
Efficient dictionary compression for
processing RDF big data using Google
BigQuery
Conference or Workshop Item

Accepted Version

Dawelbeit, O. and McCrindle, R. (2017) Efficient dictionary
compression for processing RDF big data using Google
BigQuery. In: IEEE GLOBECOM 2016, December 4-8th 2016,
Washington DC. Available at
https://centaur.reading.ac.uk/69737/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .
Published version at: http://doi.org/10.1109/GLOCOM.2016.7841775

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Central Archive at the University of Reading
Reading’s research outputs online

Efficient Dictionary Compression for Processing

RDF Big Data Using Google BigQuery

Omer Dawelbeit

School of Systems Engineering,

University of Reading,

United Kingdom.

Email: o.i.o.dawelbeit@pgr.reading.ac.uk

Rachel McCrindle

School of Systems Engineering,

University of Reading,

United Kingdom.

Email: r.j.mccrindle@reading.ac.uk

Abstract—The Resource Description Framework (RDF) data
model, is used on the Web to express billions of structured
statements in a wide range of topics, including government,
publications, life sciences, etc. Consequently, processing and
storing this data requires the provision of high specification
systems, both in terms of storage and computational capabilities.
On the other hand, cloud-based big data services such as
Google BigQuery can be used to store and query this data
without any upfront investment. Google BigQuery pricing is
based on the size of the data being stored or queried, but given
that RDF statements contain long Uniform Resource Identifiers
(URIs), the cost of query and storage of RDF big data can
increase rapidly. In this paper we present and evaluate a novel
and efficient dictionary compression algorithm which is faster,
generates small dictionaries that can fit in memory and results
in better compression rate when compared with other large scale
RDF dictionary compression. Consequently, our algorithm also
reduces the BigQuery storage and query cost.

I. INTRODUCTION

The Resource Description Framework (RDF) [1] is recom-

mended by the W3C for representing information about re-

sources in the World Wide Web. RDF is intended for use cases

when information need to be processed by and exchanged

between applications rather than people. Resources in RDF can

be identified by using Uniform Resource Identifiers (URIs), for

example the following URI is used to represent an employee

smithj in an organisation:

〈http://inetria.org/directory/employee/smithj〉

Unknown resources or resources that do not need to be

explicitly identified are called blank nodes. Blank nodes are

referenced using an identifier prefixed with an underscore

such as _:nodeId. Constant values such as strings, dates

or numbers are referred to as literals. Information about a

particular resource is represented in a statement, called a triple,

that has the format (subject, predicate, object) abbreviated as

(s, p, o), moreover, the three parts of the triple are also called

terms. Subject represents a resource, either a URI or a blank

node, predicate represents a property linking a resource to an

object, which could be another resource or literal. Formally,

let there be pairwise disjoint infinite sets of URIs (U), blanks

nodes (B), and literals (L). An RDF triple is a tuple:

(s, p, o) ∈ (U ∪B)× (U)× (U ∪B ∪ L) (1)

RDF triples can be exchanged in a number of formats,

primarily RDF/XML which is based on XML documents.

Other formats include line based, plain text encoding of RDF

statements such as N-Triples [2]. An example of an RDF

statement in N-Triple format is shown in Fig 1.

When dealing with large datasets, URIs occupy many bytes

and take a large amount of storage space, which is particularly

true with datasets in N-Triple format that have long URIs. Ad-

ditionally, there is increased network latencies when transfer-

ring such data over the network. Although Gzip compression

can be used to compress RDF dataset, it is difficult to parse

and query these datasets without decompressing them first,

which imposes a computation overhead. There is, therefore, a

need for a compression mechanism that maintain the semantic

of the data, consequently, many large scale RDF systems such

as BigOWLIM [3] and WebPIE [4] adopt dictionary encoding.

Dictionary encoding encodes each of the unique URIs in RDF

datasets using numerical identifiers such as integers that only

occupy 8 bytes each.

The wide use of RDF data on the Web to represent

government, publications, life sciences, geographic and social

data has resulted in very large RDF datasets. Such datasets

require RDF applications to store, query and process billions

of statements and can hence be described as Big Data. A

number of NoSQL Big Data models have been reviewed in

the literature [5]. In particular document oriented stores such

MongoDB and CouchDB in addition to wide columns stores

such as Google BigTable and Cassandra [6], provide the ability

to store petabytes of data. In exception to Google BigTable —

which is a fully managed solution — aforementioned NoSQL

representations may require additional management such as

provisioning, index creation and maintenance.

In response to demands for cloud-based big data storage

and analytical services, cloud services such Google BigQuery

[7] provide the ability to store, process and interactively

query massive datasets. Google BigQuery is defined as “fully

managed, NoOps, low cost analytics database” and utilises

columnar database technology [8]. Additionally, BigQuery

provides SQL like query languages and REST APIs for the

execution of queries and the management of data. BigQuery

stores data in tables without indexes and charges for storage

based on the size of the data stored and for queries by the size

<http://inetria.org/directory/employee/smithj> <http://xmlns.com/foaf/0.1/name> "John Smith" .

Fig. 1. Example RDF statement in N-Triple format

of the columns scanned. For example, the size of each cell in

a column of type string will be 2 bytes + the UTF-8 encoded

string size. BigQuery can be used for both the storage and

processing of RDF without any upfront investments. However,

due to the large number of long URIs in RDF datasets, the

BigQuery cost involved when querying this data can rapidly

increase.

In this paper we propose a novel and efficient dictionary

compression algorithm which generates small dictionaries that

can fit in memory and results in better compression rate when

compared with other large scale RDF dictionary compres-

sion. Consequently, our algorithm also reduces the BigQuery

storage and query cost. The rest of this paper is organised

as follows: In Section II a brief review of the work related

to RDF dictionary encoding is provided, then in Section III

we explain and present our dictionary encoding algorithm.

Subsequently, in Section IV experimental evaluation of our

dictionary encoding algorithm is conducted using both real-

world and synthetic datasets. Finally Section V concludes this

paper and highlights possible future work.

II. RELATED WORK

An RDF dictionary encoding approach based on MapRe-

duces was proposed by [9]. The authors distribute the creation

of the dictionary and the encoding of the data between a

number of nodes running the Hadoop framework. The authors

reported the compression of 1.1 billion triples of the LUBM

[10] dataset in 1 hour and 10 minutes, with a 1.9 GB

dictionary. Another dictionary encoding approach based on

supercomputers was presented by [11]. This approach uses

parallel processors to concurrently process a dictionary by

using the IBM General Parallel File System (GPFS). The

authors report the encoding of 1.3 billion triples of the LUBM

dataset [12] in approximately 28 minutes by utilising 64

processors. The total size reported for the dictionary is 23

GB and 29.8 GB for the encoded data.

A comparison of RDF compression approaches is provided

by authors in [13]. The authors compare three approaches,

mainly gzip compression, adjacent lists and dictionary en-

coding. Adjacent lists concentrates the repeatability of some

of the RDF statements and achieves high compression rates

when the data is further compressed using gzip. The authors

also show that datasets with a large number of URIs that are

named sequentially can result in a dictionary that is highly

compressible. A dictionary approach for the compression of

long URI References (URIRefs) in RDF/XML documents

was presented by [14]. The compression is carried out in

two stages, firstly the namespace URIs in the document are

dictionary encoded using numerical IDs, then any of the

URIRefs are encoded by using the URI ID as a reference.

In this setting, the authors create two dictionaries, one for the

URIs and another one for the URIRefs. The encoded data is

then compressed further by using an XML specific compressor.

Although this approach shows compression rates that are up

to 39.5% better than Gzip, it is primarily aimed at compacting

RDF/XML documents rather than providing an encoding that

reduces both the size and enables the data to be processed in

compressed format.

III. RDF COMPRESSION USING DICTIONARY ENCODING

The RDF dictionary encoding approaches surveyed in this

paper mainly focused on replacing the long URIs to integer

identifiers with the aim to reduce the size of the data. However,

very minimal considerations are given to the size of the gener-

ated dictionaries, which in most cases contain a large level of

redundancy due to the shared namespaces and URI path parts.

This is clearly demonstrated with the large-scale MapReduce

dictionary compression [9], in which case, generated dictio-

naries are larger than 1 GB for large datasets. Additionally

the approach followed by [12] uses parallel computations to

create the dictionary for LUBM, which was many times larger

at 23 GB. This results in the dictionary generation and data

encoding processes taking longer to complete as these large

dictionaries need to be accessed on disk and can not be held in

memory in their entirety. In the following sections we present

our novel and efficient dictionary encoding algorithm.

A. Reducing the Size of URIs

BigQuery supports 64-bit signed integers, with the most

significant bit reserved as a sign bit, the minimum number

that can be stored is −263 and the maximum is 263 − 1. To

highlight the potential savings when converting URIs from

strings to integers, consider the following URIs and URI

References (URIRefs):

1) http://www.w3.org/1999/02/22-rdf-syntax-ns#type

2) http://inetria.org/directory/schema#Employee

3) http://inetria.org/directory/schema#Company

4) http://inetria.org/directory/employee/smithj

5) http://inetria.org/directory/employee/doej

The aforementioned URIs contain on average 44 characters

per URI, with UTF 8 encoding each character can consume

from 1 to 4 bytes for storage. On average, this equates to a

minimum of 46 bytes for each URI, with integer encoding,

only 8 bytes are required to store each value, equating to a

storage saving of at least 82%. With this evident savings on

both storage and cost, a straightforward dictionary encoding

approach similar to [9] can be employed. However, due to

redundancy one of the major issues with such approach is

the size of the dictionary, which prohibit in-memory handling

of the dictionary and instead resorts to in-file processing,

resulting in a considerable processing overhead.

In this section we propose an efficient dictionary encoding

approach to reduce the size of the dictionary and therefore be

able to load it in memory to speedup the encoding process. It is

worth noting that we do not compress literal values, according

to Formula 1 a literal can not occur on the subject or predicate

term, they only occur on the object term. As noted earlier that

URIs are identifiers for resources, which are usually queried

as a whole, however with literals we can use the BigQuery

string functions to be able to search for particular text, as such

we do not compress them. When storing the encoded data in

BigQuery we use a table called the triple table with three

columns (predicate, subject, object) of integer type instead of

string, these will hold the encoded values of the original URIs

and blank nodes. A fourth column object literal of type string

is added to store any literals as they are, in which case the

object column will contain a NULL value, an example is shown

in Table I below.

TABLE I
ENCODED EXAMPLE OF THE BIGQUERY triple table

Subject Predicate Object Object Literal

345 50 250

345 300 NULL ”John Smith”

B. Efficient URI Reference Compression

In this section, we propose an approach for compressing

URI in NTriple documents using integer values to

build up an efficient (compact) dictionary. If we

consider, for example the URIs numbers 4 and 5 in

the previous list, it can be seen that they both share

the http://inetria.org/directory/employee

URI. In a large dataset many more terms will share

similar URIs, which, in a straightforward dictionary

encoding the dictionary will contain the URI many

times, thus inflating the dictionary with redundancy. If

we split each of the URIs into two sections, the first

section contains the hostname and part of the path (e.g.

inetria.org/directory/employee) and the second

section contains the last part of the path (e.g. smithj

and doej). The dictionary will only contain the following

sections: inetria.org/directory/employee,

smithj and doej, instead of the full URIs in 4 and 5 in

the previous list.

It can be seen that this approach can reduce the

size of the dictionary, noting that we have removed the

scheme (e.g. http(s)://) as this can be added later when

decoding the data. URIs that belong to the RDF and

RDF Schema (RDFS) [15] vocabulary such as item 1 in

the previous list (http://www.w3.org/1999/02/22-

rdf-syntax-ns#type) are limited and are hence encoded

in their entirety — using a set of fixed integer values —

without being split.

C. Encoding Terms

To reduce redundancy in the dictionary, we split the URIs

on the last path separator “/”, which means most encoded

URIs will now have two parts, both are encoded as integers.

A question that begs asking, is how are these two integer

values stored together?, one approach we utilise in this paper

Fig. 2. Dictionary Encoding Using Binary Interleaving

TABLE II
INFORMATION BITS FOR URI REFERENCE COMPRESSION

First bit - parts bit

(least significant bit)

0
URI has two parts

(e.g. http://inetria.org/directory)

1

URI has one part

(e.g. http://inetria.org or blank node

:jA5492297)

Second bit - scheme

bit

0 Scheme is http

1 Scheme is https

Third bit - slash bit
0

URI does not have slash (/) at the end

(e.g. http://inetria.org)

1
URI has a slash at the end

(e.g. http://inetria.org/)

is by using a “bitwise” pairing function [16]. Such a function

is based on bit interleaving of two number so they can be

joined into one with the reverse process extracting back the

two numbers. Fig. 2 shows an example of encoding the

URI http://inetria.org/directory/employee/

smithj using our dictionary encoding algorithm. As seen

from the example, first we remove the scheme, then split the

remaining part of the URI at the last path separator. This

gives us two strings that we encode using incremental integer

values (e.g. 10 and 7). These two values are then paired by

interleaving their bits resulting in the decimal number 110.

Finally, three least significant information bits (summarised

in Table II) are added to store information about the original

URI, resulting in a final encoded decimal of 880.

D. Decoding Terms

Pairing is only used when a term is a URI with more than

one section. Terms that do not contain multiple sections such

as blank nodes are encoded into integer values with the addi-

tional information bits added. When decoding integer values,

we first extract the three lease significant information bits, if

the parts bit is 1, then the integer value after removing these

three bits can immediately be resolved from the dictionary. If

the parts bit is 0 then we un-pair the integer values of the two

sections by restoring their bits, the resultant values are then

retrieved from the dictionary and concatenated. The scheme

bit determines if http or https should be added to the decoded

string, similarly, the slash bit is used to add a slash “/” to the

end of the URI. Finally the NTriple angle brackets “〈” and

“〉” are added to the URI to complete the term decoding.

E. Storage Considerations

As noted earlier, BigQuery supports 64-bit signed integers,

the minimum number that can be stored is −263 and the

maximum is 263 − 1. Moreover, we reserve additional three

bits for storing information regarding the encoded URI, this

leaves us with a minimum and maximum between −260 and

260 − 1. For our dictionary encoding approach, we might need

to perform bit interleaving for encoding URIs that are split

into two sections. Bit interleaving will result in a number

that contains the sum of the bits in the two joined numbers,

consequently, in order to ensure that the bit interleaved num-

bers do not exceed the maximum of 260 − 1. Each of the

joined sections must be between −230 and 230 − 1, giving

us the ability to encode string sections using integer values

that ranges from −1, 073, 741, 824 to 1, 073, 741, 823. With

the dictionary using both positive and negative integers within

this range, we can encode approximately 2.14 billion unique

URI sections.

IV. EVALUATION

The dictionary encoding is carried out in three steps, firstly

we process all the dataset files and extracts all the URI parts

for the dictionary keys, secondly the dictionary is assembled

in memory, thirdly the original dataset file are encoded by

loading the dictionary in memory. Both the algorithm that

extract the URI parts and the one that encodes the data can be

distributed. However, the dictionary assembly algorithm need

to be executed on one computer with sufficient memory to

build the dictionary in memory. The size of the memory of

this computer is proportionate to the size of the extracted

URI parts files. We have implemented our dictionary encoding

algorithms using the CloudEx1 cloud-based task execution

framework based the Java programming language and ran the

experiments on the Google Cloud Platform [17].

For our experiments we have used two real world datasets,

SwetoDblp [18], which is a collection of computer science

bibliography data and DBpedia [19], which is a collection

structured data extracted from Wikipedia. We also generate

synthetic data using the LUBM [10] artificial benchmark tool

that generates universities data. We have generated 8,000

(8K) universities with a total of 1,092,030,000 statements. We

have experimented with three strategies for splitting the URIs

into two parts before encoding, these can be summarised as

follows:

• Standard, the URIs are split on the last path separator

“/”, this is our default strategy.

• Hostname, the URIs are split on the first path separator

“/” after the hostname.

• Hostname + first path part (1stPP), the URIs are split

on the second path separator “/” after the hostname.

1http://cloudex.io

Fig. 3. Comparison of dictionary size when using Standard, Hostname + first
path part (1stPP) and Hostname split strategies.

We evaluate the size of the dictionary for each of these

strategies, additionally, if the dictionary assembly process is

memory intensive we also report the memory usage pattern.

Moreover, we show the BigQuery savings achieved by our

dictionary encoding in terms of scanned data, which is the

primary cost factor when using BigQuery. Finally, we evaluate

our dataset compression rate and dictionary sizes against

other large-scale distributed RDF dictionary encoding. The

compression rate is calculated similar to [9] as follows:

rate = originalSize

gzippedEncodedSize+gzippedDictionarySize

A. URIs Split Strategy

Table III provides a comparison of the three URIs split

strategies, additionally Fig. 3 shows the size of the dictionary

for each of the three strategies. As it can be seen that our Stan-

dard split strategy provides the smallest dictionary for real-

world datasets (Swetodblp, DBpedia) compared to the other

two split strategies and consequently requires the least memory

usage (as evident from the DBpedia dataset). In contrast, the

Hostname strategy provides the best dictionary size for the

LUBM dataset, unsurprisingly, due to the uniformity of this

synthetic dataset. The Hostname strategy, which provides the

largest dictionary for both Swetodblp and DBpedia, seems to

provide a very small dictionary for LUBM of only 6 MB.

This shows that each dataset has its own characteristics and

the split strategy that provides the smallest dictionary, which

can be different from one dataset to another.

Additionally, as shown in Fig. 3 our Standard split strategy

provides the second best dictionary size at 314 MB. On the

other hand, the Hostname + 1stPP is the worst strategy for

LUBM, resulting in a very large dictionary with a size of

6.1 GB. Although an n1-highmem-4 Virtual Machine (VM)

with 26 GB of memory was enough to assemble the DBpedia

dictionary, we needed an n1-highmem-8 VM with 52 GB of

memory to assemble this large LUBM dictionary.

B. Dictionary Assembly Memory Footprint

In terms of the memory footprint of the dictionary assembly

task, we have analysed the usage of the memory intensive

dictionaries for both the DBpedia and LUBM datasets. As

shown in Table III, these include the three strategies for

the DBpedia dataset and the Hostname + 1stPP for strategy

LUBM. The memory usage patterns are shown in Fig. 4 for

http://cloudex.io

TABLE III
COMPARISON OF STANDARD, HOSTNAME + FIRST PATH PART (1ST PP) AND HOSTNAME DICTIONARY SPLIT STRATEGIES FOR SWETODBLP, DBPEDIA

AND LUBM DATASETS.

Swetodblp DBpedia LUBM

Stand.
Host.

+1stPP
Host. Stand.

Host.

+1stPP
Host. Stand.

Host.

+1stPP
Host.

Extract Files

Size (MB)
81 103 104 4,031 4,118 4,610 317 5,285 14

No. Extract

URI Part
3,738,132 3,788,657 3,791,842 165,119,090 166,856,992 176,000,886 5,857,835 109,218,289 282,937

No. Dict.

Keys
2,494,280 2,654,293 2,655,787 53,551,014 55,784,063 66,128,766 5,769,284 109,168,015 169,646

Dictionary

Size (MB)
64 97 103 1,760 1,877 2,537 314 6,325 6

Max Mem.

(GB)
0.5 0.5 0.5 12 12 13 1 31 0.5

Assemble

Time (s)
6 6 6 510 600 820 36 889 8

TABLE IV
DICTIONARY ENCODING METRICS, SUCH AS ENCODED DATA AND DICTIONARY SIZES, COMPRESSION RATE AND BIGQUERY SCANNED BYTES

IMPROVEMENTS FOR SWETODBLP, DBPEDIA AND LUBM.

Dataset Size (GB)
Raw enc.
data (GB)

Raw
dict.
(GB)

Enc. data
gzip (GB)

Dict.
gzip
(GB)

Comp.
rate

Query
scan
(GB)

Impr.
(%)

Swetodblp 4.62 0.88 0.06 0.13 0.02 29.93 0.27 94.08
DBpedia 47 13.8 1.72 4.48 0.91 8.72 6.26 86.68
LUBM 169 31.4 0.31 6.16 0.03 27.29 22 86.98

Fig. 4. Dictionary assembly memory usage for DBpedia and LUBM datasets.

both datasets with a regression line showing the relationship

between the number of dictionary keys and the dictionary

assembly memory usage.

It is worth noting that the maximum allocated Java Virtual

Machine (JVM) memory needs to be more than the memory

requirements for the dictionary assembly. For example for

DBpedia dataset the dictionary required 12GB of memory,

whilst the maximum JVM memory in this case is set to 23GB

and the actual VM has a maximum of 26GB of main memory.

For the LUBM worst case strategy (Hostname + 1stPP), the

dictionary memory usage is 31GB, whilst the JVM memory

is set to 50GB on a VM with 52GB of main memory. We

have noticed that if the dictionary assembly uses most of

the JVM memory, garbage collection occurs more frequently

and the assembly process slows down considerably. Moreover,

if the JVM is assigned more memory than the system can

accommodate this can result in the crash of the JVM.

From Fig. 4 we can estimate the memory usage for the

dictionary assembly based on the number of dictionary keys

using the linear regression formula shown on the Figure. For

example, given that the maximum memory that can currently

be allocated to a VM on the Google Cloud Platform is 208GB

(using an n1-highmem-32 VM), we can readily assemble very

large dictionaries with more than 700 million keys.

C. BigQuery Scanned Bytes Improvements

The key motivation of implementing our dictionary encod-

ing process, is to reduce the size of the total data stored

in BigQuery and scanned when querying the data, which in

turn will reduce cost. Table IV shows the dictionary encoding

metrics such as the original, encoded and gzip encoded data

and dictionary sizes for the Swetodblp, DBpedia and LUBM

datasets. The “Size (GB)” column shows the original size

of the dataset before encoding. Without encoding, BigQuery

will scan the full dataset when executing queries that select

all columns in the triple table (Table I). On the other hand,

when the data is encoded, BigQuery will only scan the size

shown in the “Query scan (GB)” column. As shown, our

dictionary compression achieves considerable improvements

and subsequently BigQuery cost reduction. The percentages

of these improvements are 94.08%, 86.68% and 86.98% for

the Swetodblp, DBpedia and LUMB datasets respectively.

D. Comparison of Dictionary Encoding

Table V provides a comparison of our LUBM 8K and

DBpedia datasets compression rate and dictionary sizes against

TABLE V
COMPARISON OF LARGE SCALE RDF DICTIONARY ENCODING.

Encoded Data
size (GB)

Dictionary
size (GB)

Work Dataset
Size
(GB)

Comp.
rate

Raw Comp. Raw Comp.

Urbani et al. [9] LUBM 8k 158.9 10.02 - 14 - 1.9
Weaver. J [12] LUBM 10k 224 - 29.8 - 23 -
Our approach LUBM 8k 169.6 27.29 31.4 6.16 0.31 0.03

Urbani et al. [9]
DBPedia
(110M)

17.4 7.33 - 1.4 - 1

Our approach
DBpedia
(322M)

47 8.72 13.8 4.48 1.72 0.91

results reported by [9], [12]. In terms of LUBM, our ap-

proach provides the smallest dictionary and achieves better

compression rate. Additionally, for DBpedia our dictionary

and compression rate are better than those reported by [9], this

is considering that we use a newer version of the dataset which

is three times larger than the version used by the authors,

despite this, our compressed dictionary size is smaller. Due to

the efficiency of our dictionary encoding the runtime for the

overall process to import the LUBM 8K data into BigQuery

is 18 minutes and 40 seconds (including 4 minutes to import

the data into BigQuery) using 16 n1-standard-2 2 cores with

7.5 GB RAM virtual machines. This outperforms the time

taken by the approaches developed by [9], [12], which report

dictionary encoding times of 1 hour 10 minutes (on a 32

nodes Hadoop cluster) and 27 minutes 11 seconds (on 64 cores

supercomputer) respectively.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented and evaluated a novel and

efficient dictionary compression algorithm. We have shown

that our algorithm generates small dictionaries that can fit in

memory and results in better compression rate when compared

with other large scale RDF dictionary compression. The ability

to fit the dictionary in memory results in a faster encoding and

decoding process. Additionally, it can easily enable applica-

tions to hold the entire dictionary in memory whilst encoding

or decoding user queries before sending them to BigQuery.

We have also shown that our algorithm reduces the both the

BigQuery storage and query cost.

As future work we plan to extend our experimentation to

cover more real-world datasets and to experiment with larger

synthetic dataset of more than 1 billion statements. We also

plan to add the ability for user to query the encoded dataset

in BigQuery by using the using the Protocol and RDF Query

Language (SPARQL) [20].

ACKNOWLEDGMENT

We would like to thank Google Inc. for providing us with

credits to run experiments on the Google Cloud Platform.

REFERENCES

[1] G. Klyne et al., “Resource Description Framework (RDF): Concepts and
Abstract Syntax,” W3C Recommendation, 2004.

[2] J. Grant and D. Beckett, “RDF Test
Cases,” W3C Recommendation, 2004, available at
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210. [Online].
Available: http://www.w3.org/TR/2004/REC-rdf-testcases-20040210

[3] B. Bishop et al., “OWLIM: A family of scalable semantic repositories,”
Semantic Web, vol. 2, no. 1, pp. 33–42, 2011.

[4] J. Urbani et al., “WebPIE: A Web-scale Parallel Inference Engine using
MapReduce,” Web Semantics: Science, Services and Agents on the World

Wide Web, vol. 10, pp. 59–75, jan 2012.
[5] S. Sharma, et al., “A brief review on leading big data models,” Data

Science Journal, vol. 13, no. December, pp. 138–157, 2014.
[6] S. Sharma, “An extended classification and comparison of nosql big

data models,” CoRR, vol. abs/1509.08035, 2015. [Online]. Available:
http://arxiv.org/abs/1509.08035

[7] G. Developers, “Bigquery - large-scale data ana-
lytics,” https://cloud.google.com/products/bigquery/, 2015, [On-
line; accessed 13-December-2015]. [Online]. Available:
https://cloud.google.com/products/bigquery/

[8] D. Abadi et al., “Column-oriented database systems,” Proceedings of

the VLDB Endowment, vol. 2, no. 2, pp. 1664–1665, 2009.
[9] J. Urbani and J. Maassen, “Scalable RDF data compression with

MapReduce,” Concurrency and Computation: Practice and Experience,
no. April 2012, pp. 24–39, 2013.

[10] Y. Guo et al., “LUBM: A benchmark for OWL knowledge base systems,”
Web Semantics: Science, Services and Agents on the World Wide Web,
no. 610, pp. 1–34, 2005.

[11] J. Weaver and J. Hendler, “Parallel materialization of the finite rdfs
closure for hundreds of millions of triples,” The Semantic Web-ISWC

2009, pp. 682–697, 2009.
[12] J. Weaver, “Toward webscale, rule-based inference on the semantic

web via data parallelism,” Ph.D. dissertation, Rensselaer Polytechnic
Institute, Feb. 2013.

[13] J. Fernández, “RDF compression: basic approaches,” Proceedings of the

19th international conference on World wide web, pp. 3–4, 2010.
[14] K. Lee et al., “Web document compaction by compressing URI

references in RDF and OWL data,” Proceedings of the 2nd

international conference on Ubiquitous information management and

communication, pp. 163–168, 2008.
[15] D. Brickley and R. Guha, “RDF Vocabulary Description Language 1.0:

RDF Schema,” pp. 1–15, 2004.
[16] S. Pigeon, “Contributions to data compression,” Ph.D. dissertation,

Université de Montréal, Dec. 2001.
[17] G. Developers, “Google cloud computing, hosting services & apis,”

https://cloud.google.com/, 2015, [Online; accessed 13-December-2015].
[Online]. Available: https://cloud.google.com/

[18] B. Aleman-Meza et al., “SwetoDblp ontology of Computer Science
publications,” Web Semantics, vol. 5, no. 3, pp. 151–155, 2007.

[19] J. Lehmann et al., “DBpedia - A large-scale, multilingual knowledge
base extracted from Wikipedia,” Semantic Web, vol. 6, no. 2, pp.
167–195, 2015.

[20] E. Prud’hommeaux and A. Seaborne, “SPARQL Query Language for
RDF,” W3C Recommendation, vol. 2009, no. January, pp. 1–106, 2008.
[Online]. Available: http://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/TR/2004/REC-rdf-testcases-20040210
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210
http://arxiv.org/abs/1509.08035
https://cloud.google.com/products/bigquery/
https://cloud.google.com/products/bigquery/
https://cloud.google.com/
https://cloud.google.com/
http://www.w3.org/TR/rdf-sparql-query/

	Introduction
	Related Work
	RDF Compression Using Dictionary Encoding
	Reducing the Size of URIs
	Efficient URI Reference Compression
	Encoding Terms
	Decoding Terms
	Storage Considerations

	Evaluation
	URIs Split Strategy
	Dictionary Assembly Memory Footprint
	BigQuery Scanned Bytes Improvements
	Comparison of Dictionary Encoding

	Conclusion and Future Work
	References

