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Abstract—A number of analytical big data services based
on the cloud computing paradigm such as Amazon Redshift
and Google Bigquery have recently emerged. These services are
based on columnar databases rather than traditional Relational
Database Management Systems (RDBMS) and are able to analyse
massive datasets in mere seconds. This has led many organ-
isations to retain and analyse their massive logs, sensory or
marketing datasets, which were previously discarded due to the
inability to either store or analyse them. Although these big data
services have addressed the issue of big data analysis, the ability
to efficiently de-normalise and prepare this data to a format that
can be imported into these services remains a challenge. This
paper describes and implements a novel, generic and scalable
cloud based elastic framework for Big Data Preprocessing (BDP).
Since the approach described by this paper is entirely based on
cloud computing it is also possible to measure the overall cost
incurred by these preprocessing activities.

I. INTRODUCTION

Recent growth in structured, semi structure and unstructured
Web, scientific and sensory data has resulted in the emerging
concept of big data. Big data is data that is too big, too
fast, or too hard [1] to process using traditional tools, and
although the challenge of big data has been prevalent for
the last few decades, the rate of growth experienced today
indicates that sooner or later data will be generated at such an
enormous rate that it will be hard to store, let alone analyse.
The seriousness of this is evident by the big data prominence
in the peak of the Gartner Technology Hype Cycle for 2013
[2]. The main driver behind the hype surrounding big data,
is the potential value associated with this data, which enables
organisations and businesses to gain valuable insight, trends
or business intelligence. For example, the ability to analyse
online advertising clickstreams or transactions history data
can highlight crucial information about consumer behaviours,
hence enabling businesses to tailor their offerings accordingly.

Before the emergence of the cloud computing paradigm in
2008, dealing with and processing big data required organisa-
tions to build their own infrastructure and purchase expensive
software licenses for enterprise data warehouse databases.
Cloud computing, through its offerings of Infrastructure as
a Service (IaaS), Platform as a Service (PaaS) and Software
as a Service (SaaS) now gives average sized organisations the
ability to store and analyse, in seconds, terabytes of big data
at a fraction of the cost of purchasing software licenses and

with no upfront infrastructure investment. Cloud computing
provides a pool of shared computing resources that can rapidly
be acquired and released with minimal effort, either manually
or programmatically [3]. Due to the dynamic nature of cloud
computing, it offers computing resources elasticity [4], which
allows computing resources to be acquired almost instantly
when needed and released instantly when not needed.

Because cloud computing resources are virtualised and run
on top of physical computers that are always on, it is possible
to start and shutdown these virtual computing resources at
any time. In addition to this elasticity, the other key benefit
of cloud computing is usage-based costing so that consumers
only pay for what they use, which is highly cost efficient
compared to a physical computer environment being billed
for 24/7, even when the resources are not being fully utilised.
Cloud computing offers many other on demand services, such
as mass low latency cloud storage capable of storing terabytes
of data and big data services that can interactively analyse
web-scale datasets in seconds [5].

Although cloud computing has given organisations the
ability to store and analyse their big data, the ability to
efficiently de-normalise and prepare this data to a format that
can be imported into cloud based big data services remains a
challenge. In this paper we describe and implement a novel,
generic and scalable cloud based elastic framework for big
data preprocessing. Since our approach is entirely based on
cloud computing it is also possible to measure the overall cost
incurred by big data preprocessing activities.

The rest of this paper is organised as follows: In Section II
a brief review of some of the key cloud computing services is
provided, then in Section III we summarise the functionalities
provided by big data services and propose a lightweight
preprocessing framework. In Section IV our novel framework
is described and in Section V experimental evaluation is
conducted and finally Section VI concludes this paper and
highlights possible future work.

II. CLOUD COMPUTING

Cloud computing provides a range of pay as you go services
that can be used by organisations to handle their big data.
Some of these service include cloud storage for storage of big
data, cloud big data services for big data analysis and cloud



virtual machines for big data processing. In this section a brief
review of these key services is provided.

A. Cloud Storage

To store terabytes and petabytes of data, organisations can
either invest in their own storage solutions utilising physical
disk based storage, which presents a number of challenges
such as replication, backup and maintenance, or use a cloud
based storage for storing and archiving their big data. Cloud
storage offers a viable alternative to distributed disk based
storage because there are no theoretical constraints on the
size of the data that can be stored coupled with resumable
fast file download/upload and web services based on the
Representational State Transfer (REST) API to manage the
stored data. The ideal use case is when this data is accessed
by other services deployed in the same cloud service provider’s
network that contains the cloud storage, hence benefiting from
fast network access. For example the data stored in the cloud
storage can be directly imported to the cloud provider’s big
data services, such import will use the provider’s fast network
and can take only seconds to import gigabytes of data. Popular
cloud storage services include Amazon Simple Storage Service
(S3)1 and Google Cloud Storage2.

B. Cloud Big Data Services

Another cloud based feature that enables the interactive
analysis of big data, is big data services, these services are
based on columnar database systems [6] which, unlike tradi-
tional Relational Database Management Systems (RDBMS),
store data in columns rather than rows. One of the key
advantages of using a columnar data layout is the ability
to run queries over tables with trillions of data in seconds
[5]. The fast read capability is possible due to the fact that
values belonging to the same column are stored contiguously,
tightly packed and compressed [6], but this comes at the price
of a slow or almost impossible update to existing columnar
data. Popular cloud based big data services include Amazon
Redshift3 and Google Bigquery4, both provide SQL like query
languages and REST APIs for the execution of queries and the
management of data. Google Bigquery provides an append
only table structure for storing and analysing data, with the
ability to store output data from queries into new tables.
Typical preprocessing activities required for Google Bigquery
include data formatting into either JavaScript Object Notation
(JSON) or Comma Separated Values (CSV) formats, the data
also needs to be de-normalised into a single table for fast
access [7].

C. Cloud Virtual Machines

Cloud computing uses Virtual Machines (VMs) which,
unlike physical computers, can be started and terminated
programmatically through REST APIs when not needed in

1http://aws.amazon.com/s3/
2https://cloud.google.com/products/cloud-storage/
3http://aws.amazon.com/redshift/
4https://cloud.google.com/products/bigquery/

order to avoid incurring unnecessary processing cost. Cloud
VMs can also be given a description or metadata which, they
can query on an external server in order to make decisions
about their processing such as the task to execute for example.
It is also possible to take snapshots of the disk drives of
running VMs, which can be used to start new VMs that contain
the same software and disk state as the original VMs from
which the snapshots were taken. This feature can be used to
create many copies of the same VM for task processing.

Popular cloud based compute services such as Amazon
Elastic Compute Cloud (EC2)5 and Google Compute Engine6,
provide REST APIs for the lifecycle management of cloud
VMs. Work on providing large scale elastic environments for
scientific research shows promising results in regards to being
able to acquire large number of cloud VMs in a very short
time period, such as the ability to dynamically acquire over
400 cloud VMs within 15 minutes [8] .

III. BIG DATA

Big data is a term used to describe data that is too big, too
fast, or too hard [1] to process using traditional tools. Gartner
research provides the following definition for big data [9]:

Big data is high-volume, high-velocity and high-
variety information assets that demand cost-
effective, innovative forms of information processing
for enhanced insight and decision making.

The main driver behind the processing and analysis of big
data is the potential value associated with it, such as insights
and trends that can be used to enhance decision making and
strategy formulation. The primary aspects of big data are
widely characterised in terms of three dimensions (3Vs), these
dimensions are summarised as follows:

1) Volume: big data is usually huge in size, which in
today’s terms is usually in the regions of Petabytes, Exabytes
and Zettabytes.

2) Variety: due the diverse sources of big data, this data
can be structured, semi-structured or unstructured.

3) Velocity: the rate of which big data is generated can
range from batch to real time streaming.

A. A Lightweight Framework for Big Data Preprocessing

Recent research on big data workflows has attempted to
provide a break down of the main functionalities that need to
be handled by big data services. For example [10] lists these
functionalities as:

• Data collection, which involves the gathering, filtering,
and cleansing of data.

• Data curation, which involves the normalisation and
selections of data models and structures.

• Data integration and aggregation, which involves the
enforcement of data coherence.

• Data storage based on the adopted data model.

5http://aws.amazon.com/ec2/
6https://cloud.google.com/products/compute-engine/



• Data analysis and interpretation, which involves data
analysis and visualisation techniques.

The authors provide a classification of the big data services
offered by vendors in respect to these functionalities. This
classification shows that the majority of the MapReduce
services based on the popular Hadoop Java framework7 do
support most of the aforementioned functionalities. In contrast,
services such as Google Bigquery provides only data anal-
ysis and interpretation through Bigquery SQL. Despite this,
Bigquery when compared to Hadoop, provides a convenient
and easy to use mechanism that does not require the setup of
any infrastructure to analyse large volumes of structured and
semi-structured data. Bigquery through its streaming API also
addresses one of the main challenges related to the velocity
of real time data currently facing MapReduce [11].

Our approach provides a lightweight framework for the
preprocessing of big data before importing it into analytical
services such as Google Bigquery. Our preprocessing com-
plements analytical services by implementing some of the
data collection and curation functionalities for textual based,
structured and semi-structured big data. Examples of such
structured and semi-structured big data include server log files,
online clickstreams and sensor readings.

B. Preliminaries

In our approach we divide tasks between a number of
perfectly (embarrassingly) parallel processes that are executed
by cloud VMs. By using perfectly parallel processing there
is no overhead of communications between the various VMs
processing the tasks. These processing VMs are only started
when needed and terminated when not needed by a coordinator
VM in order to minimise cost. Before we continue, we provide
definitions of the key concepts of our big data preprocessing
framework:

Definition Coordinators T are long lived VMs that are left
on continuously more like physical computers, these VMs are
required to stay alive for as long as the system is running.
Coordinators accept as part of their arguments descriptions of
other VMs which they need to construct and run.

Definition Processors R are short lived or ephemeral VMs
that will be started by a coordinator to perform a particular
task and then be terminated to avoid incurring unnecessary
cost.

Definition Input W is the input provided to VMs through
their metadata. This is a cloud computing provided feature
such that VMs can be given metadata at startup or at any
time when they are running, VMs can query this metadata
proactively or get notified when it changes.

Definition Disk image I is a cloud disk image (snapshot)
of the OS and the relevant software that should run on the
VM. We take advantage of the ability to capture snapshots
of running VMs to create a VM disk image I of a processor

7http://hadoop.apache.org/
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Fig. 1. Bin packing partitioning to divide files between the processors.

VM. This is achieved by first creating a VM containing a
program that reads the VM metadata and computes with it,
then a template is created from this VM and saved as a disk
image.

Definition VM description 〈V M〉 is the description of a
VM such that 〈V M〉 = {S, I} where S is the VM
specifications such as machine type (for example CPU and
memory), network and disk configurations, etc.. and I is a
cloud disk image. The coordinator can use this description to
create processor VMs that run the same program, but behave
differently based on the metadata input W supplied to them.

C. Workload Distribution

The input data in our approach is largely based on textual
based, structured and semi-structured files that are compressed
to reduce the storage space and time required to transfer
them to and from cloud based storage. When the coordinator
receives an input W consisting of a number of compressed
file, this input is divided further into Wi ⊆ W such that
the processing can be fairly spread between a number of
processors. For this purpose we use the Bin Packing algorithm
[12] to divide the input between a number of processors as
shown in Fig. 1.

Assuming that the input W is a set of N files to process
(f1, · · · , fi, · · · , fT ) and the size of each file in bytes is
(s1, · · · , si, · · · , sT ) with the largest file having a size of
sm such that (0 < si ≤ sm) we divide these files into n
processors where the capacity of each processor should not
exceed sm × (1 + δ), we initially set δ as 10% of the size
of the largest file. With smaller datasets where the largest
file size sm does not exceed a constant K bytes, we use the
following processor capacity instead K× (1 + δ). Although
most processors are likely to have approximately the same
size of files to process there is a slight overhead when handling
many smaller files compared to one large file, as the earlier
will need to download and process multiple files.

IV. BIG DATA PREPROCESSING (BDP) FRAMEWORK

In this section a formal definition and description of our
elastic cloud based Big Data Preprocessing (BDP) framework
is provided.



Definition BDP Framework is a 7-tuple,
(T,R,W,Γ,∆, 〈R〉, f), where T,R,W,Γ,∆ are all finite
sets and:

1) T is the set of coordinators with one active coordinator
and the rest as backup,

2) R is the set of processors,
3) W is the set of input items which in our case are the

names and sizes of the files to preprocess,
4) Γ is the set of the contents of the actual files themselves,
5) ∆ is the set of cloud services of mass cloud storage and

analytical big data service,
6) 〈R〉 is the description of the processor VM R which

includes a disk image I with an embedded program ρ
and VM specifications S, and

7) f : W → R, is the workload allocation function.

A. Framework Description

BDP is a cloud based generic framework that makes use of
virtual machines and cloud services of mass cloud storage and
analytical big data service to provide an elastic architecture for
distributed work allocation and execution. Initially a program
ρ that can read the metadata of the VM on which it is running
is created, this program is then implemented on a template
VM and saved as VM disk image I . As an alternative, instead
of embedding into the disk image, the program ρ can be
downloaded from a remote location to the VM when it starts
using a startup script. Based on the metadata the program can:

• decide which task subroutine to execute, for our initial
framework one subroutine is developed for preprocessing
a set of files then loading their data into the big data
services,

• read the work items Wi assigned to this processor such
as file names such that Wi ⊆W , and

• decide which big data table and cloud storage folder to
consult and poll for the content of the input files Γ.

When the coordinator T receives a request for work to
be performed it will create a set of input tasks W , then
decides based on the complexity of the work and the request
constraints (such as cost and time) on the number of processors
to start. The coordinator then, using the disk image which has
program ρ embedded, creates and starts the required number
of processors R providing as metadata the set of work items
Wi and the name of cloud storage folder or big data table
where the input can be read. The coordinator also sets the
name of the subroutine that the program should execute in
the metadata and uses the workload allocation function f for
dividing the work items between the processing nodes using
a bin packing algorithm as shown in Algorithm 1.

Once a processor VM boots up the program ρ will be run
by default, it will read the metadata then carry out the steps
explained previously. When the processor finishes processing
the assigned work items it updates its metadata to indicate that
it is ready for further work as summarised in Algorithm 2. The
coordinator can then decide to terminate the processing node
or assigns it more work items.

Algorithm 1 Coordinator VM Preprocessing Data
1: function PREPROCESSDATA(W, 〈R〉) . W is a set of

input files
2: W ∗ ← BINPACKINGPARTITION(W )
3: vmIds← {}
4: for all Wi ∈W ∗ do
5: vmId← startNewProcessor(〈R〉,Wi)
6: vmIds.add(vmId)
7: end for
8: O ← {} . O is a set of output files
9: for all vmId ∈ vmIds do

10: Oi ← waitForProcessorToF inish(vmId)
11: O ← O ∪Oi

12: end for
13: return O
14: end function

Algorithm 2 Processor VM Preprocessing Data
1: function PREPROCESSDATA(Wi) . Wi is a set of input

files
2: Oi ← {} . O is a set of output files
3: for all w ∈Wi do
4: Ow ← processF ile(w)
5: Oi ← Oi ∪Ow

6: end for
7: updateMetadata()
8: return Oi

9: end function

The coordinator also keeps track of the overall cost involved
in fulfilling requests as cloud resources are billed based on
usage such as the execution time or the size of the data. Fig. 2
summarises the initial model of BDP which is generic and can
be implemented on any cloud platform that provides virtual
machines, mass file storage and analytical big data services.
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Fig. 2. Initial BDP Framework.



V. EXPERIMENTAL EVALUATION

In this section experimental evaluation of the BDP frame-
work is provided. To conduct the experiments we have de-
veloped a prototype based on the Java programming language
and provided implementation for the Google Cloud Platform
APIs8. The experiments were conducted on up to 10 n1-
standard-29 VMs each with 2 virtual CPUs (equivalent to 2
hyperthreads on a 2.6 GHz Intel Xeon processor), 10 GB disk
and 7.5 GB of main memory. The following major components
were used:

• Google Compute Engine for creating and managing pro-
cessor VMs,

• Google Cloud Storage for storing compressed big data
files and as a central location for processor VMs to upload
their processed data and

To evaluate our approach we have used the DBpedia10 real
world dataset, which is a collection structured data extracted
from Wikipedia in Resource Description Framework (RDF)
[13] format. We have used the English version of the 3.9
DBpedia dataset, which contains around 300 Million RDF
statements in 64 Gzip-compressed files with a collective size
of 5.3 GB compressed and 50.19 GB uncompressed. The two
largest compressed files in the dataset have sizes of 916 MB
and 769 MB respectively and the smallest file in the dataset has
a size of 359 Bytes. In our experiments we implemented a task
subroutine to cleans, normalise and convert the files from RDF
to CSV format using our BDP framework and reported on the
overall runtime and cost required to process the files versus
the number of processor VMs. The overall runtime includes
the time to download the files from Google Cloud Storage to
the processor VM, the time to preprocess the data and the
time to upload the files back to Google Cloud Storage ready
for import into Bigquery.

TABLE I
RUNTIME AND FILES SIZES PROCESSED BY 10 PROCESSORS

Node
Id

Num.
of files

Gziped
Size in MB

Actual
size in GB

Runtime
(min)

Processing
time %

1 1 916 2.6 5.33 79%
2 1 769 9.5 9.33 90%
3 6 539 2.2 3.75 84%
4 5 539 8.2 6.75 91%
5 10 539 5.2 5.5 87%
6 8 539 5.0 5.33 86%
7 12 537 6.8 6.7 91%
8 10 537 6.5 6 90%
9 6 290 3.6 3.5 90%
10 5 97 0.9 1 84%

A. Results and Discussion

1) Number of processors: The number of processors were
increased from 1 to 10, the runtime results are reported in
Fig. 3a. As seen the total runtime decreases with increasing
the number of processors. When the number of processors

8https://cloud.google.com/
9https://developers.google.com/compute/docs/machine-types
10http://wiki.dbpedia.org/Datasets

reaches 6 the runtime hardly decreases with increasing the
number of processors, this is due to the fact the two large files
in the dataset can not be divided between the processors and
have to be assigned to one processor. Table I shows that the
time required to process the largest uncompressed file remains
at 9.33 minutes regardless of the number of processors used,
which means, the overall runtime will be constraint by the
time required to process the largest files. These files can be
split further to enable equal workload allocation.

2) Cost of processing the data: Fig. 3b and 3c show the
total cost in relation to the number of processors used and the
overall runtime. The total cost is the per minute charge for each
of the processors and the data transfer cost for transferring the
data from and to the processors and cloud storage. As seen
the cost gradually increases with increasing the number of
processors, but increasing the cost and in turns the number of
processors beyond 6 does not improve the runtime, this is due
to the issue highlight previously with the largest files in the
dataset.

3) Uncompressed data size: Table I shows that using the
compressed file size for bin packing partitioning can be
misleading, this is evident from the largest file of 9.5 GB
which, when compressed becomes the second largest with
a size of 769 MB. Since Fig. 3d shows that the runtime is
proportional with the uncompressed file size, our bin packing
partitioning can be improved by considering the uncompressed
file size instead of the compressed size. Table I also shows
that the average percentage of the overall runtime required
to process the data is 87% with only 13% of the overall
runtime for data transfer, this further strengthens the fact that
data transfer within the cloud provider’s network is not the
bottleneck for big data processing.

Our initial experimentation with standard and Solid State
Disks (SSDs) showed that the preprocessing of the Gzip-
compressed files to be CPU intensive rather than disk inten-
sive.

VI. CONCLUSION AND FUTURE WORK

The continuous growth of big data has sparked a wide
range of solutions for handling such growth and providing
affordable means of analysing this data, which presents two
challenges, firstly the ability to preprocess, format and clean
this data and secondly the ability to efficiently analyse this
data to extract value from it. The emergence of analytical
cloud based big data services have addressed the second
challenge, but the first challenge still remains. In this paper
we have addressed the big data preprocessing challenge by
presenting a novel and generic cloud based framework for big
data preprocessing (BDP). We have utilised cloud elasticity
and used a bin packing partitioning approach to distribute the
workload equally between a number of processor VMs. We
have evaluated our approach using a prototype and have shown
that it is capable of loading and preprocessing 50 GB of real
world large dataset in around 11 minutes using 8 processor
VMs, we were also able to exclusively measure the cost
incurred by the these preprocessing activities. Our experiments



(a) Num. of processor VMs vs. runtime (b) Num. of processor VMs vs. cost

(c) Cost vs. runtime (d) Runtime vs. data size in GB uncompressed

Fig. 3. Experimental results

also allow us to extrapolate the runtime, number of required
processors and cost to larger sizes of similar datasets.

As future work, we plan to implement the improvements we
have suggested in subsection V-A. Another aspect that requires
further work is dealing with and recovering from coordinator
or processors failures. We also plan to extend our evaluation
to a variety of larger datasets amounting to terabytes of data
and add the ability to perform bespoke analytical queries once
these datasets are loaded in the big data services.
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