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Abstract—In recent years cloud computing has seen steady
adoption due to its unique features such as elasticity, fault-
tolerance and utility billing. Cloud computing Infrastructure-as-
a-Service (IaaS) enables unique architectures that can dynami-
cally scale and configure computing resources from a catalogue
of available features. In addition to provisioning long running
homogeneous clusters of Virtual Machines (VMs), it can also be
feasible to provision ephemeral and heterogeneous per-job VMs.
This is made possible due to the reduced VM startup time and
per-minute billing for cloud VMs. In this paper we design and
implement CloudEx, a generic and novel framework for executing
jobs on public clouds by leveraging the Google Cloud Platform.
CloudEx enables users to split jobs into a sequence of smaller
tasks that can be distributed using Bin Packing or user-defined
algorithm. Additionally, users can specify the VM specification
per job or per task, CloudEx then provisions the required VMs,
coordinates the job execution and terminates these VMs once the
job is completed.

I. INTRODUCTION

Public clouds, most notably Amazon Web Services (AWS)

[1], Google Cloud Platform (GCP) [2] and Microsoft Azure

[3] offer Infrastructure-as-a-Service (IaaS) such as Virtual

Machines (VMs). Virtual Machines can be provisioned from

a catalogue of predefined machine types in terms of CPU

cores and memory. Additionally, with the reduced VM startup

time and the per-minute billing model adopted by both GCP

and Azure, it is now feasible to dynamically provision het-

erogeneous per-job cloud VMs which are terminated once

the job is completed. This approach provides the ability to

tailor the computing resources to fit the current job rather

than the traditional cluster approach of tailoring jobs to fit

the computing resources available.

In this paper we outline the design and implementation of

CloudEx1, an open source framework for executing jobs on

public clouds by leveraging the Google Cloud Platform and

in particular Google Compute Engine (GCE) [4]. CloudEx

enables users to split jobs into a sequence of smaller tasks that

can be distributed using Bin Packing or user-defined algorithm.

Additionally, users can specify the VM specification per job

or per task, CloudEx then provisions the required VMs,

coordinates the job execution and terminates these VMs once

the job is completed. In this paper we show that the average

1http://cloudex.io

VM startup time on GCE is 85 seconds. Additionally we

show that when acquiring VMs for short-running jobs, per-

minute billing can save hundreds of hours compared to per-

hour billing.

The rest of this paper is organised as follows: Section II

briefly introduces Google Compute Engine, then Section III

describes the high level architecture of CloudEx. Section IV

explains how CloudEx jobs can be defined, followed by an

explanation of the approach used for handling tasks input and

output in Section V. The approach used for distributing the

execution of CloudEx tasks is explained in Section VI. Sub-

sequently, Section VII covers the implementation of CloudEx

and experiments, followed by a brief review of related work

in Section VIII. Finally, Section IX concludes this paper and

highlights possible future work.

II. GOOGLE COMPUTE ENGINE

Google Compute Engine (GCE) enables users to create

and manage Virtual Machines (VMs), known as instances, on

the Google infrastructure. VMs are defined under a project

and are created in a particular zone, which specifies the

region and data centre used to host the VM. GCE provides

a number of machine types [5] for launching VMs, these

are categorised into shared-core, standard, high-memory, high-

CPU and custom categories. Once a VM is started it can query

the GCE metadata server for metadata information [6] such as

VM ID (instance ID), hostname and user defined metadata.

GCE VMs are charged per-minute based on their CPU and

memory configurations, with an initial 10 minutes charge.

III. HIGH LEVEL ARCHITECTURE

The high level architecture of the CloudEx framework is

shown in Figure 1, this architecture is based on three major

components, 1) Virtual Machines (VMs), 2) cloud services

including databases and storage and 3) the CloudEx framework

components. A coordinator VM is used to start, manage and

terminate a number of ephemeral VMs called processors. For

each job, the coordinator will start the number of required

processors then distribute the workload between them and sub-

sequently terminate these processors once the job is completed.

The coordinator coordinates the processors by issuing simple

http://cloudex.io


Fig. 1. CloudEx High Level Architecture.

commands in the form of key/value pairs using the metadata

server.

A. Key CloudEx Definitions

This section introduces some of the key CloudEx definitions

that will be used throughout the rest of this paper. CloudEx

VMs are divided into two categories:
Definition 1: Coordinator (C), is a long lived VM that

is required to stay on for as long as the system is running.

A coordinator distribute task execution between a number of

processors using a workload partitioning function f .

Definition 2: Processors (P ), are short lived or ephemeral

VMs that will be started by a coordinator to perform partic-

ular tasks and then be terminated once the tasks are done.

Processors do not communicate with each other.
CloudEx work is divided into logical blocks of functionality

that is implemented as a subroutine in a computer program,

each logical block is called a task, and can be defined as

follow:

Definition 3: Tasks (T ), are user-defined subroutines that

process a number of workload items (files, database rows, etc.)

and need to be executed in either a coordinator or a number

of processors.
Tasks that need to be executed by the coordinator are

simply referred to as coordinator tasks. Coordinator tasks are

mainly responsible for aggregation activities and are neither

processing nor memory intensive. Similarly, tasks that need to

be executed by processors are referred to as processor tasks.

Processor tasks are either processing or memory intensive

and require processors to be scaled horizontally or vertically

depending on the nature of the task. Users can specify the VM

requirements for each task.

A computational job can be divided into CloudEx tasks that

are executed separately using a divide-conquer approach. The

tasks to be executed by the CloudEx framework are grouped

in a CloudEx job (j), which defines how to orchestrate and

execute these tasks.

Definition 4: Job (j), is a definition of CloudEx tasks and

how they should be executed. A job also defines some initial

data in the form of key/value pairs to be used as input to the

task subroutines.

During job execution, the coordinator maintains an in-

memory key/value pairs store called the job context. Input for

tasks can populated from the job context and output saved

back to it. Each processor task has a workload partitioning

function f which is used by the coordinator to partition the

workload for the task between a number of processors and can

be defined as follows:

Definition 5: Workload partitioning function (f ), is the

function (f : W → P ) that maps a set of workload items W

to a set of processors P .

The CloudEx framework is implemented as an application

component (Figure 1) that is run on both the coordinator and

processor. This application can be defined as follows:

Definition 6: CloudEx (CLX), is an application with a

number of subroutines, one for each task and runs on a

coordinator or a processor. The application can read and

update the processor metadata and interact with other cloud

services.

All processors (P ) are created from the same VM image

and hence contain the same software. The CloudEx application

CLX is initially installed on the disk of a template VM and

saved as a VM image (VMI).

Definition 7: Image (VMI), is a VM image used to create

all the processors. This image contains a bootable root file

system and the CloudEx application CLX .

When a processor is created from the image VMI , based on

the metadata supplied to the processor, the CloudEx applica-

tion CLX can: 1) decide which task in CLX to execute, 2) set

the task input from the metadata, 3) retrieve the workload

items assigned to this processor from cloud services (storage,

databases, etc.).

B. The Lifecycle of the Coordinator and Processors

Initially, the coordinator is started and provided with a job

to execute. The coordinator will iterate over each of the tasks

defined in the job, if the task is a coordinator task then the

coordinator will execute it. Otherwise for processor tasks, the

coordinator will partition the workload between a number

of processors using the workload allocation function f . The

coordinator then, using image VMI , creates and starts the

required number of processors, providing each with metadata

that contains the name of the task to execute and its input data.

At this point the coordinator waits for all processors to finish

executing the task.

Once a processor starts up, the application CLX is run by

default. Once running , CLX reads the processor’s metadata,

based on this metadata it chooses a task to execute and

populate its input data. CLX then updates the processor

metadata status as BUSY. When the task is run by the processor

it can interact with the various cloud services such as storage



Fig. 2. CloudEx job entities.

and databases to download and process the assigned workload.

Once the task is done it uploads its output, if any, to other

cloud services. At this point CLX updates the processor

metadata status as FREE. The processor then waits for further

metadata updates from the coordinator.

Once all the processors have updated their metadata status

to FREE, the coordinator checks if there are anymore tasks to

execute. If all the tasks are done, the coordinator will terminate

all the processors to avoid incurring unnecessary cost. If there

are more tasks to execute then the coordinator will continue to

process them. The processors are reused multiple times during

job execution to run all the processor tasks. If a particular

task requires more processors than the ones already started,

or processors with different CPU and memory configurations

then the coordinator will start new ones.

IV. DEFINING JOBS

CloudEx tasks, their input data and processing details are

specified using a job definition. The job definition consists

of three main parts: 1) Job Data, 2) Virtual Machine Con-

figurations and 3) Tasks Definition. These parts are shown in

Figure 2 and explained in detail in the following sections.

A. Job Data

Job data is a collection of initial arbitrary key-value pairs

that can be used as input to the various tasks and partitioning

functions. Values denote constants or names of cloud services

data containers such as tables or buckets; these values are

constraint to String and Numeric data types. When the job

is executed, this initial data will be added to the job context

so that it can be referenced as input to any of the tasks or

partitioning functions.

B. Virtual Machine Configurations

Virtual Machine Configurations (abbreviated as VMConfig),

is a collection of key-value pairs detailing the attributes

required for launching the VM. Keys identify common cloud

parameters such as virtual machine type, disk type, etc. . . .

Values provide a specific identifier that relates to the cloud

provider being used. The VMConfig is used as the base

virtual machine settings when creating CloudEx processors.

The following keys are used by CloudEx:

• Zone: The zone identifier in which the virtual machine

should be deployed.

• VM image: The identifier of the virtual machine image

VMI to use, which contains the CloudEx application.

• VM type: the type of the virtual machine, the value

is a cloud provider specific identifier that corresponds

to a number of CPU cores and certain amount of main

memory.

• Network: the identifier of the networking configurations

to use for the virtual machine.

• Disk type: the type of disk to use, covering options

such as magnetic, solid state, ephemeral or persistent disk

types.

• Startup script: a script to be executed once the virtual

machine is started.

C. Tasks Definition

Tasks definition is a list of task configuration (abbreviated

as TaskConfig) for the individual tasks to be executed by

CloudEx. Each TaskConfig provides details on how to initialise

and process the task. A TaskConfig provide details that are

applicable to either processor tasks, coordinator tasks or both,

these details are summarised as follows:

• Task subroutine (both): a reference to the task subrou-

tine to be executed for the task.

• Input (both): the input data for the task specified as a

collection of key-value pairs. A value can either be a

constant or a reference that will be resolved from the job

context.

• Target (both): indicate which component, coordinator or

processor that executes the task.

• Error action (both): an action to be taken if the task

subroutine exits due to an error. Two error actions are

considered, to ignore the error and continue executing

other tasks in the job, or to terminate the job execution.

• Output (coordinator): the names of the output of the

task subroutine. The output of the task will be added to

the job context using this name as the key and the actual

output as the value.

• VMConfig (processor): optionally for processor tasks,

a virtual machine configuration can be specified for the

execution of the task. This configuration can be statically

specified in the task definition or dynamically speci-

fied during the job execution. If omitted the VMConfig

provided as part of the job definition will be used for

processor tasks.

• Partitioning configuration (processor): the TaskConfig

for all processor tasks is required to have a partitioning

configuration, abbreviated as PartitionConfig.

The PartitionConfig is required for all processor tasks and

contains a reference to the subroutine of partitioning function

f and its input data, which can be resolved from the job

context as will be explained in the next section. The Partition-

Config also includes output keys to be used when adding the

output of f to the job context. This PartitionConfig describes

how the workload for the task can be distributed between a

number of processors.



V. DEALING WITH TASKS INPUT AND OUTPUT

When executing a job, the coordinator maintains an in-

memory collection of key-value pairs called the job context.

The job context is used to share data between the various tasks

and partitioning functions. The coordinator tasks can directly

accept input from and provide output to the job context.

Processor tasks can also accept input from the job context,

however, this input is sent remotely to the processors through

the metadata server. Partitioning functions for processor tasks

are executed by the coordinator and hence have direct access

to the job context. Consequently, these functions can directly

accept input from and provide output to the job context. When

defining tasks, values in the job context can be referenced as

input or output for the tasks, by simply referring to them by

their keys.

A. Input and Output Resolution

When defining a CloudEx task, its input is defined as either

constants or variable names. These variables’ names are used

as keys to lookup a value from the job context. For example,

if a task is defined to have the following key-value pairs

as input {threshold:50, domain:example.com,

table:#key1, file:#key2}. The coordinator will treat

all the values as constants, except those prefixed with #, those

are treated as variables. The coordinator will remove # prefix

and will then lookup key1 and key2 in the job context.

The same approach is applied to the input of partition-

ing functions attached to processor tasks. Additionally, this

approach is also used to resolve the input for processor

tasks. However, this input is not directly populated by the

coordinator, instead it is sent to the processor with the task

metadata through the metadata server. Output of coordinator

tasks and partitioning functions can also be specified when

defining tasks. Once a task or a partitioning function is

executed, the coordinator uses these keys to save its output

back to the job context. The approach provides the ability to

explicitly reference output values in the job definition.

VI. PARTITIONING THE WORKLOAD

The CloudEx framework provides two mechanisms for

users to specify how computationally intensive tasks can be

distributed between a number of processors. The number of

processors to use for task execution can be determined by

using one of these mechanisms: 1) a built-in partitioning

function f based on a variation of the Bin Packing algorithm

[7], [8] or 2) a user-defined partitioning function. The built-in

partitioning function f is explained in detail in the following

section.

A. Bin Packing Partitioning

CloudEx provides a built-in workload partitioning function

f based on a variation of the Bin Packing algorithm. This

function is used to partition the task execution between a

number of processors or bins based on the sizes of the

workload items W . Workload items W can be a collection of

items which can be resolved from the job context, for example

a collection of file names with their sizes. To use the built-in

function f , one of the following parameters must be provided:

• the number of bins (processors) N to use or

• the bin capacity C and optionally δ (where 0 ≤ δ < 1)

which is the maximum fraction of a bin that needs to be

rounded up to a full bin.

1) Calculating The Bin Capacity: Assuming there is a total

of M workload items (w1, w2, · · · , wM ) and each has a size

of (s1, s2, · · · , sM ) with the largest item having a size of sK
such that (0 < si ≤ sK) these items are divided into N bins

where the capacity of each bin is C. Two cases are dealt

with, the first if the user specifies N , then C is determined as

C =
1

N

∑M

i=1
si, rounding up the results if necessary. In this

case the number of bins must be fixed, so each bin is filled up

to the maximum capacity C. After all the bins are filled any

remaining items are equally spread between the bins. This is

achieved by sorting the bins in ascending order and the items

in descending order then placing the largest items into the

smallest bins, this continues until there are no further items to

add.

2) Calculating The Number of Bins: The second case is

when the user provides both C and δ, in this case N is

determined by first calculating the lower bound number of

bins NL as NL =
1

C

∑M

i=1
si. If NL has a fraction that is

greater than δ then it is rounded up to the nearest integer

value. However, if this fraction is smaller than δ then it is

discarded and the remaining items after filling up all the bins

are spread between the bins as explained previously. If the

user does not provide a value for C, or if the provided value

is less than the largest item sK , then the size of the largest

item sK is used.

VII. IMPLEMENTATION AND EXPERIMENTS

An implementation of the CloudEx framework was created

as a reusable library using the Java programming language.

This implementation is open source and is publicly available2.

The current implementation consists of the high level compo-

nents shown in Figure 3 and summarised as follows:

• cloudex-core: is the generic implementation of the pro-

cessor and coordinator algorithms and provides a Coordi-

nator and Processor sub components. Additionally, this

component includes the built-in Bin Packing function f

explained in Section VI.

• cloudex-google: is an implementation that is specific to

the Google Cloud Platform (GCE) [2].

• user-defined-tasks: is a component of all the user defined

tasks subroutines that the CloudEx framework needs to

execute.

• user-defined-partitioning-functions: is a component of

all the user defined partitioning function subroutines that

the user can reference when defining processor tasks.

We have used the CloudEx framework to execute, on the

Google Cloud Platform, a range of short-running jobs for

2https://cloudex.io/

https://cloudex.io/


Fig. 3. CloudEx high level components.

Fig. 4. Comparison of per-min and per-hour billing vs. VM Type.

processing structured data as part of the ECARF project3.

Over the duration of the project, CloudEx has acquired 1,086

VMs at a total cost of $290.29. The CloudEx framework

successfully acquired and sent instructions to processors using

the Google Compute Engine APIs. The number of acquired

processors ranged from 1 to 16 with various memory and

CPU cores configurations. The average startup time taken to

acquire CloudEx processors is 85 seconds. This is the time

taken for the processor to be created, started and runs the

CloudEx application.

Google Compute Engine charges per-minute, consequently,

we have also compared the total cost incurred by the various

VM types on per-minute versus per-hour billing as shown

in Figure 4. With CloudEx processors utilised for less than

an hour, the per-minute billing model has saved 697 hours

compared to per-hour billing. This is because in per-hour

billing if a VM is terminated before reaching a full hour of

operation, the usage is rounded up to the nearest hour.

VIII. RELATED WORK

A number of approaches have focused on improving and

extending existing cluster management and job scheduling

frameworks to enable migration and interoperability with the

cloud [9], [10], [11], [12]. These approaches are mainly

focused on extending and integrating with existing cluster

resource managers such as Torque4 and job schedulers such

as Moab5 to be able to create cloud based elastic compute

clusters.

3http://ecarf.io
4http://www.adaptivecomputing.com/products/open-source/torque/
5http://www.adaptivecomputing.com/products/cloud-products/moab-cloud-suite/

A large scale elastic environment for scientific computing

with recontextualization was presented by Marshall et al. [12].

This approach integrates with Torque and utilises an elastic

resource manager, which consists of three major components,

a component to read submitted jobs from a queue, a decision

engine and a provisioner that interacts with the Cloud provider

APIs. An Elastic Cloud Computing Cluster (EC3) tool is

developed by Caballer et al. [10]. EC3 creates elastic virtual

clusters on top of a number of cloud providers (Amazon

EC2, OpenStack and OpenNebula) and integrates with existing

resource management systems. The clusters in EC3 are self

managed with the ability to scale up or down depending on a

predefined policy.

IX. CONCLUSION AND FUTURE WORK

In this paper we have presented the architecture of CloudEx,

a novel and generic task execution framework that can be

implemented on any cloud provider IaaS. Additionally, we

have presented a workload partitioning approach based on the

bin-packing algorithm to distribute the processing of tasks

between a number of processors. As future work we plan

to improve the CloudEx framework by providing resilience

for the coordinator and adding the capability to autoscale the

processors based on particular cost and deadline constraints.

Additionally we plan to provide implementations for other

prominent cloud providers such as Amazon Web Services and

Microsoft Azure.
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