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Summary

1. Modelling species distribution and abundance is important for many conservation applica-

tions, but it is typically performed using relatively coarse-scale environmental variables such

as the area of broad land-cover types. Fine-scale environmental data capturing the most bio-

logically relevant variables have the potential to improve these models. For example, field

studies have demonstrated the importance of linear features, such as hedgerows, for multiple

taxa, but the absence of large-scale datasets of their extent prevents their inclusion in large-

scale modelling studies.

2. We assessed whether a novel spatial dataset mapping linear and woody-linear features

across the UK improves the performance of abundance models of 18 bird and 24 butterfly

species across 3723 and 1547 UK monitoring sites, respectively.

3. Although improvements in explanatory power were small, the inclusion of linear features

data significantly improved model predictive performance for many species. For some species,

the importance of linear features depended on landscape context, with greater importance in

agricultural areas.

4. Synthesis and applications. This study demonstrates that a national-scale model of the

extent and distribution of linear features improves predictions of farmland biodiversity. The

ability to model spatial variability in the role of linear features such as hedgerows will be

important in targeting agri-environment schemes to maximally deliver biodiversity benefits.

Although this study focuses on farmland, data on the extent of different linear features are

likely to improve species distribution and abundance models in a wide range of systems and

also can potentially be used to assess habitat connectivity.

Key-words: abundance model, agriculture, bird, butterfly, GIS, Hedgerow, remote sensing,

species distribution model

Introduction

Predictive modelling of species distributions and abun-

dances is used in a wide range of conservation applications,

such as predicting species responses to environmental

change, identifying priority areas for conservation, and

assessing the potential distribution of range expanding spe-

cies (e.g. Ara�ujo et al. 2004). A common approach is to

model the occurrence or abundance of a species as a

function of land cover (e.g. Hirzel et al. 2006). Such datasets

are readily available and have proved useful for predictive

modelling (Oliver et al. 2012). However, land-cover classes

do not always represent ecologically relevant habitat classifi-

cations. For example, habitat classes such as broadleaved

woodland encompass stands of different ages, species com-

position and management; these differences will influence

the suitability of stands for different species (e.g. Fuller et al.

2007). In addition, fine-scale variation within land-cover

classes could influence their suitability for species, but are

hard to capture as they are often smaller than the resolution

of land-cover maps [e.g. the UK land-cover map (LCM)

2007 used 25-m resolution imagery; Morton et al. 2011].
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Advances in remote sensing and associated analysis

using Geographic Information Systems (GIS) have

allowed more detailed and potentially more biologically

relevant classification of environmental variables, with

promising applications for mapping biodiversity (Pettorelli

et al. 2014). For example, remote-sensing data have been

used to model the distribution of primate species in tropi-

cal forests (Palminteri et al. 2012) and birds in temperate

forests (Broughton et al. 2012), allowing the identification

of suitable habitat within a single land-cover class. Evalu-

ations of new spatial datasets produced by these methods

typically concentrate on their ability to accurately classify

the physical environment (Chassereau, Bell & Torres

2011), but it is also important to test whether they

improve models of species distributions and abundance,

as this will influence their applied use (Borre et al. 2011).

Attempts to model biodiversity in agriculturally domi-

nated landscapes have previously used land-cover data

relating to agricultural land use and extent of remnant

semi-natural habitats. However, a wealth of field studies

have shown that linear features, such as hedgerows, banks

and linear shelterbelts of mature trees, contribute greatly

to the biodiversity value of farmland. For example, 64%

of British butterfly species have been recorded using

hedgerows (Dover & Sparks 2000), while hedgerow length

is positively associated with small mammal biomass (Gel-

ling, Macdonald & Mathews 2007) and the abundance of

farmland bird species (Parish, Lakhani & Sparks 1995),

although measures of hedgerow composition and structure

are also important (e.g. Hinsley & Bellamy 2000). Non-

woody boundaries may also benefit biodiversity (Siriwar-

dena, Cooke & Sutherland 2012); for example, grassy

boundary features like banks provide resources for many

butterfly (Sparks & Parish 1995) and bird (Vickery, Carter

& Fuller 2002) species. As well as resource provision, lin-

ear features also influence microclimate (Dover, Sparks &

Greatorex-Davies 1997; Merckx et al. 2010) and poten-

tially increase connectivity in agricultural landscapes

(Davies & Pullin 2007).

Despite strong evidence for the importance of linear

features from field studies, national-scale assessments of

their importance are lacking due to the absence of GIS

data on their distribution. Here, we use a newly developed

GIS dataset (Scholefield et al. 2016a) to relate the extent

of linear and woody linear features to the abundance of

42 bird and butterfly species across Great Britain. We

assessed whether incorporating linear features data

improves the performance of models of bird and butterfly

abundance and examine whether the importance of linear

features varies between taxa. Such large-scale modelling

of biodiversity using linear features data has important

implications for the management of landscapes to main-

tain high species abundances. For example, models of

spatial variation in the importance of linear features could

help target agri-environment schemes promoting hedge-

row planting. Although this study focuses on farmland

biodiversity, linear features datasets similar to that used

here have potential applications in a wide range of

habitats.

Materials and methods

SPECIES ABUNDANCE DATA

We used data on bird and butterfly abundance in Great Bri-

tain from two national-scale monitoring schemes, the Breeding

Bird Survey (BBS) and United Kingdom Butterfly Monitoring

Scheme (UKBMS). Both are described in detail elsewhere

(BBS: Risely et al. (2013), UKBMS: Pollard & Yates (1993)).

In brief, in the BBS volunteers walk two transects through a

1-km square and record all birds seen and heard in three dis-

tance bands (0–25, 25–100, >100 m). Sites are visited early and

late in the breeding season (April–June). We use the maximum

count in either visit for analysis. We exclude flying birds,

except for species that are likely to be recorded in flight while

using habitat within a BBS square (of our study species these

were aerial feeding hirundines, hovering kestrel Falco tinnuncu-

lus and displaying skylark Alauda arvensis). In the UKBMS,

volunteers walk transects through each site (typically 2–4 km

long) weekly from April to September and record all butterflies

seen within a 5-m distance band. Data collected between 2005

and 2009 were used in this study. The choice of this timeframe

was motivated by the desire to maximise the sample of sur-

veyed sites while ensuring abundance data were collected at a

similar time to environmental data. Only sites surveyed for

more than 1 year were included, giving a sample size of 3723

BBS and 1547 UKBMS sites. Although differences in sampling

design meant that more BBS transects than UKBMS transects

were located in agricultural areas, other landscape characteris-

tics were comparable between survey schemes (Table S1, Sup-

porting Information).

We restricted analysis to species that occur in agricultural areas

and are, therefore, species for which linear features data are espe-

cially relevant. For birds, we selected the 18 species that were

identified by Renwick et al. (2012) to preferentially use agricul-

tural areas, while for butterflies we selected 24 species classified

as wider countryside species (Table S2).

ENVIRONMENTAL DATA

Land-cover data were obtained from LCM 2007. Land-cover

classes were aggregated in some instances (Table 1), and their

proportion in 1-km radius buffers around BBS square and

UKBMS transect centroids was extracted in ArcMAP 10.0 (ESRI

2010). The 1-km buffer was chosen as it encompasses all habitat

found within a BBS square and has been found to be the scale

that explains the most variation in population dynamics in

UKBMS sites (Oliver et al. 2010).

Data on the extent of linear features were obtained from a

recently developed model (Scholefield et al. 2016a; see for full

details). We use two outputs from this model. First, we used the

spatial framework from LCM 2007, which is based on the Ord-

nance Survey Mastermap with additional data on agricultural

boundaries from government agricultural agencies (Morton et al.

2011). This gives the total extent of linear boundary features, irre-

spective of their type (i.e. hedgerow, bank). The second output is

a model that classifies whether these boundary features are

woody. This uses the difference between the canopy surface

© 2017 The Authors. Journal of Applied Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society, Journal of
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model and digital terrain model from the remote-sensed NEXT-

Map dataset (5-m resolution) to obtain the canopy height of each

linear feature. Features were classed as woody (i.e. hedges and

trees) if the mean canopy height was ≥0�58 m, minimum canopy

height >�0�13 m and maximum canopy height ≤58 m. These

thresholds were parameterised by minimising the difference

between predicted and observed woody linear features extent

from Countryside Survey 2007 (Scholefield et al. 2016a). Coun-

tryside Survey data come a stratified random sample of 591 1-km

squares designed to give a representative sample of Great Britain.

This model predicts landscape level woody linear features extent

(i.e. woody linear features length within ITE land-class) with

R2 = 0�98 and correctly classifies 58–66% of individual features

(Scholefield et al. 2016a). Because the model is limited to the 5-m

resolution of NEXTMap, it was not possible to obtain measures

of woody linear features quality (e.g. whether a hedgerow has

gaps or hedgerow width). Linear features in uplands (altitude

>450 m), urban areas (>10% urban) or forests are not predicted

by this method. Therefore, we excluded them from further analy-

sis. The total length of linear features in each 1-km buffer was

calculated as the sum of the length of all linear features within

the buffer. Both measures of linear features length were positively

correlated (r = 0�46).

STATIST ICAL ANALYSIS

We modelled bird and butterfly abundance at each site in each

year as a function of environmental variables using generalised

linear mixed models with a Poisson error term. We used an

observation-level random effect to account for overdispersion

(Elston et al. 2001). This effectively assumes that data largely

result from a Poisson process, but with additional normally dis-

tributed variation modelled by the observation-level random

effect. Not all sites were monitored in all years, so to account for

year-to-year variation in abundance, we fitted year as a fixed

effect, with site (i.e. BBS or UKBMS transect identity) as a ran-

dom effect to account for the expected correlation between abun-

dances at the same site in different years. We also expected sites

close to each other to be spatially autocorrelated, so we used the

50-km British Ordnance Survey grid square containing the BBS

or BMS transect as a random effect to account for this. For

birds, we used distance sampling to account for variation in

detectability among habitats and visits. For each species, we fitted

half-normal detection functions to counts in each bounded dis-

tance band (<25 m and 25–100 m) using the mrds package

(Laake et al. 2013) in the program R (R Core Team 2013). Visit

date (i.e. early or late) and habitat (recorded in 200-m transect

sections, see Newson et al. 2009) were covariates. Log detectabil-

ity was used as an offset. UKBMS records are collected within a

5-m belt transect so variation in detectability is considerably

lower than variation in true abundances (Isaac et al. 2011). The

model structure for a given species was as follows:

logðNitÞ ¼ aþ b1X1i þ b2X2i. . .bnXni þ btYeart þ ½logðPivÞ�
þObservationit þ Sitei þ 50 km regionj þ e

eqn 1

where Nit is abundance in sitei at timet in 50-km regionj, with X1

to Xn being environmental covariates, Piv is the estimated detec-

tion probability at sitei on visitv (birds only) and e is residual

error.

We varied the combinations of environmental variables used in

models to evaluate the change in explanatory power when linear

features were included (see Table 2 for sets of environmental

covariates). Second-order polynomial terms for all environmental

covariates were included to allow for nonlinear relationships with

abundance. We refer to environmental variables that were not

linear features as ‘land-cover’ variables.

We first assessed whether including total linear features length

improved model performance. Models were constructed using all

land-cover variables (the full model set, Table 1), or with only

land-cover variables relating to the extent of agricultural features

(the agriculture model set, Table 1). Linear features length was

either added to models as a main effect (the additive model), or

with interactions with the proportion of arable/horticultural and

improved grassland (the interaction model). This interaction term

Table 1. Environmental variables used in different model sets

Model term (if LCM classes have been aggregated

constituent classes are in parenthesis) Units Explanatory variable set

Arable and horticulture Proportion of buffer Land cover (full, agriculture)

Improved grassland Proportion of buffer Land cover (full, agriculture)

Rough grassland Proportion of buffer Land cover (full, agriculture)

Calcareous grassland Proportion of buffer Land cover (full)

Other semi-natural grassland (neutral grassland,

acid grassland)

Proportion of buffer Land cover (Full)

Broadleaved woodland Proportion of buffer Land cover (full)

Coniferous woodland Proportion of buffer Land cover (full)

Fen, marsh and swamp Proportion of buffer Land cover (full)

Heath and bog (heather, heather grassland, bog) Proportion of buffer Land cover (full)

Urban and suburban (urban, suburban) Proportion of buffer Land cover (full)

Freshwater Proportion of buffer Land cover (full)

Altitude m above sea level/maximum altitude* Land cover (full, agriculture)

Linear features length m/100 000* Linear features

Woody linear features length m/100 000* Linear features

All variables listed here were entered into models with linear and quadratic terms.
*Altitude and linear features length were both transformed this way so that their values ranged between 0 and 1, the same range as in

variables from LCM2007.
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allowed relationships between abundance and woody linear fea-

tures length to vary in agricultural areas, as linear features may

be expected to be more important due to associations of birds

and butterflies with farmland hedgerows (e.g. Parish, Lakhani &

Sparks 1995).

We assessed whether the addition of linear features increased

model explanatory power by calculating R2 following Nakagawa

& Schielzeth (2013). Changes in R2 do not indicate whether

improvements in explanatory power justify increases in model

complexity. Therefore, we also used AIC to examine whether the

more complicated linear features model was more parsimonious

than the simpler model. Following Burnham & Anderson (2002),

we calculated the AIC weight of each model, which gives a mea-

sure of support for a given model being the best of the set of fit-

ted models. From this, we calculated the 95% confidence set of

models (the set of best models needed for the cumulative sum

of model AIC weights to be 0�95), and the selection probability

of variables, defined as the sum of AIC weights of models in

which the variable appears (Burnham & Anderson 2002). It

should be noted that while the selection probability of main

effects can be compared within model sets (e.g. within compar-

ison using all land-cover variables) as they appear in the same

number of models, the selection probability of interaction terms

will be smaller because they appear in fewer models, so should

not be compared with other variables within model sets. Interac-

tion term selection probabilities can be compared between model

sets, as they appear in the same number of models in each set.

We also tested whether models including linear features data per-

formed better when tested on independent test data. To do this

we split data into independent training (75% of data) and testing

(25%) sets, calibrated models to the training set and then tested

them on the testing set. This was repeated 100 times. For each

model and iteration, we calculated the root-mean-squared error

on the scale of the linear predictor. This was then used as a

response variable in ANOVAs with model set as the explanatory

variable, in order to test whether differences in prediction error

were significantly different between model sets given the variation

in prediction error between iterations. Prediction errors could not

be assessed for two bird and one butterfly species due to insuffi-

cient data to perform cross-validation.

Finally, we tested whether estimated woody linear features

length was a better descriptor of the environment than total lin-

ear features length by selecting for each species the best perform-

ing model with a linear features term (i.e. the model with the

lowest AIC), then replacing this linear features term with woody

linear features length. If the woody liner-features variable does

not improve models, this could be due to species being associated

with non-woody boundary features and/or due to classification

errors of woody linear features. We calculated the difference in

AIC between these two models to assess whether model perfor-

mance was improved by including woody linear features.

Results

Abundance models with land-cover explanatory variables

had moderate explanatory power (mean marginal R2

across species in each group: birds = 0�339 � 0�068 SE,

butterflies = 0�206 � 0�025 SE), although the year term

explained a considerable proportion of this variation

(marginal R2 of models with only year as a fixed effect,

birds = 0�129 � 0�019 SE, butterflies = 0�111 � 0�010 SE).

Including linear feature length in models led to a small

increase in explanatory power as measured by marginal

R2 (mean increase in explanatory power = 4�5%, maxi-

mum increase in explanatory power = 29�4%, Tables 2

and S2).

For 72�2% of bird species (13 of 18 species), the model

with the lowest AIC value included linear features length;

the same was true for 54�2% (13 out of 24) butterfly spe-

cies (Table 3). As an additive term, linear features had a

selection probability of >0�95 for 12 of the 18 bird species

studied, compared with five of 24 butterfly species

(Table S2). This indicates that, for birds at least, the

increase in explanatory power given by linear features

Table 2. Marginal and conditional R2 of models of bird and butterfly abundance

Taxa Explanatory variables Model structure

Marginal R2

(mean � SE)

Conditional R2

(mean � SE)

Birds Full Land cover 0�339 � 0�068 0�683 � 0�045
Land cover + Linear features 0�344 � 0�066 0�680 � 0�046
Land cover * Linear features 0�351 � 0�066 0�681 � 0�045

Agriculture Land cover 0�168 � 0�0272 0�626 � 0�037
Land cover + Linear features 0�198 � 0�028 0�612 � 0�039
Land cover * Linear features 0�186 � 0�029 0�609 � 0�037

Linear features only 0�146 � 0�021 0�635 � 0�048
Year only 0�129 � 0�019 0�649 � 0�048

Butterfly Full Land cover 0�206 � 0�025 0�808 � 0�022
Land cover + Linear features 0�219 � 0�032 0�812 � 0�022
Land cover * Linear features 0�221 � 0�030 0�811 � 0�022

Agriculture Land cover 0�111 � 0�013 0�797 � 0�022
Land cover + Linear features 0�122 � 0�014 0�796 � 0�022
Land cover * Linear features 0�126 � 0�0135 0�795 � 0�022

Linear features only 0�112 � 0�010 0�810 � 0�021
Year only 0�111 � 0�010 0�812 � 0�021

+denotes linear features length being included in the model in an additive fashion. *denotes linear features being included as an interac-

tion. Note that R2 in mixed effects models do not necessarily increase with additional explanatory variables.

© 2017 The Authors. Journal of Applied Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society, Journal of
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data justified the increase in model complexity. In general,

uncertainty over the best model was higher for butterflies

than for birds, indicated by the retention of more models

in the 95% confidence set (Fig. 1).

Inclusion of linear features length reduced cross-valida-

tion prediction error for the majority of bird and butterfly

species, with the improvement in model performance most

pronounced in birds (Fig. 2, Table 3). However, reduc-

tions in prediction error were small (median reduction in

prediction error across all species when linear features

length was included as an additive term = 0�57%). This

was partly due to variation in the importance of linear

features and improvements in model predictive perfor-

mance between species (Table S2), with the change in pre-

diction error with the addition of a linear features

additive term varying between a 6�52% reduction (Sylvia

curruca lesser whitethroat) and a 9�97% increase

(Thymelicus lineola Essex skipper).

The form of the relationship between abundance and

linear features length varied between species (Fig. S1).

Just under half of our study species (10 of 18 birds and

10 of 24 butterflies) had positive humped relationships,

indicating a preference for intermediate amounts of linear

features. Other species (28�6%, e.g. Columba oenas stock

dove) showed a negative relationship, indicating a prefer-

ence for areas with few linear features.

Interaction terms between linear features and extent of

arable or intensive grassland had selection probabilities

>0�95 for five bird species (Sylvia communis common

whitethroat, Motacilla flava yellow wagtail, Fringilla coe-

lebs chaffinch, Carduelis cannabina linnet and Emberiza

citrinella yellowhammer), but no butterfly species

(Table S2). In all cases, these interactions took the form

of increased magnitude of the relationship between abun-

dance and linear features length in agricultural habitats,

as well as small shifts in the optimum amount of linear

features (Fig. S1). This increase in the magnitude of the

relationship with linear features length in agricultural

habitats was seen for 10 bird species and 12 butterfly spe-

cies (Fig. S1), indicating that linear features were often

more important determinants of abundance in agricultural

landscapes than in other landscapes.
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Fig. 1. Proportion of species for which

models with different variable sets (see

Table 1 for terms in each set) were in the

95% confidence set of best supported

models. Multiple models for each species

can appear in the 95% confidence set.
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Fig. 2. Change in cross-validation predic-

tion error when linear features length was

included in models. Models were fitted

using all land-cover classes (Full) or only

those relating to agriculture. Bars show

the number of species where prediction

error was significantly reduced (Sig �),

non-significantly reduced (NS �), non-sig-

nificantly increased (NS +) or significantly

increased (Sig +) when linear features

length was included. The results of bino-

mial tests, which test whether the propor-

tion of species where linear features

improved predictive performance differed

from 0�5, are shown above bars.

**P < 0�01, *P < 0�05, _P < 0�1, NS

P > 0�1).
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Using woody linear features length instead of total lin-

ear features length improved model performance (as

judged by lower AIC) for 24 (57%) of the study species,

with substantial improvements (ΔAIC >4) for 33�3% of

species (Table 4). Abundance models of butterflies were

more likely to be improved by using woody linear features

length (Table 4), although the proportion of species for

which models with woody linear features performed better

than models with linear features did not differ signifi-

cantly from 0�5 for both birds and butterflies (binomial

tests, P = 0�815 and P = 0�152, respectively).

Discussion

This study considered the ability of biotope area and two

estimates of linear features to explain butterfly and bird

abundance. Inclusion of data on linear features length has

the potential to improve species abundance models, as

such habitats are known to be important for many spe-

cies. We found that although increases in model explana-

tory power were small (mean increase in marginal R2 with

linear features term = 4�5%; maximum = 29�4%), their

inclusion was justified by decreases in model AIC and

reduction in cross-validation prediction errors for most

species. Under cross-validation tests on spatially distinct

data, 88% of bird and 67% of butterfly species tested

showed reductions in prediction errors when linear fea-

tures were included in models (Table 1). Abundance

models of over half the study species, and particularly

butterflies, were further improved by replacing total linear

features length with predicted woody linear features

length. This demonstrates that even a simple model of lin-

ear features length can improve our ability to map biodi-

versity, and that more sophisticated models that predict

whether linear features are hedgerows may lead to further

improvements.

Generally, our statistical models had relatively low

explanatory power, explaining up to 35% and 22% of the

variation in bird and butterfly abundance, respectively

(Table S3). There are a number of possible reasons for

this: sampling error in species abundance counts, error in

the quantification of environmental data and other factors

affecting abundance which were not included in models.

For example, fine-scale variation in habitat structure (e.g.

species composition) were not included in our models, yet

are known to be important for birds and butterflies (e.g.

Dennis 2010). Although we recognise the importance of

these variables, our approach is pragmatic in testing data

that can be gathered relatively cheaply at large spatial

scales, but that is still coarse relative to detailed habitat

surveys.

Although the addition of linear and woody linear fea-

tures data improved model performance, the improve-

ments were, perhaps, not as dramatic as may be expected

given the evidence from field studies documenting associa-

tions between many species and hedgerows (Parish,

Lakhani & Sparks 1995; Dover & Sparks 2000). For total

linear features length, this may be because the linear fea-

tures model does not distinguish between different bound-

ary features. Even the woody linear features term is a

broad category containing a variety of different habitat

structures that differ in their suitability for different spe-

cies. For example, some species will be positively associ-

ated with farmland hedges rather than linear shelterbelts,

but the current dataset does not distinguish between type

or quality of woody linear feature. Previous studies have

found that fine-scale variation in the structure of hedge-

rows influence their biodiversity value (Hinsley & Bellamy

2000; Merckx & Berwaerts 2010), with parallel hedges in

green lanes having significantly higher butterfly abun-

dances than single hedges (Dover et al. 2000), and the

inclusion of field-collected estimates of boundary type and

Table 3. Effect of including linear features as an additive or interaction term on abundance models. Note that prediction errors could

not be assessed for two bird species and one butterfly species due to insufficient data to perform cross-validation

Number

of species

Number of species for which linear

features are in the 95% confidence set

Number of species where

best model contained

linear features

Number of species where

linear features term reduced

prediction error

Birds 18 Either additive or interaction 14 13 14

Additive 9 7 14

Interaction 10 6 12

Butterflies 24 Either additive or interaction 24 13 17

Additive 24 11 15

Interaction 18 2 15

Table 4. Effect of linear features variable type (all linear features

or woody linear features only) on model performance. Differ-

ences in the performance of models with different linear features

was measured with DAIC, with larger values indicating greater

support for one model over the other. See Table S4 for results

for individual species

Number of species for

which woody linear

features term best

predicts abundance

Number of species for

which all linear

features term best

predicts abundance

DAIC ≥4 DAIC <4 DAIC <4 DAIC ≥4

Birds 7 1 1 9

Butterflies 7 9 4 4
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quality has been found to improve models of farmland

bird abundance (Siriwardena, Cooke & Sutherland 2012).

We did not have data on the quality of hedges or sur-

rounding farmland, so could not capture this fine-scale

variation, but our approach does enable boundary fea-

tures to be incorporated into landscape scale abundance

models. Future developments in LiDAR technology may

allow the quantification of hedgerow structure by provid-

ing higher resolution data than the 5-m resolution data

used here, giving greater insights into hedgerow quality.

Due to the importance of hedgerows for many species,

we expected that including the length of woody linear fea-

tures would lead to greater improvements to abundance

models than including the length of all linear boundary

features. However, for 43% of study species, the model

including all linear boundary features was better sup-

ported than the model with woody linear features extent.

This could reflect that non-woody boundary features will

provide important resources for some species (Siriwar-

dena, Cooke & Sutherland 2012). For example, ditches

are an important foraging habitat for yellow wagtails

(Gilroy et al. 2009), and for them, the model containing

the length of all linear boundary features performed better

than the model with just woody linear features extent.

The poorer performance of models with woody linear fea-

tures length for some species may also result from classifi-

cation errors, with woody linear features being predicted

to occur in places where they were absent, and vice versa.

Such errors will impact the performance of abundance

models by violating the regression assumption that

explanatory variables have been measured without error

and could be especially severe if the errors were non-ran-

dom (Barry & Elith 2006). Uncertainty over the classifica-

tion of explanatory variables can be incorporated into

models (McInerny & Purves 2011), but requires provision

of estimates of uncertainty in GIS datasets. The woody

linear features model used currently does not give esti-

mates of uncertainty, but the feasibility of such measures

should be considered when probabilistic GIS datasets are

created.

Some of our study species would be expected to show

strong responses to linear features as previous work has

documented their importance. For example, the extent

and quality of farmland hedges are known to influence

yellowhammer and chaffinch abundance (Bradbury et al.

2000; Whittingham et al. 2009). Both these species showed

strong responses to linear features in this study, but the

inclusion of woody linear features length rather than all

boundary features improved abundance models for chaf-

finch but not yellowhammer. The inclusion of linear fea-

tures also improved abundance models for species such as

lapwing Vanellus vanellus and stock dove that primarily

use resources in field interiors (Murton, Westwood &

Isaacson 1964; Vickery, Carter & Fuller 2002); the nega-

tive relationship with linear features length for both spe-

cies is consistent with this. As with birds, butterfly

associations sometimes matched and sometimes contrasted

with expectations based on previous studies. The abun-

dance of gatekeepers and small heaths in field margins are

both positively influenced by hedgerows (Sparks & Parish

1995), but while linear features data improved model pre-

dictions for both species, the selection probability of lin-

ear features was considerably stronger for small heaths.

For some grassland associated species (e.g. meadow

brown), the total linear features length term was better

supported than woody-linear features length, which is

consistent with these species using grassy boundary fea-

tures such as banks, but for other species (e.g. brown

argus), the woody linear features term was better sup-

ported. This could reflect grassland species using hedge-

rows as movement corridors, and hedges also provide

varied microclimates and nectar resources (Dover, Sparks

& Greatorex-Davies 1997; Dennis 2010).

In general, bird abundance models showed greater

improvements than butterfly abundance models when lin-

ear features data were added. However, the inclusion of

woody linear features instead of the total linear features

length led to greater improvements for butterflies. This is

likely to be due to ecological differences, with many birds

deriving benefits from the resources provided by linear

features in the wider landscape around sites (Whittingham

et al. 2009), while butterflies might benefit from hedgerow

resources and shelter at a much more local level (Dover,

Sparks & Greatorex-Davies 1997).

Interactions between linear features and agricultural

land-cover were important (i.e. selection probability

>0�95) for five bird species, indicating that the relationship

between linear features and abundance varied with land-

scape context. The general form of interactions across

species was to increase the importance of linear features

in agricultural areas. The particular importance of linear

features in agricultural land classes for some species could

also be because linear features serve a greater function for

connectivity and as habitat in their own right when they

cross a hostile agricultural matrix (Davies & Pullin 2007).

This supports the intermediate landscape complexity

hypothesis (Tscharntke et al. 2012), which predicts that

interventions to improve landscape quality (e.g. planting

hedgerows) are likely to have a greater impact in lower

quality landscapes (such as farmland). By showing that,

for some species at least, landscape context is important

for influencing the importance of linear features, our

results hint at the potential to use the linear features data-

set to identify areas where linear features are particularly

important.

In this study we focus on birds and butterflies because

large monitoring schemes means that it is possible to

assess the national-scale importance of linear features.

However, linear features are important for many other

taxa, including invertebrates other than butterflies (Maud-

sley 2000), so linear features extent could potentially

improve abundance models for many taxa. It may also be

possible to extend the linear features models used here to

determine the identity of non-woody boundary features.
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For example, improved knowledge of the distribution of

ditches could help model the distribution of wetland-asso-

ciated biodiversity in agricultural landscapes (Mossman,

Panter & Dolman 2015). Modelling approaches using lin-

ear features data could be extended to quantify connectiv-

ity between habitats. For example, if linear features are

assumed to be corridors allowing movement through

matrix habitat, then they can be used in circuit theory

models to quantify connectivity among habitat patches

(McRae et al. 2008). Such models can then be combined

with movement data to test the value of linear features

for enhancing connectivity for different taxa. While such

tests can be performed at small spatial scales using field-

collected linear features data, or at large scales by quanti-

fying fragmentation of woodland land cover (e.g. Newson

et al. 2014), the availability of national-scale data poten-

tially allows connectivity networks to be mapped at broad

spatial scales, facilitating tests of their utility for deliver-

ing biodiversity benefits as well as design of evidence-

based connectivity networks. Finally, we note that

although the linear features models used in this study are

based on UK mapping and remote-sensing data, similar

models could be developed in other countries providing

there is a spatial framework that can be used to identify

field boundaries, and an estimate of canopy height which

can be used to predict whether linear boundary features

are woody. This may be particularly valuable in areas

where woody linear features are proposed as corridors to

mitigate against forest fragmentation (e.g. Lees & Peres

2008).

In conclusion, linear features such as hedgerows are

known to be important for many taxa, so large-scale GIS

data on their distribution and extent would be expected

to improve models of the abundance of birds and butter-

flies. Our results confirm this hypothesis, although the

extent of improvements varied between species. Linear

features data can be used in a variety of modelling appli-

cations, for example, examining the extent to which the

importance of linear features varies spatially and between

taxa. This could assist targeting of agri-environment

schemes and other hedgerow planting incentives, in order

to provide linear features where they are most needed.

Further developments to improve the classification accu-

racy of the GIS dataset are likely to further improve its

utility for end-users.
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