the adjoint Shimura datum associated to (G, X) and
let K*! be a compact open subgroup of G*!(A;) containing the image of K.
Then Y is a special subvariety of Shy (G, X)c if and only if its image Y4 in
Shyaa (G2, X2d) ¢ is a special subvariety. Furthermore, if Y is Hodge generic
in Shx (G, X)c, then Y24 is Hodge generic in Shgaa (G4, X?d)c. Therefore,
we may assume that G is semisimple of adjoint type.

Recall that the irreducible components of the image of a special subvariety

under a Hecke correspondence are again special subvarieties. Therefore, if we
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fix a connected component X' of X, we may assume that Y is contained in
the image S :=T'\XT of X x {1} in Shx (G, X)(C), where I' := G(Q); N K.

We denote a point in S as [h] for some h € X+,

22 (Galois orbits

The first ingredient is a lower bound for the size of the Galois orbit of a
special point. By the definition of special subvarieties, the choice of K is
irrelevant in the André-Oort conjecture. Thus, we may assume that K is
neat and a product of compact open subgroups K, in G(Q,).

Now let [h] € S be a special point. Recall that M := MT(h) is a torus
and let L denote its splitting field, by which we mean the smallest field over
which M becomes isomorphic to a product of the multiplicative group. Note
that this is a finite, Galois extension of Q containing Fj, and is independent
of the choice of h.

Let K; denote the compact open subgroup M (Ay) N K of M(Ay), which
is equal to the product of the Ky, := M(Q,) N K,. Let K} be the maximal
compact open subgroup of M(Ay), which is unique since M is a torus and
equal to the product of the maximal compact open subgroups Kj; , of M(Q,).
Note that Ky, = K}y, for almost all primes p. The following conjecture is

a natural generalisation of [7], Problem 14, posed by Edixhoven for A,:

Conjecture 22.1 There exist positive constants ¢y, By, 1 and po such that,

for any special point [h] € S,

1Gal(Q/L) - [h]| > e B [K™ - K| Db,
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where i(M) is the number of places such that Ky, # Ky, and Dy, is the

absolute value of the discriminant of L.

Note that, although the groups K} and K); depend on the choice of h, they
are well-defined up to conjugation by an element of I' and, hence, the index
(K7} Ky is well-defined. By [26], Théoréme 6.1, this bound is known to
hold under the generalised Riemann hypothesis for CM fields and, by [23],

Theorem 1.1, it holds unconditionally in the case of A,, for g at most 6.

23 Realisations

We refer to a point h € X as a pre-special point if [h] € S is a special point.
The second ingredient in the Pila-Zannier strategy is an upper bound for the
height of a pre-special point in a fundamental domain F of X with respect
to I'. As opposed to the case of an Abelian variety, this is a non-trivial issue.

For a sensible notion of height, we must first choose a realisation X of X 7.
By this we mean an analytic subset of a complex, quasi-projective variety
X, with a transitive holomorphic action of G (R)* on X such that, for any

xo € X, the orbit map
GR)" - X:g—g-x

is semi-algebraic and identifies X with G(R)" /K, where K is a maximal
compact subgroup of G(R)" (recall that G is semisimple and adjoint). A
morphism of realisations is then a G(R)T-equivariant biholomorphism. By
[24], Lemme 2.1, any realisation has a canonical semi-algebraic structure
and any morphism of realisations is semi-algebraic. Therefore, Xt has a

canonical semi-algebraic structure.
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A subset Z C X is called an irreducible algebraic subvariety of X if
Z is an irreducible component of the analytic set X N Z , where 7 is an
algebraic subset of X. By [24], Lemme 2.1, X' N Z has finitely many analytic
components and they are semi-algebraic. Also note that, by [10], Corollary
B.1, this notion is independent of our choice of X'. In particular, we have a

well defined notion of an irreducible algebraic subvariety of X .

24 Heights

For the remainder of this article, we will fix as our realisation the so-called
Borel embedding of X into its compact dual XV. We refer to [27], 3.3 for
the following definitions:

As before, for a point h € X, let

i Goe 25 G2 280 S G

be the corresponding cocharacter and let My be the G(C)-conjugacy class of
pn- Let V' obe a faithful representation of G on a finite dimensional Q-vector
space so that, for each point h € X, we obtain a Hodge structure V}, and a

Hodge filtration
Fuim (D Bl FPP S o}, B = @,V

Fix a point hy € X* and let P be the parabolic subgroup of G(C) sta-
bilising Fj,,. We define XV to be the complex, projective variety G(C)/P,
which is naturally a subvariety of the flag variety O¢ := GL(V¢)/Q, where
@ is the parabolic subgroup of GL(V¢) stabilising Fj,. Therefore, we have a

surjective map from My to XV sending uy, to Fj,.
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The Borel embedding X < XV is the map h + Fj,. It is injective since,
by [12], §2, (18), the Hodge filtration determines the Hodge decomposition.
In other words, the maximal compact subgroup K., of G(R)" constituting
the stabiliser of hg is equal to G(R)* N P.

However, ©¢ has a natural model © over Q such that, for any extension L
of Q, a point of ©(L) corresponds to a filtration defined over L. By definition,
XV is defined over the reflex field F := F(G, X) and, by the proof of [27],
Proposition 3.7, a special point & € X is defined over the splitting field of a
maximal torus 7" of GL(V') such that Tt contains the Mumford-Tate group
of h.

Therefore, since a pre-special point h € X has algebraic coordinates,
we are allowed to talk about its (multiplicative) height H(h), as defined in
2], Definition 1.5.4. The following theorem due to Orr and the author is a

natural generalisation of [17], Theorem 3.1, due to Pila and Tsimerman:

Theorem 24.1 For any By > 0, there exist positive constants ca, ps and fug

such that, for any pre-special point h € F,
H(h) < e, BIM[K™ 2 Kyp)#s D

Finally, let h € X be a pre-special point and let L be the splitting field
of a maximal torus 7" of GL(V') such that T¢ contains the Mumford-Tate
group of h. The dimension d of T is at most the dimension of V' and the

Galois action on the character group of 7" is given by a homomorphism
Gal(L/Q) — GL4(Z).

Since, by a classical result of Minkowski, the number of isomorphism classes
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of finite groups contained in GL4(Z) is finite, the degree of L is bounded by

a positive constant depending only on G.

25 Definability

In order to apply the Pila-Wilkie counting theorem, one requires the following

theorem:

Theorem 25.1 The restriction mz of the uniformisation map
7: X" =S

is definable in Rap exp-

This theorem is discussed in several articles. It was first proved for restricted
theta functions by Peterzil and Starchenko [14]. In particular, this addressed
the case of A,. It is known for general Shimura varieties due to the work of

Klingler, Ullmo and Yafaev [10].

26 Ax-Lindemann-Weierstrass

The final ingredient is the hyperbolic Ax-Lindemann-Weierstrass conjecture.
In order to state the conjecture, we require the notion of a weakly special

subvariety:

Definition 26.1 A wvariety V in S is weakly special if the (analytic) con-

nected components of 71V are algebraic in X ™.
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This definition is actually the characterisation [27], Theorem 1.2 of the
original definition [27], Definition 2.1. However, given some familiarity with
Shimura varieties, the proof is fairly straightforward and this characterisation
is precisely what we need. The term weakly special is motivated by the fact
that all special subvarieties are weakly special whereas, as explained in [13],
weakly special subvarieties are special subvarieties if and only if they contain

a special point.

Theorem 26.2 Let Z be an algebraic subvariety of S. Mazimal, irreducible,
algebraic subvarieties of m=1Z are precisely the irreducible components of the

preimages of mazimal, weakly special subvarieties contained in Z.

Again, this problem and its history are discussed at length in several
other articles. The theorem above is due to Klingler, Ullmo and Yafaev [10].
It was first proven for compact Shimura varieties by Ullmo and Yafaev [25]

and for A, by Pila and Tsimerman [18].

27 Pila-Wilkie

Let A C R™ be a definable set in an o-minimal structure and let A*# be the
union of all connected, positive dimensional, semi-algebraic subsets contained
in A. Recall the Pila-Wilkie counting theorem, first proved for rational points

in [19] and later for algebraic points in [15]:

Theorem 27.1 For every e > 0 and k € N, there exists a positive constant
¢, depending only on A, k and €, such that, for any real number T > 1, the
number of points lying on A\ A&, whose coordinates in R™ are algebraic of

degree at most k and of multiplicative height at most T', is at most cT°°.
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In this article, the o-minimal structure will be R,y exp and definable will al-

ways mean definable in Ry, exp-

28 Final reduction

The final reduction is the following result due to Ullmo, appearing as Theo-

rem 4.1 in [24]:

Theorem 28.1 Let Z be a Hodge generic subvariety of Shi (G, X)c, strictly
contained in S. Suppose that, if S is a product S; x Sy of connected compo-
nents of Shimura varieties, then Z is not of the form Sy x Z', for a subvariety
Z' of So. Then the union of all positive-dimensional, weakly special subvari-

eties of Shx (G, X)c contained in Z is not Zariski dense in Z.

We apply the theorem to Y noting that the assumption in the theorem
is no loss of generality: if necessary, we simply replace S by S; and Y by
Y’. Thus, we may assume that the union of all positive-dimensional special
subvarieties of Shx (G, X )¢ contained in Y is not Zariski dense in Y.

Therefore, if we are able to show that all but a finite number of special
points in Y lie on a positive-dimensional special subvariety of Shx (G, X)c

contained in Y, then the theorem implies that ¥ = S.

29 The Pila-Zannier strategy
By Theorem 25.1, 77 is definable and so
Y=r'YNnF
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is a definable set. By assumption, Y contains a dense set of special points
and so is defined over a finite extension F' of FE.

Consider a pre-special point h € Y and let L denote the splitting field
of M := MT(h). The Galois orbit Gal(Q/LF) - [h] is contained in Y and, if
Conjecture 22.1 holds, then

IGal(Q/LF) - [n]| > ¢, BI™ KT Ky D2,

where ¢ := ¢/[F : E]. On the other hand, by [12], Example 12.4 (a),
Gal(Q/LF) - [h] is contained in the image of the morphism

Shp,, (M, h)(C) — Shk (G, X)(C),
induced by the inclusion of Shimura data. Therefore, let
[h,m|k € Shi (G, X)(C)

denote an element of Gal(Q/LF) - [h], where m € M(Ay) is given by the
explicit description of the Galois action. Since [h,m|x € S, m is equal to
gk, for some ¢ € G(Q) and k£ € K. Denote by h' the point of Y such that

(W] = [h, m]|k. Then, up to conjugation by an element of I,
M :=MT(q'-h)=q Mg
is equal to MT(R") and
Kin /Ky =q 'Kq/qg "M (Ap)gN K.
Conjugation by q yields a bijection between this quotient and

K /M(Ap) NgKq™,
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which has cardinality [K7} : K] since ¢ = mk™".
Consequently, by Theorem 24.1, for 0 < By < min{l, By} there exist

postive constants co, g and py such that
H(W) < e B [KT 2 Ky)#s DF4.

Therefore, since all pre-special points in Xt have algebraic co-ordinates of
bounded degree, Theorem 27.1 implies that, for any ¢ > 0, there exists a

constant ¢, depending only on Y and ¢, such that there are at most
c(ex By K7y - K" Dyt )e

pre-special points on Y \ Y% belonging to Gal(Q/LF) - [h].

Therefore, we may choose € sufficiently small such that, if either [K7}; :
Ky or Dy is large enough, then there exists a point in Gal(Q/LF) - [h]
such that the corresponding point A’ € Y belongs to a positive dimensional,
semi-algebraic set contained in Y. Therefore, by [10], Lemma B.2, h’ belongs
to an irreducible algebraic subvariety of X+ contained in Y and so, by The-
orem 26.2 (the hyperbolic Ax-Lindemann-Weierstrass theorem), there exists
a weakly special subvariety V' contained in Y such that [#'] € V. Therefore,
V' is a special subvariety of positive dimension and [h] belongs to a special
subvariety contained in Y.

Therefore, on Y, in the complement of all positive dimensional, special
subvarieties contained in Y, the quantities [K}} : K| and Dy, corresponding
to special points are bounded. By [28], Proposition 3.21, the set of tori equal
to the Mumford-Tate group of a pre-special point such that [K7; : Kj,] and
Dy, are bounded lie in only finitely many I['-conjugacy classes. In particular,

such pre-special points lie above only finitely points in S.
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