University of
< Reading

Efficient dictionary compression for
processing RDF big data using Google
BigQuery

Conference or Workshop Item

Accepted Version

Dawelbeit, O. and McCrindle, R. (2017) Efficient dictionary
compression for processing RDF big data using Google
BigQuery. In: IEEE GLOBECOM 2016, December 4-8th 2016,
Washington DC. Available at
https://centaur.reading.ac.uk/69737/

It is advisable to refer to the publisher’s version if you intend to cite from the

work. See Guidance on citing.
Published version at: http://doi.org/10.1109/GLOCOM.2016.7841775

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.

www.reading.ac.uk/centaur

CentAUR

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

University of
< Reading
Central Archive at the University of Reading

Reading’s research outputs online

Efficient Dictionary Compression for Processing
RDF Big Data Using Google BigQuery

Omer Dawelbeit
School of Systems Engineering,
University of Reading,
United Kingdom.
Email: o.i.0.dawelbeit@pgr.reading.ac.uk

Abstract—The Resource Description Framework (RDF) data
model, is used on the Web to express billions of structured
statements in a wide range of topics, including government,
publications, life sciences, etc. Consequently, processing and
storing this data requires the provision of high specification
systems, both in terms of storage and computational capabilities.
On the other hand, cloud-based big data services such as
Google BigQuery can be used to store and query this data
without any upfront investment. Google BigQuery pricing is
based on the size of the data being stored or queried, but given
that RDF statements contain long Uniform Resource Identifiers
(URIs), the cost of query and storage of RDF big data can
increase rapidly. In this paper we present and evaluate a novel
and efficient dictionary compression algorithm which is faster,
generates small dictionaries that can fit in memory and results
in better compression rate when compared with other large scale
RDF dictionary compression. Consequently, our algorithm also
reduces the BigQuery storage and query cost.

I. INTRODUCTION

The Resource Description Framework (RDF) [1]] is recom-
mended by the W3C for representing information about re-
sources in the World Wide Web. RDF is intended for use cases
when information need to be processed by and exchanged
between applications rather than people. Resources in RDF can
be identified by using Uniform Resource Identifiers (URIs), for
example the following URI is used to represent an employee
smithj in an organisation:

(http://inetria.org/directory/employee/smithj)

Unknown resources or resources that do not need to be
explicitly identified are called blank nodes. Blank nodes are
referenced using an identifier prefixed with an underscore
such as _:nodeId. Constant values such as strings, dates
or numbers are referred to as literals. Information about a
particular resource is represented in a statement, called a triple,
that has the format (subject, predicate, object) abbreviated as
(s, p, 0), moreover, the three parts of the triple are also called
terms. Subject represents a resource, either a URI or a blank
node, predicate represents a property linking a resource to an
object, which could be another resource or literal. Formally,
let there be pairwise disjoint infinite sets of URIs (U), blanks
nodes (B), and literals (L). An RDF triple is a tuple:

(s,p,0) € (UUB) x (U) x (UUBUL) (1)

Rachel McCrindle
School of Systems Engineering,
University of Reading,
United Kingdom.

Email: r.j.mccrindle @reading.ac.uk

RDF triples can be exchanged in a number of formats,
primarily RDF/ XML which is based on XML documents.
Other formats include line based, plain text encoding of RDF
statements such as N-Triples [2]. An example of an RDF
statement in N-Triple format is shown in Fig

When dealing with large datasets, URIs occupy many bytes
and take a large amount of storage space, which is particularly
true with datasets in N-Triple format that have long URIs. Ad-
ditionally, there is increased network latencies when transfer-
ring such data over the network. Although Gzip compression
can be used to compress RDF dataset, it is difficult to parse
and query these datasets without decompressing them first,
which imposes a computation overhead. There is, therefore, a
need for a compression mechanism that maintain the semantic
of the data, consequently, many large scale RDF systems such
as BigOWLIM [3] and WebPIE [4] adopt dictionary encoding.
Dictionary encoding encodes each of the unique URIs in RDF
datasets using numerical identifiers such as integers that only
occupy 8 bytes each.

The wide use of RDF data on the Web to represent
government, publications, life sciences, geographic and social
data has resulted in very large RDF datasets. Such datasets
require RDF applications to store, query and process billions
of statements and can hence be described as Big Data. A
number of NoSQL Big Data models have been reviewed in
the literature [S]. In particular document oriented stores such
MongoDB and CouchDB in addition to wide columns stores
such as Google BigTable and Cassandra [6], provide the ability
to store petabytes of data. In exception to Google BigTable —
which is a fully managed solution — aforementioned NoSQL
representations may require additional management such as
provisioning, index creation and maintenance.

In response to demands for cloud-based big data storage
and analytical services, cloud services such Google BigQuery
[7] provide the ability to store, process and interactively
query massive datasets. Google BigQuery is defined as “fully
managed, NoOps, low cost analytics database” and utilises
columnar database technology [8]. Additionally, BigQuery
provides SQL like query languages and REST APIs for the
execution of queries and the management of data. BigQuery
stores data in tables without indexes and charges for storage
based on the size of the data stored and for queries by the size

<http://inetria.org/directory/employee/smithj> <http://xmlns.com/foaf/0.1/name> "John Smith"

Fig. 1. Example RDF statement in N-Triple format

of the columns scanned. For example, the size of each cell in
a column of type string will be 2 bytes + the UTF-8 encoded
string size. BigQuery can be used for both the storage and
processing of RDF without any upfront investments. However,
due to the large number of long URIs in RDF datasets, the
BigQuery cost involved when querying this data can rapidly
increase.

In this paper we propose a novel and efficient dictionary
compression algorithm which generates small dictionaries that
can fit in memory and results in better compression rate when
compared with other large scale RDF dictionary compres-
sion. Consequently, our algorithm also reduces the BigQuery
storage and query cost. The rest of this paper is organised
as follows: In Section [a brief review of the work related
to RDF dictionary encoding is provided, then in Section
we explain and present our dictionary encoding algorithm.
Subsequently, in Section experimental evaluation of our
dictionary encoding algorithm is conducted using both real-
world and synthetic datasets. Finally Section [V] concludes this
paper and highlights possible future work.

II. RELATED WORK

An RDF dictionary encoding approach based on MapRe-
duces was proposed by [9]. The authors distribute the creation
of the dictionary and the encoding of the data between a
number of nodes running the Hadoop framework. The authors
reported the compression of 1.1 billion triples of the LUBM
[10] dataset in 1 hour and 10 minutes, with a 1.9 GB
dictionary. Another dictionary encoding approach based on
supercomputers was presented by [11]. This approach uses
parallel processors to concurrently process a dictionary by
using the IBM General Parallel File System (GPES). The
authors report the encoding of 1.3 billion triples of the LUBM
dataset [12] in approximately 28 minutes by utilising 64
processors. The total size reported for the dictionary is 23
GB and 29.8 GB for the encoded data.

A comparison of RDF compression approaches is provided
by authors in [13]. The authors compare three approaches,
mainly gzip compression, adjacent lists and dictionary en-
coding. Adjacent lists concentrates the repeatability of some
of the RDF statements and achieves high compression rates
when the data is further compressed using gzip. The authors
also show that datasets with a large number of URIs that are
named sequentially can result in a dictionary that is highly
compressible. A dictionary approach for the compression of
long URI References (URIRefs) in RDF/XML documents
was presented by [14]]. The compression is carried out in
two stages, firstly the namespace URIs in the document are
dictionary encoded using numerical IDs, then any of the
URIRefs are encoded by using the URI ID as a reference.
In this setting, the authors create two dictionaries, one for the
URIs and another one for the URIRefs. The encoded data is

then compressed further by using an XML specific compressor.
Although this approach shows compression rates that are up
to 39.5% better than Gzip, it is primarily aimed at compacting
RDF/XML documents rather than providing an encoding that
reduces both the size and enables the data to be processed in
compressed format.

III. RDF COMPRESSION USING DICTIONARY ENCODING

The RDF dictionary encoding approaches surveyed in this
paper mainly focused on replacing the long URIs to integer
identifiers with the aim to reduce the size of the data. However,
very minimal considerations are given to the size of the gener-
ated dictionaries, which in most cases contain a large level of
redundancy due to the shared namespaces and URI path parts.
This is clearly demonstrated with the large-scale MapReduce
dictionary compression [9]], in which case, generated dictio-
naries are larger than 1 GB for large datasets. Additionally
the approach followed by [12] uses parallel computations to
create the dictionary for LUBM, which was many times larger
at 23 GB. This results in the dictionary generation and data
encoding processes taking longer to complete as these large
dictionaries need to be accessed on disk and can not be held in
memory in their entirety. In the following sections we present
our novel and efficient dictionary encoding algorithm.

A. Reducing the Size of URIs

BigQuery supports 64-bit signed integers, with the most
significant bit reserved as a sign bit, the minimum number
that can be stored is —253 and the maximum is 253 — 1. To
highlight the potential savings when converting URIs from
strings to integers, consider the following URIs and URI
References (URIRefs):

1) http:/iwww.w3.org/1999/02/22-rdf-syntax-ns#type
2) http:/finetria.org/directory/schema#Employee

3) http://inetria.org/directory/schema#Company

4) http://inetria.org/directory/employee/smithj

5) http:/finetria.org/directory/employee/doej

The aforementioned URIs contain on average 44 characters
per URI, with UTF 8 encoding each character can consume
from 1 to 4 bytes for storage. On average, this equates to a
minimum of 46 bytes for each URI, with integer encoding,
only 8 bytes are required to store each value, equating to a
storage saving of at least 82%. With this evident savings on
both storage and cost, a straightforward dictionary encoding
approach similar to [9] can be employed. However, due to
redundancy one of the major issues with such approach is
the size of the dictionary, which prohibit in-memory handling
of the dictionary and instead resorts to in-file processing,
resulting in a considerable processing overhead.

In this section we propose an efficient dictionary encoding
approach to reduce the size of the dictionary and therefore be
able to load it in memory to speedup the encoding process. It is

worth noting that we do not compress literal values, according
to Formula[I a literal can not occur on the subject or predicate
term, they only occur on the object term. As noted earlier that
URIs are identifiers for resources, which are usually queried
as a whole, however with literals we can use the BigQuery
string functions to be able to search for particular text, as such
we do not compress them. When storing the encoded data in
BigQuery we use a table called the triple table with three
columns (predicate, subject, object) of integer type instead of
string, these will hold the encoded values of the original URIs
and blank nodes. A fourth column object_literal of type string
is added to store any literals as they are, in which case the
object column will contain a NULL value, an example is shown
in Table [below.

TABLE I
ENCODED EXAMPLE OF THE BIGQUERY triple table

Subject | Predicate | Object | Object_Literal
345 50 250
345 300 NULL ”John Smith”

B. Efficient URI Reference Compression

In this section, we propose an approach for compressing
URI in NTriple documents using integer values to
build up an efficient (compact) dictionary. If we
consider, for example the URIs numbers M and [in
the previous list, it can be seen that they both share
the http://inetria.org/directory/employee
URIL In a large dataset many more terms will share
similar URIs, which, in a straightforward dictionary
encoding the dictionary will contain the URI many
times, thus inflating the dictionary with redundancy. If
we split each of the URIs into two sections, the first
section contains the hostname and part of the path (e.g.
inetria.org/directory/employee) and the second
section contains the last part of the path (e.g. smithj
and doe). The dictionary will only contain the following
sections: inetria.org/directory/employee,
smithij and doed, instead of the full URIs in [] and [3] in
the previous list.

It can be seen that this approach can reduce the
size of the dictionary, noting that we have removed the
scheme (e.g. http(s)://) as this can be added later when
decoding the data. URIs that belong to the RDF and
RDF Schema (RDFS) [13] vocabulary such as item [in
the previous list (http://www.w3.0rg/1999/02/22-
rdf-syntax—ns#type) are limited and are hence encoded
in their entirety — using a set of fixed integer values —
without being split.

C. Encoding Terms

To reduce redundancy in the dictionary, we split the URIs
on the last path separator “/”, which means most encoded
URIs will now have two parts, both are encoded as integers.
A question that begs asking, is how are these two integer
values stored together?, one approach we utilise in this paper

Scheme Last part of the path

/_A_\ f_A_\

[http://][inetria.org/directory/employee][smithj]

1 1

Encoded integer values 10=0b1010 7=0b0111

110=0b 011011 1“\0—'] [0]o]0]

L J L J
Y T

!

880 = 0b01101110000

Interleaved bits Information bits

Final encoded integer value

Fig. 2. Dictionary Encoding Using Binary Interleaving

TABLE II
INFORMATION BITS FOR URI REFERENCE COMPRESSION

URI has two parts

(e.g. http://inetria.org/directory)
URI has one part

1 (e.g. http://inetria.org or blank node
_:jA5492297)

Scheme is http

Scheme is https

URI does not have slash (/) at the end
(e.g. http://inetria.org)

URI has a slash at the end

(e.g. http://inetria.org/)

First bit - parts bit 0
(least significant bit)

Second bit - scheme 0
bit T

Third bit - slash bit

is by using a “bitwise” pairing function [16]. Such a function
is based on bit interleaving of two number so they can be
joined into one with the reverse process extracting back the
two numbers. Fig. shows an example of encoding the
URI http://inetria.org/directory/employee/
smithj using our dictionary encoding algorithm. As seen
from the example, first we remove the scheme, then split the
remaining part of the URI at the last path separator. This
gives us two strings that we encode using incremental integer
values (e.g. 10 and 7). These two values are then paired by
interleaving their bits resulting in the decimal number 110.
Finally, three least significant information bits (summarised
in Table M) are added to store information about the original
URI, resulting in a final encoded decimal of 880.

D. Decoding Terms

Pairing is only used when a term is a URI with more than
one section. Terms that do not contain multiple sections such
as blank nodes are encoded into integer values with the addi-
tional information bits added. When decoding integer values,
we first extract the three lease significant information bits, if
the parts bit is 1, then the integer value after removing these
three bits can immediately be resolved from the dictionary. If
the parts bit is 0 then we un-pair the integer values of the two
sections by restoring their bits, the resultant values are then
retrieved from the dictionary and concatenated. The scheme
bit determines if http or https should be added to the decoded
string, similarly, the slash bit is used to add a slash “/” to the

end of the URIL Finally the NTriple angle brackets “(” and
“) are added to the URI to complete the term decoding.

E. Storage Considerations

As noted earlier, BigQuery supports 64-bit signed integers,
the minimum number that can be stored is —253 and the
maximum is 2%% — 1. Moreover, we reserve additional three
bits for storing information regarding the encoded URI, this
leaves us with a minimum and maximum between —2%° and
260 _ 1. For our dictionary encoding approach, we might need
to perform bit interleaving for encoding URIs that are split
into two sections. Bit interleaving will result in a number
that contains the sum of the bits in the two joined numbers,
consequently, in order to ensure that the bit interleaved num-
bers do not exceed the maximum of 260 — 1. Each of the
joined sections must be between —230 and 230 — 1, giving
us the ability to encode string sections using integer values
that ranges from —1,073,741,824 to 1,073,741,823. With
the dictionary using both positive and negative integers within
this range, we can encode approximately 2.14 billion unique
URI sections.

IV. EVALUATION

The dictionary encoding is carried out in three steps, firstly
we process all the dataset files and extracts all the URI parts
for the dictionary keys, secondly the dictionary is assembled
in memory, thirdly the original dataset file are encoded by
loading the dictionary in memory. Both the algorithm that
extract the URI parts and the one that encodes the data can be
distributed. However, the dictionary assembly algorithm need
to be executed on one computer with sufficient memory to
build the dictionary in memory. The size of the memory of
this computer is proportionate to the size of the extracted
URI parts files. We have implemented our dictionary encoding
algorithms using the CloudEX] cloud-based task execution
framework based the Java programming language and ran the
experiments on the Google Cloud Platform [17].

For our experiments we have used two real world datasets,
SwetoDblp [[18], which is a collection of computer science
bibliography data and DBpedia [[19], which is a collection
structured data extracted from Wikipedia. We also generate
synthetic data using the LUBM [10] artificial benchmark tool
that generates universities data. We have generated 8,000
(8K) universities with a total of 1,092,030,000 statements. We
have experimented with three strategies for splitting the URIs
into two parts before encoding, these can be summarised as
follows:

« Standard, the URIs are split on the last path separator
“/”, this is our default strategy.

o Hostname, the URIs are split on the first path separator
“/” after the hostname.

o Hostname + first path part (1SPP), the URIs are split
on the second path separator “/” after the hostname.

Ihttp://cloudex.io

I swetodblp [l Dbpedia LUMB
10000

1000

100

10
me +| o

Spiit Type

Dictionary Size (MB)

Fig. 3. Comparison of dictionary size when using Standard, Hostname + first
path part (1%*PP) and Hostname split strategies.

We evaluate the size of the dictionary for each of these
strategies, additionally, if the dictionary assembly process is
memory intensive we also report the memory usage pattern.
Moreover, we show the BigQuery savings achieved by our
dictionary encoding in terms of scanned data, which is the
primary cost factor when using BigQuery. Finally, we evaluate
our dataset compression rate and dictionary sizes against
other large-scale distributed RDF dictionary encoding. The

compression rate is calculated similar to [9] as follows:
rate = originalSize
~ gzippedEncodedSize+gzippedDictionarySize

A. URIs Split Strategy

Table I provides a comparison of the three URIs split
strategies, additionally Fig. Bl shows the size of the dictionary
for each of the three strategies. As it can be seen that our Stan-
dard split strategy provides the smallest dictionary for real-
world datasets (Swetodblp, DBpedia) compared to the other
two split strategies and consequently requires the least memory
usage (as evident from the DBpedia dataset). In contrast, the
Hostname strategy provides the best dictionary size for the
LUBM dataset, unsurprisingly, due to the uniformity of this
synthetic dataset. The Hostname strategy, which provides the
largest dictionary for both Swetodblp and DBpedia, seems to
provide a very small dictionary for LUBM of only 6 MB.
This shows that each dataset has its own characteristics and
the split strategy that provides the smallest dictionary, which
can be different from one dataset to another.

Additionally, as shown in Fig. B our Standard split strategy
provides the second best dictionary size at 314 MB. On the
other hand, the Hostname + I*'PP is the worst strategy for
LUBM, resulting in a very large dictionary with a size of
6.1 GB. Although an nl-highmem-4 Virtual Machine (VM)
with 26 GB of memory was enough to assemble the DBpedia
dictionary, we needed an nl-highmem-8 VM with 52 GB of
memory to assemble this large LUBM dictionary.

B. Dictionary Assembly Memory Footprint

In terms of the memory footprint of the dictionary assembly
task, we have analysed the usage of the memory intensive
dictionaries for both the DBpedia and LUBM datasets. As
shown in Table [these include the three strategies for
the DBpedia dataset and the Hostname + I*'PP for strategy
LUBM. The memory usage patterns are shown in Fig. [for

http://cloudex.io

COMPARISON OF STANDARD, HOSTNAME + FIRST PATH PART (lSTPP) AND HOSTNAME DICTIONARY SPLIT STRATEGIES FOR SWETODBLP, DBPEDIA

TABLE III

AND LUBM DATASETS.

Swetodblp DBpedia LUBM
Host. Host. Host.
Stand. +1stPP Host. Stand. +1stPP Host. Stand. +1stPP Host.
Extract Files
Size (MB) 81 103 104 4,031 4,118 4,610 317 5,285 14
No. Extract
URI Part 3,738,132 3,788,657 3,791,842 | 165,119,090 166,856,992 176,000,886 | 5,857,835 109,218,289 282,937
Eg}.}?lct. 2,494,280 2,654,293 2,655,787 53,551,014 55,784,063 66,128,766 5,769,284 109,168,015 169,646
Dictionary
Size (MB) 64 97 103 1,760 1,877 2,537 314 6,325 6
Max Mem.
(GB) 0.5 0.5 0.5 12 12 13 1 31 0.5
Assemble 6 6 6 510 600 820 36 889 8
Time (s)
TABLE IV

DICTIONARY ENCODING METRICS, SUCH AS ENCODED DATA AND DICTIONARY SIZES, COMPRESSION RATE AND BIGQUERY SCANNED BYTES

IMPROVEMENTS FOR SWETODBLP, DBPEDIA AND LUBM.

Raw Dict. uer’
Dataset Size (GB) (ﬁig ((él];‘) dict. gzl:; ((g]t;; gzip C:_::Lp' %cany I?‘lyf)r ’
(GB) (GB) (GB)
Swetodblp 4.62 0.88 0.06 0.13 0.02 29.93 0.27 94.08
DBpedia 47 13.8 1.72 4.48 0.91 8.72 6.26 86.68
LUBM 169 314 0.31 6.16 0.03 27.29 22 86.98
PR if the JVM is assigned more memory than the system can
. accommodate this can result in the crash of the JVM.
s From Fig. H] we can estimate the memory usage for the
so000 dictionary assembly based on the number of dictionary keys
[using the linear regression formula shown on the Figure. For
§ example, given that the maximum memory that can currently
f v e be allocated to a VM on the Google Cloud Platform is 208GB
° '. o (using an nl-highmem-32 VM), we can readily assemble very
' large dictionaries with more than 700 million keys.
' i C. BigQuery Scanned Bytes Improvements
0 The key motivation of implementing our dictionary encod-

0 3 6 9 12 15 18 21 24 27
Memory (GB)

Fig. 4. Dictionary assembly memory usage for DBpedia and LUBM datasets.

both datasets with a regression line showing the relationship
between the number of dictionary keys and the dictionary
assembly memory usage.

It is worth noting that the maximum allocated Java Virtual
Machine (JVM) memory needs to be more than the memory
requirements for the dictionary assembly. For example for
DBpedia dataset the dictionary required 12GB of memory,
whilst the maximum JVM memory in this case is set to 23GB
and the actual VM has a maximum of 26GB of main memory.
For the LUBM worst case strategy (Hostname + 1*'PP), the
dictionary memory usage is 31GB, whilst the JVM memory
is set to S0GB on a VM with 52GB of main memory. We
have noticed that if the dictionary assembly uses most of
the JVM memory, garbage collection occurs more frequently
and the assembly process slows down considerably. Moreover,

ing process, is to reduce the size of the total data stored
in BigQuery and scanned when querying the data, which in
turn will reduce cost. Table [[V] shows the dictionary encoding
metrics such as the original, encoded and gzip encoded data
and dictionary sizes for the Swetodblp, DBpedia and LUBM
datasets. The “Size (GB)” column shows the original size
of the dataset before encoding. Without encoding, BigQuery
will scan the full dataset when executing queries that select
all columns in the triple table (Table). On the other hand,
when the data is encoded, BigQuery will only scan the size
shown in the “Query scan (GB)” column. As shown, our
dictionary compression achieves considerable improvements
and subsequently BigQuery cost reduction. The percentages
of these improvements are 94.08%, 86.68% and 86.98% for
the Swetodblp, DBpedia and LUMB datasets respectively.

D. Comparison of Dictionary Encoding

Table [V] provides a comparison of our LUBM 8K and
DBpedia datasets compression rate and dictionary sizes against

TABLE V
COMPARISON OF LARGE SCALE RDF DICTIONARY ENCODING.

Encoded Data Dictionary
size (GB) size (GB)
Size Comp.
Work Dataset (GB) ratep Raw | Comp. | Raw | Comp.
Urbani et al. [9] LUBM 8k 158.9 10.02 - 14 - 1.9
Weaver. J [12] LUBM 10k 224 - 29.8 - 23 -
Our approach LUBM 8k 169.6 27.29 314 6.16 0.31 0.03
. DBPedia
Urbani et al. [9] (110M) 17.4 7.33 - 1.4 - 1
o} h DBpedia 47 872 138 448 172 091
ur approac! (322M)
results reported by [9], [12]. In terms of LUBM, our ap- 2] J. Grant and D. Beckett, “RDF Test
proach provides the smallest dictionary and achieves better Cases” _ W3C __Recommendation, 2004, available at
http://www.w3.0org/TR/2004/REC-rdf- testcases-20040210. [Online].

compression rate. Additionally, for DBpedia our dictionary
and compression rate are better than those reported by [9], this
is considering that we use a newer version of the dataset which
is three times larger than the version used by the authors,
despite this, our compressed dictionary size is smaller. Due to
the efficiency of our dictionary encoding the runtime for the
overall process to import the LUBM 8K data into BigQuery
is 18 minutes and 40 seconds (including 4 minutes to import
the data into BigQuery) using 16 nl-standard-2 2 cores with
7.5 GB RAM virtual machines. This outperforms the time
taken by the approaches developed by [9], [[12], which report
dictionary encoding times of 1 hour 10 minutes (on a 32
nodes Hadoop cluster) and 27 minutes 11 seconds (on 64 cores
supercomputer) respectively.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented and evaluated a novel and
efficient dictionary compression algorithm. We have shown
that our algorithm generates small dictionaries that can fit in
memory and results in better compression rate when compared
with other large scale RDF dictionary compression. The ability
to fit the dictionary in memory results in a faster encoding and
decoding process. Additionally, it can easily enable applica-
tions to hold the entire dictionary in memory whilst encoding
or decoding user queries before sending them to BigQuery.
We have also shown that our algorithm reduces the both the
BigQuery storage and query cost.

As future work we plan to extend our experimentation to
cover more real-world datasets and to experiment with larger
synthetic dataset of more than 1 billion statements. We also
plan to add the ability for user to query the encoded dataset
in BigQuery by using the using the Protocol and RDF Query
Language (SPARQL) [20].

ACKNOWLEDGMENT

We would like to thank Google Inc. for providing us with
credits to run experiments on the Google Cloud Platform.

REFERENCES

[1]1 G.Klyne et al., “Resource Description Framework (RDF): Concepts and
Abstract Syntax,” W3C Recommendation, 2004.

[3]
[4]

[5]
[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]
[16]

(171

[18]

[19]

[20]

Available: http://www.w3.org/TR/2004/REC-rdf-testcases-20040210

B. Bishop et al., “OWLIM: A family of scalable semantic repositories,”
Semantic Web, vol. 2, no. 1, pp. 3342, 2011.

J. Urbani et al., “WebPIE: A Web-scale Parallel Inference Engine using
MapReduce,” Web Semantics: Science, Services and Agents on the World
Wide Web, vol. 10, pp. 59-75, jan 2012.

S. Sharma, et al., “A brief review on leading big data models,” Data
Science Journal, vol. 13, no. December, pp. 138-157, 2014.

S. Sharma, “An extended classification and comparison of nosql big
data models,” CoRR, vol. abs/1509.08035, 2015. [Online]. Available:
http://arxiv.org/abs/1509.08035

G. Developers, “Bigquery - large-scale data ana-
lytics,” https://cloud.google.com/products/bigquery/, 2015, [On-
line; accessed 13-December-2015]. [Online]. Available:

https://cloud.google.com/products/bigquery/

D. Abadi et al., “Column-oriented database systems,” Proceedings of
the VLDB Endowment, vol. 2, no. 2, pp. 1664-1665, 2009.

J. Urbani and J. Maassen, “Scalable RDF data compression with
MapReduce,” Concurrency and Computation: Practice and Experience,
no. April 2012, pp. 24-39, 2013.

Y. Guo et al., “LUBM: A benchmark for OWL knowledge base systems,”
Web Semantics: Science, Services and Agents on the World Wide Web,
no. 610, pp. 1-34, 2005.

J. Weaver and J. Hendler, “Parallel materialization of the finite rdfs
closure for hundreds of millions of triples,” The Semantic Web-ISWC
2009, pp. 682-697, 2009.

J. Weaver, “Toward webscale, rule-based inference on the semantic
web via data parallelism,” Ph.D. dissertation, Rensselaer Polytechnic
Institute, Feb. 2013.

J. Fernandez, “RDF compression: basic approaches,” Proceedings of the
19th international conference on World wide web, pp. 3—4, 2010.

K. Lee et al., “Web document compaction by compressing URI
references in RDF and OWL data,” Proceedings of the 2nd
international conference on Ubiquitous information management and
communication, pp. 163-168, 2008.

D. Brickley and R. Guha, “RDF Vocabulary Description Language 1.0:
RDF Schema,” pp. 1-15, 2004.

S. Pigeon, “Contributions to data compression,” Ph.D. dissertation,
Université de Montréal, Dec. 2001.

G. Developers, “Google cloud computing, hosting services & apis,”
https://cloud.google.com/}, 2015, [Online; accessed 13-December-2015].
[Online]. Available: https://cloud.google.com/

B. Aleman-Meza et al., “SwetoDblp ontology of Computer Science
publications,” Web Semantics, vol. 5, no. 3, pp. 151-155, 2007.

J. Lehmann et al., “DBpedia - A large-scale, multilingual knowledge
base extracted from Wikipedia,” Semantic Web, vol. 6, no. 2, pp.
167-195, 2015.

E. Prud’hommeaux and A. Seaborne, “SPARQL Query Language for
RDF,” W3C Recommendation, vol. 2009, no. January, pp. 1-106, 2008.
[Online]. Available: |http://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/TR/2004/REC-rdf-testcases-20040210
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210
http://arxiv.org/abs/1509.08035
https://cloud.google.com/products/bigquery/
https://cloud.google.com/products/bigquery/
https://cloud.google.com/
https://cloud.google.com/
http://www.w3.org/TR/rdf-sparql-query/

	Introduction
	Related Work
	RDF Compression Using Dictionary Encoding
	Reducing the Size of URIs
	Efficient URI Reference Compression
	Encoding Terms
	Decoding Terms
	Storage Considerations

	Evaluation
	URIs Split Strategy
	Dictionary Assembly Memory Footprint
	BigQuery Scanned Bytes Improvements
	Comparison of Dictionary Encoding

	Conclusion and Future Work
	References

