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Abstract—In recent years cloud computing has seen steady
adoption due to its unique features such as elasticity, fault-
tolerance and utility billing. Cloud computing Infrastructure-as-
a-Service (IaaS) enables unique architectures that can dynami-
cally scale and configure computing resources from a catalogue
of available features. In addition to provisioning long running
homogeneous clusters of Virtual Machines (VMs), it can also be
feasible to provision ephemeral and heterogeneous per-job VMs.
This is made possible due to the reduced VM startup time and
per-minute billing for cloud VMs. In this paper we design and
implement CloudEx, a generic and novel framework for executing
jobs on public clouds by leveraging the Google Cloud Platform.
CloudEx enables users to split jobs into a sequence of smaller
tasks that can be distributed using Bin Packing or user-defined
algorithm. Additionally, users can specify the VM specification
per job or per task, CloudEx then provisions the required VMs,
coordinates the job execution and terminates these VMs once the
job is completed.

I. INTRODUCTION

Public clouds, most notably Amazon Web Services (AWS)
[1]], Google Cloud Platform (GCP) [2] and Microsoft Azure
[3] offer Infrastructure-as-a-Service (IaaS) such as Virtual
Machines (VMs). Virtual Machines can be provisioned from
a catalogue of predefined machine types in terms of CPU
cores and memory. Additionally, with the reduced VM startup
time and the per-minute billing model adopted by both GCP
and Azure, it is now feasible to dynamically provision het-
erogeneous per-job cloud VMs which are terminated once
the job is completed. This approach provides the ability to
tailor the computing resources to fit the current job rather
than the traditional cluster approach of tailoring jobs to fit
the computing resources available.

In this paper we outline the design and implementation of
CloudExH, an open source framework for executing jobs on
public clouds by leveraging the Google Cloud Platform and
in particular Google Compute Engine (GCE) [4]. CloudEx
enables users to split jobs into a sequence of smaller tasks that
can be distributed using Bin Packing or user-defined algorithm.
Additionally, users can specify the VM specification per job
or per task, CloudEx then provisions the required VMs,
coordinates the job execution and terminates these VMs once
the job is completed. In this paper we show that the average

Ihttp://cloudex.io

Rachel McCrindle
School of Systems Engineering,
University of Reading,
United Kingdom.

Email: r.j.mccrindle @reading.ac.uk

VM startup time on GCE is 85 seconds. Additionally we
show that when acquiring VMs for short-running jobs, per-
minute billing can save hundreds of hours compared to per-
hour billing.

The rest of this paper is organised as follows: Section
briefly introduces Google Compute Engine, then Section
describes the high level architecture of CloudEx. Section
explains how CloudEx jobs can be defined, followed by an
explanation of the approach used for handling tasks input and
output in Section [Vl The approach used for distributing the
execution of CloudEx tasks is explained in Section Sub-
sequently, Section [VII| covers the implementation of CloudEx
and experiments, followed by a brief review of related work
in Section Finally, Section [[X] concludes this paper and
highlights possible future work.

II. GOOGLE COMPUTE ENGINE

Google Compute Engine (GCE) enables users to create
and manage Virtual Machines (VMs), known as instances, on
the Google infrastructure. VMs are defined under a project
and are created in a particular zone, which specifies the
region and data centre used to host the VM. GCE provides
a number of machine types [5] for launching VMs, these
are categorised into shared-core, standard, high-memory, high-
CPU and custom categories. Once a VM is started it can query
the GCE metadata server for metadata information [[6] such as
VM ID (instance ID), hostname and user defined metadata.
GCE VMs are charged per-minute based on their CPU and
memory configurations, with an initial 10 minutes charge.

III. HIGH LEVEL ARCHITECTURE

The high level architecture of the CloudEx framework is
shown in Figure [I] this architecture is based on three major
components, 1) Virtual Machines (VMs), 2) cloud services
including databases and storage and 3) the CloudEx framework
components. A coordinator VM is used to start, manage and
terminate a number of ephemeral VMs called processors. For
each job, the coordinator will start the number of required
processors then distribute the workload between them and sub-
sequently terminate these processors once the job is completed.
The coordinator coordinates the processors by issuing simple
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Fig. 1. CloudEx High Level Architecture.

commands in the form of key/value pairs using the metadata
server.

A. Key CloudEx Definitions

This section introduces some of the key CloudEx definitions
that will be used throughout the rest of this paper. CloudEx
VMs are divided into two categories:

Definition 1: Coordinator (C), is a long lived VM that
is required to stay on for as long as the system is running.
A coordinator distribute task execution between a number of
processors using a workload partitioning function f.

Definition 2: Processors (P), are short lived or ephemeral
VMs that will be started by a coordinator to perform partic-
ular tasks and then be terminated once the tasks are done.
Processors do not communicate with each other.

CloudEx work is divided into logical blocks of functionality
that is implemented as a subroutine in a computer program,
each logical block is called a task, and can be defined as
follow:

Definition 3: Tasks (T'), are user-defined subroutines that
process a number of workload items (files, database rows, etc.)
and need to be executed in either a coordinator or a number
of processors.

Tasks that need to be executed by the coordinator are
simply referred to as coordinator tasks. Coordinator tasks are
mainly responsible for aggregation activities and are neither
processing nor memory intensive. Similarly, tasks that need to
be executed by processors are referred to as processor tasks.
Processor tasks are either processing or memory intensive
and require processors to be scaled horizontally or vertically
depending on the nature of the task. Users can specify the VM
requirements for each task.

A computational job can be divided into CloudEx tasks that
are executed separately using a divide-conquer approach. The
tasks to be executed by the CloudEx framework are grouped

in a CloudEx job (j), which defines how to orchestrate and
execute these tasks.

Definition 4: Job (j), is a definition of CloudEx tasks and
how they should be executed. A job also defines some initial
data in the form of key/value pairs to be used as input to the
task subroutines.

During job execution, the coordinator maintains an in-
memory key/value pairs store called the job context. Input for
tasks can populated from the job context and output saved
back to it. Each processor task has a workload partitioning
function f which is used by the coordinator to partition the
workload for the task between a number of processors and can
be defined as follows:

Definition 5: Workload partitioning function (f), is the
function (f : W — P) that maps a set of workload items W
to a set of processors P.

The CloudEx framework is implemented as an application
component (Figure [1)) that is run on both the coordinator and
processor. This application can be defined as follows:

Definition 6: CloudEx (CLX), is an application with a
number of subroutines, one for each task and runs on a
coordinator or a processor. The application can read and
update the processor metadata and interact with other cloud
services.

All processors (P) are created from the same VM image
and hence contain the same software. The CloudEx application
CLX is initially installed on the disk of a template VM and
saved as a VM image (VMI).

Definition 7: Image (V M1I), is a VM image used to create
all the processors. This image contains a bootable root file
system and the CloudEx application CLX.

When a processor is created from the image V' M I, based on
the metadata supplied to the processor, the CloudEx applica-
tion CLX can: 1) decide which task in C'LX to execute, 2) set
the task input from the metadata, 3) retrieve the workload
items assigned to this processor from cloud services (storage,
databases, etc.).

B. The Lifecycle of the Coordinator and Processors

Initially, the coordinator is started and provided with a job
to execute. The coordinator will iterate over each of the tasks
defined in the job, if the task is a coordinator task then the
coordinator will execute it. Otherwise for processor tasks, the
coordinator will partition the workload between a number
of processors using the workload allocation function f. The
coordinator then, using image V M I, creates and starts the
required number of processors, providing each with metadata
that contains the name of the task to execute and its input data.
At this point the coordinator waits for all processors to finish
executing the task.

Once a processor starts up, the application CLX is run by
default. Once running , CLX reads the processor’s metadata,
based on this metadata it chooses a task to execute and
populate its input data. CLX then updates the processor
metadata status as BUSY. When the task is run by the processor
it can interact with the various cloud services such as storage
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and databases to download and process the assigned workload.
Once the task is done it uploads its output, if any, to other
cloud services. At this point CLX updates the processor
metadata status as FREE. The processor then waits for further
metadata updates from the coordinator.

Once all the processors have updated their metadata status
to FREE, the coordinator checks if there are anymore tasks to
execute. If all the tasks are done, the coordinator will terminate
all the processors to avoid incurring unnecessary cost. If there
are more tasks to execute then the coordinator will continue to
process them. The processors are reused multiple times during
job execution to run all the processor tasks. If a particular
task requires more processors than the ones already started,
or processors with different CPU and memory configurations
then the coordinator will start new ones.

IV. DEFINING JOBS

CloudEx tasks, their input data and processing details are
specified using a job definition. The job definition consists
of three main parts: 1) Job Data, 2) Virtual Machine Con-
figurations and 3) Tasks Definition. These parts are shown in
Figure [2] and explained in detail in the following sections.

A. Job Data

Job data is a collection of initial arbitrary key-value pairs
that can be used as input to the various tasks and partitioning
functions. Values denote constants or names of cloud services
data containers such as tables or buckets; these values are
constraint to String and Numeric data types. When the job
is executed, this initial data will be added to the job context
so that it can be referenced as input to any of the tasks or
partitioning functions.

B. Virtual Machine Configurations

Virtual Machine Configurations (abbreviated as VMConfig),
is a collection of key-value pairs detailing the attributes
required for launching the VM. Keys identify common cloud
parameters such as virtual machine type, disk type, etc....
Values provide a specific identifier that relates to the cloud
provider being used. The VMConfig is used as the base
virtual machine settings when creating CloudEx processors.
The following keys are used by CloudEx:

e Zone: The zone identifier in which the virtual machine
should be deployed.

« VM image: The identifier of the virtual machine image
V M1 to use, which contains the CloudEx application.

« VM type: the type of the virtual machine, the value
is a cloud provider specific identifier that corresponds
to a number of CPU cores and certain amount of main
memory.

o Network: the identifier of the networking configurations
to use for the virtual machine.

o Disk type: the type of disk to use, covering options
such as magnetic, solid state, ephemeral or persistent disk
types.

« Startup script: a script to be executed once the virtual
machine is started.

C. Tasks Definition

Tasks definition is a list of task configuration (abbreviated
as TaskConfig) for the individual tasks to be executed by
CloudEx. Each TaskConfig provides details on how to initialise
and process the task. A TaskConfig provide details that are
applicable to either processor tasks, coordinator tasks or both,
these details are summarised as follows:

o Task subroutine (both): a reference to the task subrou-
tine to be executed for the task.

« Input (both): the input data for the task specified as a
collection of key-value pairs. A value can either be a
constant or a reference that will be resolved from the job
context.

o Target (both): indicate which component, coordinator or
processor that executes the task.

o Error action (both): an action to be taken if the task
subroutine exits due to an error. Two error actions are
considered, to ignore the error and continue executing
other tasks in the job, or to terminate the job execution.

o Output (coordinator): the names of the output of the
task subroutine. The output of the task will be added to
the job context using this name as the key and the actual
output as the value.

« VMConfig (processor): optionally for processor tasks,
a virtual machine configuration can be specified for the
execution of the task. This configuration can be statically
specified in the task definition or dynamically speci-
fied during the job execution. If omitted the VMConfig
provided as part of the job definition will be used for
processor tasks.

« Partitioning configuration (processor): the TaskConfig
for all processor tasks is required to have a partitioning
configuration, abbreviated as PartitionConfig.

The PartitionConfig is required for all processor tasks and
contains a reference to the subroutine of partitioning function
f and its input data, which can be resolved from the job
context as will be explained in the next section. The Partition-
Config also includes output keys to be used when adding the
output of f to the job context. This PartitionConfig describes
how the workload for the task can be distributed between a
number of processors.



V. DEALING WITH TASKS INPUT AND OUTPUT

When executing a job, the coordinator maintains an in-
memory collection of key-value pairs called the job context.
The job context is used to share data between the various tasks
and partitioning functions. The coordinator tasks can directly
accept input from and provide output to the job context.
Processor tasks can also accept input from the job context,
however, this input is sent remotely to the processors through
the metadata server. Partitioning functions for processor tasks
are executed by the coordinator and hence have direct access
to the job context. Consequently, these functions can directly
accept input from and provide output to the job context. When
defining tasks, values in the job context can be referenced as
input or output for the tasks, by simply referring to them by
their keys.

A. Input and Output Resolution

When defining a CloudEXx task, its input is defined as either
constants or variable names. These variables’ names are used
as keys to lookup a value from the job context. For example,
if a task is defined to have the following key-value pairs
as input {threshold: 50, domain:example.com,
table:#keyl, file:#key2}. The coordinator will treat
all the values as constants, except those prefixed with #, those
are treated as variables. The coordinator will remove # prefix
and will then lookup key1 and key?2 in the job context.

The same approach is applied to the input of partition-
ing functions attached to processor tasks. Additionally, this
approach is also used to resolve the input for processor
tasks. However, this input is not directly populated by the
coordinator, instead it is sent to the processor with the task
metadata through the metadata server. Output of coordinator
tasks and partitioning functions can also be specified when
defining tasks. Once a task or a partitioning function is
executed, the coordinator uses these keys to save its output
back to the job context. The approach provides the ability to
explicitly reference output values in the job definition.

VI. PARTITIONING THE WORKLOAD

The CloudEx framework provides two mechanisms for
users to specify how computationally intensive tasks can be
distributed between a number of processors. The number of
processors to use for task execution can be determined by
using one of these mechanisms: 1) a built-in partitioning
function f based on a variation of the Bin Packing algorithm
[7], [8] or 2) a user-defined partitioning function. The built-in
partitioning function f is explained in detail in the following
section.

A. Bin Packing Partitioning

CloudEx provides a built-in workload partitioning function
f based on a variation of the Bin Packing algorithm. This
function is used to partition the task execution between a
number of processors or bins based on the sizes of the
workload items W. Workload items W can be a collection of
items which can be resolved from the job context, for example

a collection of file names with their sizes. To use the built-in
function f, one of the following parameters must be provided:

« the number of bins (processors) IV to use or

« the bin capacity C' and optionally ¢ (where 0 < § < 1)
which is the maximum fraction of a bin that needs to be
rounded up to a full bin.

1) Calculating The Bin Capacity: Assuming there is a total
of M workload items (wi,ws, -+, wys) and each has a size
of (s1,s2,---,sp) with the largest item having a size of sg
such that (0 < s; < sk ) these items are divided into N bins
where the capacity of each bin is C'. Two cases are dealt
with, the first if the user specifies IV, then C' is determined as
C= % Zi\il s;, rounding up the results if necessary. In this
case the number of bins must be fixed, so each bin is filled up
to the maximum capacity C. After all the bins are filled any
remaining items are equally spread between the bins. This is
achieved by sorting the bins in ascending order and the items
in descending order then placing the largest items into the
smallest bins, this continues until there are no further items to
add.

2) Calculating The Number of Bins: The second case is
when the user provides both C' and J, in this case N is
determined by first calculating the lower bound number of
bins Ny as Ny = é Zf\il s;. If N, has a fraction that is
greater than § then it is rounded up to the nearest integer
value. However, if this fraction is smaller than § then it is
discarded and the remaining items after filling up all the bins
are spread between the bins as explained previously. If the
user does not provide a value for C, or if the provided value
is less than the largest item sk, then the size of the largest
item sy is used.

VII. IMPLEMENTATION AND EXPERIMENTS

An implementation of the CloudEx framework was created
as a reusable library using the Java programming language.
This implementation is open source and is publicly availablé.
The current implementation consists of the high level compo-
nents shown in Figure 3] and summarised as follows:

« cloudex-core: is the generic implementation of the pro-
cessor and coordinator algorithms and provides a Coordi-
nator and Processor sub components. Additionally, this
component includes the built-in Bin Packing function f
explained in Section

« cloudex-google: is an implementation that is specific to
the Google Cloud Platform (GCE) [2].

« user-defined-tasks: is a component of all the user defined
tasks subroutines that the CloudEx framework needs to
execute.

« user-defined-partitioning-functions: is a component of
all the user defined partitioning function subroutines that
the user can reference when defining processor tasks.

We have used the CloudEx framework to execute, on the
Google Cloud Platform, a range of short-running jobs for

Zhttps://cloudex.io/
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processing structured data as part of the ECARF projectﬁ.
Over the duration of the project, CloudEx has acquired 1,086
VMs at a total cost of $290.29. The CloudEx framework
successfully acquired and sent instructions to processors using
the Google Compute Engine APIs. The number of acquired
processors ranged from 1 to 16 with various memory and
CPU cores configurations. The average startup time taken to
acquire CloudEx processors is 85 seconds. This is the time
taken for the processor to be created, started and runs the
CloudEx application.

Google Compute Engine charges per-minute, consequently,
we have also compared the total cost incurred by the various
VM types on per-minute versus per-hour billing as shown
in Figure @ With CloudEx processors utilised for less than
an hour, the per-minute billing model has saved 697 hours
compared to per-hour billing. This is because in per-hour
billing if a VM is terminated before reaching a full hour of
operation, the usage is rounded up to the nearest hour.

VIII. RELATED WORK

A number of approaches have focused on improving and
extending existing cluster management and job scheduling
frameworks to enable migration and interoperability with the
cloud [9], [1O], [L1], [12]. These approaches are mainly
focused on extending and integrating with existing cluster
resource managers such as TorqueH and job schedulers such
as Moat] to be able to create cloud based elastic compute
clusters.

3http://ecarf.io
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A large scale elastic environment for scientific computing
with recontextualization was presented by Marshall et al. [12].
This approach integrates with Torque and utilises an elastic
resource manager, which consists of three major components,
a component to read submitted jobs from a queue, a decision
engine and a provisioner that interacts with the Cloud provider
APIs. An Elastic Cloud Computing Cluster (EC3) tool is
developed by Caballer et al. [10]. EC3 creates elastic virtual
clusters on top of a number of cloud providers (Amazon
EC2, OpenStack and OpenNebula) and integrates with existing
resource management systems. The clusters in EC3 are self
managed with the ability to scale up or down depending on a
predefined policy.

IX. CONCLUSION AND FUTURE WORK

In this paper we have presented the architecture of CloudEx,
a novel and generic task execution framework that can be
implemented on any cloud provider IaaS. Additionally, we
have presented a workload partitioning approach based on the
bin-packing algorithm to distribute the processing of tasks
between a number of processors. As future work we plan
to improve the CloudEx framework by providing resilience
for the coordinator and adding the capability to autoscale the
processors based on particular cost and deadline constraints.
Additionally we plan to provide implementations for other
prominent cloud providers such as Amazon Web Services and
Microsoft Azure.
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