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This paper explores the evolution of subtropical cyclone Anita, which occurred near

1C

the east coast of Brazil (~19°S—37°W) in March 2010. Thermodynamic and dynamic
processes during Anita’s lifecycle are investigated using the heat and vorticity budget
equations. The cyclone developed with hybrid characteristics and moved anomalously
to the southwest where it coupled with an upper level cut-off low during the mature
phase. This coupling was the main dynamical mechanism for further cyclone deepening.
Anita then remained quasi-stationary about 30°S—47°W for two days due to an
upper level dipole pattern which prevented earlier displacement of the upper level
low counterpart. When the dipole pattern dissipated, the cyclone moved southeast and
underwent extratropical transition whilst merging with a mid-latitude frontal cyclone.
Diabatic heating and horizontal temperature advection are found to be essential for the
subtropical development. During extratropical transition, it is instead diabatic cooling
together with adiabatic cooling and warm air advection that act as the main mechanisms
to influence the local temperature tendencies at low levels. Low level cyclonic tendencies
were mostly due to convergent flow, and the residual vorticity partially destroyed
the vorticity tendencies produced by the divergence term. Moreover, in regions and
levels where convection could explain some of the vorticity tendencies, it is found that
apparent sinks of cyclonic vorticity were related to negative vorticity due to divergence

(i.e., convergent flow), whilst apparent sources were related to positive vorticity due to
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divergence (i.e., divergent flow).
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1. Introduction

In recent years, there has been an increase in the number of studies
on subtropical cyclones (STCs) occurring in different regions of
the globe. Although there is still no widely accept definition,
STCs are described as synoptic scale phenomena with a warm
core at low levels and a cold core in the upper troposphere,
i.e., they present characteristics of both extratropical and tropical
cyclones simultaneously (Hart 2003; Davis 2010). Like their

xtratropical and tropical counterparts, STCs can directly affect

C

eather conditions over land and sea, producing a variety of

l

hazards, damage, destruction and sometimes significant loss of

fe.

1C

Some dynamic and thermodynamic processes associated with

!

TC genesis and evolution have been investigated in recent

iterature (e.g. Guishard er al. 2007, 2009; Evans and Guishard

I

009; Davis 2010; Evans and Braun 2012; Gozzo et al. 2014,
Gonzélez-Aleman et al. 2015; Bentley et al. 2016) but are not

et fully understood. Additionally, the main characteristics

A

and physical mechanisms during STCs development can vary

epending on which region of the globe they occur. A brief review

d

of some of these studies is given in the following paragraphs.

For the North Atlantic region, Evans and Guishard (2009)

ound that STC formation is strongly linked with the equatorward

te

intrusion of an upper level trough in the westerlies over a

egion of relatively warm sea surface temperature (SST) and

P

weak static stability. More than half of all STCs considered
y Evans and Guishard (2009) developed over a relatively high

ertical wind shear (in excess of 10 m s™1).

CC

In the north-central Pacific, the STCs occurring in the cold

C

eason are named Kona lows and they have large contribution
o the precipitation totals in some regions of Hawaii (Simpson
1952; Morrison and Businger 2001; Otkin and Martin 2004;

aruso and Businger 2006; Moore et al. 2008). The pioneering
work of Simpson (1952) described Kona lows as essentially
cold core systems which can, in some cases, develop warm core
properties and a wind field similar to that of tropical cyclones.
Simpson (1952) describes the mechanism for this as follows:
pressure falls in the upper troposphere (e.g. a merger of a cut-

off low with a deepening polar trough) are likely associated

with the initial deepening at the surface, which leads to intense
precipitation and large release of latent heat (from condensation)
near the low center; this release leads to warming and changes
of temperature gradients, making the lower core warmer than its
surroundings, increasing wind intensities and further deepening
the cyclone. Moore et al. (2008) performed a composite analysis
of 43 Kona lows and proposed the downstream development as
the main dynamical forcing for the STCs geneses.

In the east coast of Australia, intense STCs develop between
25°S—45°S throughout the year, mostly in late autumn and early
winter (Holland ef al. 1987; Browning and Goodwin 2013). STCs
occurring in the Tasman Sea region are known as East Coast
Cyclones (ECCs) and are typically characterized by widespread
heavy rainfall (Hopkins and Holland 1997). ECCs genesis occur
in the presence of warm SST anomalies and their intensification
is associated with strong zonal SST gradients near to the coastline
according to Hopkins and Holland (1997).

For the South Atlantic basin, Evans and Braun (2012) and
Gozzo et al. (2014) constructed climatologies of STCs using
different reanalysis project datasets and different objective
identification techniques. According to Evans and Braun (2012),
South Atlantic STCs can develop in environments with a large
range of vertical wind shear and SST values. These authors
proposed two main genesis mechanisms: Rossby wave breaking
and lee cyclogenesis. From the analysis of Gozzo et al. (2014),
STCs formation is mainly associated with the presence of a
dipole-blocking pattern in the upper troposphere and occurs over a
region of relatively weak turbulent latent and sensible heat fluxes
near surface.

The contributions of both baroclinic (upper level trough)
and diabatic (latent heat releasing during convection) processes
are often important during the development of these hybrid
STC structures (Bentley ef al. 2016). According to the American
Meteorological Society (AMS) glossary, STCs extract available
potential energy from the mean flow, similar to extratropical
cyclones, and at the same time they also receive part or
most of their energy from convective redistribution of heat
originating from the sea, similar to tropical cyclones (AMS 2016).
From this perspective, Bentley er al. (2016) developed a new

objective identification technique based on the potential vorticity

This article is protected by copyright. All rights reserved.



to construct a climatology of STCs that undergo tropical transition

over the North Atlantic.

The relative role of dynamic (baroclinic or barotropic insta-
bilities) and diabatic processes (mainly convection) acting dur-
ing STCs development may also be accessed using the bud-
gets of vorticity and heat. Studies using these equations are
important to understand the mechanisms controlling the devel-

ent of meteorological systems. When computed in synop-

¢

tig scale, the vorticity and thermodynamic equations usually

l

rovide regions/periods of intense values, which are called as

iduals. These residuals indicate regions/periods of imbal-

C.

es that may reflect the presence of intense convective

1

ivity. Thermodynamic analyses have been extensively per-

Q

med in studies investigating extratropical cyclones (e.g.

It

Lipu and Elsberry 1987; Hirschberg and Fritsch 1991; Lupo et al.
1992; Rolfson and Smith 1996) and tropical cyclones (e.g.

Bride 1981; Wang 2012; Fritz and Wang 2014). The vor-

A

ticity equation has also been extensively used in previous

estigations of extratropical cyclones (e.g. Lupo er al. 1992;

d

otjahn 1996; Azad and Sorteberg 2014a,b), tropical cyclones

. Karyampudi and Pierce 2002; Raymond and Lépez Carrillo

C

11) and even hurricanes that underwent extratropical transition

{

e.g. DiMego and Bosart 1982; Sinclair 1993). However, similar

dies are lacking for STCs. The work of Morrison and Businger

2

, for instance, applied the vorticity tendency equation to

lore some of the dynamics features of a Kona low occurred

v

er the north-central Pacific.

G

In March 2010 a STC developed in subtropical latitudes
ofy the South Atlantic Ocean and, as it moved, it affected
weather conditions in coastal areas of South America. Due
to' its unusual southwest trajectory, this STC soon gained

ttention from several meteorological institutions around the

Ac

world. The United States Naval Research Laboratory (NRL)
began to monitor it under the name Invest 90Q. Additionally,
some Brazilian meteorological centers named it as Anita
(Atmosfera Meteorologia 2010). Hereafter, we also use Anita to
refer to this cyclone. Some numerical weather prediction models
indicated that the STC would move to the southwest, with chances
of acquiring some tropical cyclone characteristics, as occurred in

2004 with the Catarina cyclone, the first-ever reported hurricane

in the South Atlantic basin (Pezza and Simmonds 2005). The
potential of Anita to undergo a tropical transition was explored
by Dias Pinto er al. (2013) through synoptic and energy cycle
analyses. They verified that it presented conditions for tropical
transition; however a decrease of latent heat fluxes and an increase
of vertical wind shear prevented the completion of tropical
transition for Anita.

Although there has been an increase in the investigation of
STCs around the world, the relative contribution of baroclinic
and diabatic processes during their development is not yet
fully understood, particularly over the South Atlantic Ocean.
Therefore, this study aims to explore Anita’s development using
the thermodynamic and vorticity budget equations. We also
analyze the associations between the spatial patterns of the
residual fields of both budgets over Anita to verify how convection
relates with the vorticity tendencies.

This paper is organized as follows. Section 2 describes the data
and methodology. Section 3 presents Anita’s track, Cyclone Phase
Space (CPS; Hart 2003) analysis, synoptic discussion, results of
the heat and vorticity budgets and the respective associations
between both residual fields. Finally, a summary and conclusions

are given in section 4.

2. Data and methodology

We used data from the National Centers for

Environmental Prediction (NCEP) Final Analysis (FNL;
National Centers for Environmental Prediction/National Weather Service/NO
2000), which correspond to the initial conditions for the NCEP
Global Forecast System (GFS) global model. This data is available
at a 6-hourly frequency, 1.0° grid spacing and at 26 pressure
levels from 1000 to 10 hPa. We also used daily SST anomaly data
from the NOAA OI SST V2 High Resolution Dataset, available
at a 0.25° grid spacing from the NOAA/OAR/ESRL PSD website
athttp://www.esrl.noaa.gov/psd/.

Anita’s track was identified at different atmospheric levels
(925 hPa and 850 hPa) using an algorithm developed by Sugahara
(2000) and later modified by Reboita ef al. (2010), in which
cyclones are identified through cyclonic relative vorticity maxima.

The track was also obtained through visual inspection of mean

sea level pressure (MSLP) fields to validate the relative vorticity

This article is protected by copyright. All rights reserved.



tracks and verify if both methods are appropriate to identify this

type of rare cyclone.

The tracking results (latitude and longitude at each timestep)
were given as inputs for the CPS™ algorithm, along with surface
temperature, and geopotential height and wind fields on pressure
levels. CPS computes three parameters to infer the cyclone’s
nature (tropical, extratropical or hybrid): 1) thermal or thickness

mmetry (B), 2) lower-tropospheric thermal wind (—VTL ), and

¢

upper-tropospheric thermal wind (—VTU ). The evaluation of

1

e three-dimensional structure of the cyclones as given by these

C

ameters can also identify transitioning processes occurring

1

oughout their life cycle. The thermal wind parameters are a
asure of the vertical change in geopotential height gradients,

whilst B measures the 900-600 hPa thickness difference between

1y

sides of a bisected 500 km-radius circle, centered on the cyclone.
The CPS graphical output includes B versus —VZ and —V¥

sus fV%. More information about this algorithm is given in

A

Hart (2003).

The synoptic, dynamic and thermodynamic aspects of Anita

d

ere then explored. Cloud patterns were discussed using satellite

gery obtained from the group responsible for tropical cyclone

¢

ducts from the NRL, and GOES-12 satellite imagery (sourced

{

om CPTEC-INPE 2013). The GOES-12 imagery were overlaid

00 hPa streamlines from FNL to highlight relationships

P

tween distributions of cloud patterns and the upper level cyclone

C

cture.

he heat and vorticity budgets in equations 1 and 2,

¢

spectively, were computed for all vertical pressure levels and

G

timesteps (every 6 hours). All terms involving spatial (x, y and
oordinates) and temporal (time) derivatives on the right side

of the equations 1 and 2 were calculated using centered finite

A

ifferences, while the terms on the left side were obtained as

residuals of each equation.

_or
ot

- (—VH T 4L - ag) (1

F T w
Cpp Op

¢

where T is temperature, VH represents the horizontal wind, w
is the pressure vertical velocity, p is the atmospheric pressure,
R is the gas constant (287 J K~ kg™ 1), ¢, is the specific heat
at constant pressure (1004 J K—! kgfl), ¢ is relative vorticity,
f is planetary vorticity, 5 is the meridional change of planetary
vorticity and Fr and F, denote the heat and vorticity budget
residuals, respectively. Note that both Frr and F also include the
effects of computational and observational uncertainties (Sinclair
1993) and hence the residuals should be interpreted with caution.

In equation 1, the left side represents the residual or diabatic
term,which includes processes associated with water vapor in
the atmosphere, radiative and sensible fluxes (Dutton 1986). The
vertical profile of this residual allows the interpretation of which
of these physical processes is most important. According to
Carlson (1991), the sensible heat flux maximizes near the surface
(Iwabe and da Rocha 2009), while shallow and deep convections
show a maximum heating, respectively, in the middle and upper
troposphere. In these last two cases, the upward motion maxima
tend to occur slightly below the levels of maximum heating
(Carlson 1991).

The right side terms in equation 1 correspond to (from
left to right) the local temperature tendency, horizontal
temperature advection, adiabatic expansion/compression and
vertical temperature advection. We also compute the sum
(hereafter Sy,) of the adiabatic term and the vertical temperature
advection to quantify the local temperature tendencies due to the
vertical motion processes.

The term on the left side of equation 2 refers to the residue of
the vorticity budget, which represents apparent sources or sinks
of vorticity in the atmosphere. As described in the literature
(e.g. Reed and Johnson 1974; Chueral. 1981), regions with
signicant convective activity show an apparent source of cyclonic
vorticity in the upper troposphere and an apparent sink near the
surface, suggesting a vertical transport of vorticity by convective
processes.

The right side terms of equation 2 represent (from left

to right local relative vorticity tendency, horizontal

t
- = ¢ . Ow Ou w v
Fr=2_|—Vy- —w B — . gwon  Gwov
CT ot [ Vi - V6 w@p vB =+ )V Vi + (6y Opelatide @qu‘jjity advection, vertical relative vorticity advection,

(@)

meridional advection of planetary vorticity, the divergence or

*The CPS code was obtained online atht tp: / /moe . met . £su.edu/~rhart/sostretehingiterm and the tilting or twisting term.
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Thermodynamic and dynamic processes were accordingly
explored by daily vertical profiles averaged over a 10° x 10°
box centered on the surface low and by spatial pattern analyses at
different pressure levels. The vertical profiles were first averaged
over the box for each timestep and location and then computed as
daily averages (from 00 UTC to 18 UTC) for each stage of Anita
(see caption of Fig. 1b for further explanation). The methodology

uSed here to compute the averaged vertical profiles centered on

¢

the surface low, i.e. moving with Anita’s trajectory, is similar to

I

the one of Morrison and Businger (2001). These authors analyzed
main terms of the vorticity tendency equation through vertical

files averaged over a 275 km radius surrounding the center

1C

ofi a surface Kona low. Sinclair (1993) and Sinclair and Revell

{

(2000) also calculated vertical profiles of the vorticity and
thérmodynamic budget terms for cyclones, however these authors
sed a quasi-Lagrangian framework moving with the translation

velocity of the cyclone.

Results

d Ar

Cyclone track and Cyclone Phase Space

clone Anita had a life cycle of almost 10 days, as defined by

e

SLP, in early March 2010 (Fig. 1). The long-lasting cyclone

eloped at subtropical latitudes, around 19°S—37°W, and later

18

oved to the southwest until it reached the vicinity of Brazil’s

C.

th coast (~30°S—47°W), where it stayed quasi-stationary

about 2 days. It then turned, moving southeast and merging

C

th an extratropical cyclone. Fig. la shows Anita’s tracks as a

function of MSLP and relative vorticity at 925 hPa and 850 hPa.

G

e vorticity derived tracks begin later than the MSLP track,
indicating that the surface low pressure center developed prior

ojthe cyclonic circulation at low levels. The relative vorticity

A,

tracks are slightly displaced to east compared to the MSLP track
and all trajectories are in reasonable accordance with each other.
Fig. la also shows that Anita developed in a region of positive
SST anomalies which extended southwest along the Brazilian
coast. By the end of its life cycle, however, Anita moved towards
extratropical latitudes with negative SST anomalies.

The temporal evolution of MSLP intensity of Anita is displayed

in Fig. 1b. It is noteworthy that the MSLP intensity attains its

lowest value at the end of Anita’s life cycle. Such deepening
happens when Anita is moving towards higher latitudes and
transitioning to an extratropical cyclone. Also of note is the
representation of a weakening stage, prior to this deepening phase.

According to the cyclone track, five timesteps were selected
to illustrate the most significant aspects of Anita’s evolution (see
cross marks and annotations in Fig. 1b). The incipient stage
(1200 UTC, 4th) is defined as the point at which the central MSLP
begins to decrease; during the intensifying stage (1200 UTC, 7th)
the low pressure system starts moving southwest. The time at
which the system reaches the lowest MSLP (1004.5 hPa) whilst
in its subtropical phase is labeled as the mature stage (1200 UTC,
Oth). The weakening stage (1200 UTC, 10th) is marked by a
slightly increase in the central pressure, and during extratropical
transition (1200 UTC, 11th) there is a second, steeper, deepening
of the surface cyclone.

According to the Cyclone Phase Space diagrams (Fig. 2), Anita
developed initially as a subtropical cyclone, with a warm core at
low levels (—VTL > 0) and a cold core at upper levels (—VTU < 0).
This hybrid structure was maintained until 0600 UTC on the
10th, i.e., between the mature and the weakening stages (Fig. 2b).
During this period, the B parameter (Fig. 2a) is below 15 m,
which indicates that the cyclone had a symmetric and non-frontal
structure. Starting from 0600 UTC on the 11th, 6 hours prior to the
extratropical transition stage, B begins to grow as fV% decreases,
indicating that the cyclone structure was turning asymmetric as
its low level core cooled and representing Anita’s extratropical
transition. The mean radius of 925 hPa gale force wind increases
during extratropical transition, as the cyclone’s central MSLP
deepens. This second phase of intensification by the end of Anita’s
life cycle is a result of the merging process occurring between
Anita and another extratropical cyclone that was moving eastward
at higher latitudes. The upper level core also starts cooling at a

maximum rate from 0000 UTC on the 12th (Fig. 2b).

3.2.  Synoptic analysis
3.2.1.  Spatial fields

Anita’s cyclogenesis occurred in a region of pre-existing cyclonic

circulation, where a prior cyclone developed one day earlier

This article is protected by copyright. All rights reserved.
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;g igure 1. (a) Sea surface temperature anomaly (relative to the 1971—2000 climatological mean) averaged from 3 to 13 March 2010 (shaded, °C) and Anita’s track (every

40(0) SE2rS ()i 5000 vrc 23 maren 3010 \seg) circulation over the Atlantic) extending southwest. At this time,
3 AETHHETES, coromeone ASTUIETRIC tafucore even though the closed isobar associated with Anita is small,
5 30 Intensity (hPa):
< 0 . . . ..
e there is already an associated cyclonic vorticity core at low levels
20
characterizing the cyclone formation (Fig. 3a). The low level
1
Mean radius of . . . . .
10 s2sn0 0o horizontal temperature advection is weak over Anita at this stage,
force_wind (km):
. <100
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L] 300
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o §E . . .
NS trough axis (Fig. 5a). At upper levels, there is a shallow and short
-0 —~200 —~100 0 100 200 o o . L
Cold Core | Worm Core wave trough around 22°S—43°W, and the streamlines in Fig. 4a
-V [900—600hPa Thermal Wind]
(b) show a diffluent flow relative to the downstream trough axis,
which causes divergence aloft (fig. not shown) and contributes to
DEEP WARM CORE
Intensity (hPa): . .
01 enhance the upward motions throughout the atmospheric column
lo0e
ol (see Fig. 7a for the incipient stage), consequently reinforcing the
985 950 .
. MO MRS vean raas o low pressure core and enhancing convergence at low levels. At
925hPa gale
force W'\ndgkm H
o R 500 hPa the geopotential height field does not show any trough
o . 00
] ! ° 300
o-100 SHALLOW WARM—CORE ® o associated with Anita’s development. There is, however, a large
© 13 . 750
circular-shaped cold top cloud producing precipitation over the

I DEEP COLD CORE
—200 T y T T T .
700 ~100 0 100 200 area and surroundings of the surface low.
Cold Core Warm Core
-V [900—600hPa Thermal Wind]
In the incipient stage over the South Pacific ocean and near the
ure 2. Cyclone Phase Space diagrams for Anita using 1 degree FNL data every 6 P g
hotrs: (a) — V£ vs B and (b) — V£ vs — V.. A indicates the beginning (1800 UTC

03 March 2010) of the plotted life cycle and Z indicates the end (0000 UTC 13~ West coast of South America (not shown) there is a shortwave

March 2010). A marker is placed every 6 hours, where the shading indicates the .

cyclone MSLP intensity and the size indicates the relative size of the 925 hPa gale ~ trough at the upper troposphere, which travels eastward towards

force (>17 m s~1!) wind field, according to the legend on the right of each plot.

More information about the Cyclone Phase Space is given in Hart (2003). the South Atlantic ocean. This trough amplifies in a north-south
direction as it approaches the east coast of South America, and

and later moved southeast (not shown). In the incipient stage around 1800 UTC of the 6th (not shown) the inner part of

(1200 UTC of the 4th; Figs. 3a, 4a and 5a), a closed isobar of the trough starts to detach from the meridional stream. This

1012 hPa corresponding to Anita is around 19°S—37°W, with an  detachment, centered around 25°S—50°W, characterizes the start

inverted pressure trough (located north of the broad anticyclonic  of the tear-off stage of the upper level low which will soon merge
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th the lower level counterpart of Anita. By the intensifying

L

stage (1200 UTC of the 7th; Figs. 3b, 4b and 5b), this tear-

can be seen as an omega shape form in the 500 hPa

12

eopotential height contours and in the 200 hPa streamlines.

C

200 hPa, there is diffluence occuring at the trough exit and

r Anita (Fig. 4b), which causes divergence aloft (not shown)

G

d contributes to further increase the rising motion over Anita

(see Fig. 7a). Dynamical support is also provided by the vertical

¢

alignment of the trough exit at upper levels, leading to cyclonic
vorticity advection increasing with height (see Fig. 9c), causing

ng rising motion at mid levels (see Fig. 7a) and low level

A

convergence, consequently deepening the surface low. The low
pressure core of Anita intensifies to about 1006 hPa and starts
to move southwestward and merge with the upper level low. By
this stage, Anita’s MSLP core is centered around 22.5°S—38°W
and the inverted pressure trough is now broader and extends
farther south, around 25°S—50°W. Low level warm air advection

and low level moisture flux convergence occur along the stalled

° A
. 008
—~ / i

2l
1012

oy
(a7
1012\ /,‘9 008
C—d /:' -
P00 S0 (7775
7
RN
~ 5600~
70W 60W 50W 40W 3W 70W 60W 50w 40W 30w

ure 3. Synoptic fields of 925 hPa cyclonic relative vorticity (shaded, 10~° s~1), MSLP (black contour, hPa) and geopotential height at 500 hPa (red dashed contour,
m) for (a) incipient, (b) intensifying, (c) mature, (d) weakening and (e) extratropical transition. In each plot, the 10° x 10° degree box is centered on the surface low.

pressure trough near the Brazilian coast and over an area of
increased low level cyclonic relative vorticity associated with
Anita, northwest of the wide anticyclonic circulation over the
Atlantic. Two main synoptic-scale cloud bands associated with
great values of accumulated rainfall are seen along Brazil’s
coast. The northernmost band is located northeast of Anita’s
core (22°S—35°W) and has cold cloud tops with temperatures
below —70°C (Fig. 4b). These cold cloud tops indicate deeper
convection over the cyclonic convergence area, further enhanced
by low levels northerly winds that contribute to warm air
advection over the surface low. The second main synoptic-scale
cloud band has top temperatures between —50°C and —70°C and

is located east of the upper level low.

Development continues, and around 1700 UTC of the 8th
(Fig. 6a), Anita is located around 29°S—43°W, which indicates a
displacement of 7 degrees to the south and 14.5 degrees to the west
in 30 hours. At this time, most of the cloud bands are observed in

the southern portion of the cyclonic circulation, stretching along
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C

1°S and producing a considerable amount of precipitation over

{

uthern Brazil and surrounding oceanic areas.

B

Aftér 48 hours, in the mature stage (1200 UTC of the 9th;

&

s. 3c, 4c and 5c), Anita reaches an equivalent barotropic

ge with vertical alignment of the low pressure core throughout

*

e depth of the troposphere. The system is positioned around

3°S—48°W with a MSLP of 1005 hPa. Intense winds at low

C

eyels flow towards land as part of the cyclonic circulation of
Anita, in particular over Uruguay and the southernmost region

f)Brazil, being associated with moisture flux convergence at the

A

lower troposphere. The upper counterpart of Anita is completely
detached from the main stream, forming a well-developed closed
circulation or cut-off low in both mid- and upper- levels. At
200 hPa, the strong forward-falling ridge upstream from the upper
level low has also separated from the main stream, forming
a closed anticylonic circulation south of Anita’s cut-off low.
These two centers of closed circulation form a north-south

dipole pattern, which remains quasi-stationary (or with slow

propagation) for 24 hours and prevents the earlier displacement
of Anita’s upper level low counterpart. The upper level westerly
jet cannot penetrate the dipole pattern region and thus the
most intense flow shifts to the north and to the south of the
dipole pattern system. According to Dias Pinto ez al. (2013), the
configuration of this pattern contributed to reduce the vertical
wind shear over Anita, which is one of the main ingredients
to favor tropical development. Over Anita, intense rainfall of
up to 100 mm day ' (not shown) occurs in the core of a
circular region of precipitation. Two main bands with cloud-
top temperatures between —40°C and —50°C and other warmer
clouds are organized in a spiral shape over the ocean (along 30°S)
and coastal regions over South Brazil. The spiral shape is better
seen in Fig. 6b, with the visible satellite imagery almost 6 hours
after the mature stage. In this figure, the bottom left portion (to
the left of the yellow line) shows the clouds organized in a C-
shape, in association with the upper level diffluent flow and the

dipole pattern (Fig. 4c), while the clouds on the center of the figure

This article is protected by copyright. All rights reserved.



(a) Incipient (b) Intensifying (¢) Mature

10S g <
(- w7 ol a C{‘Q‘ UEEYDR LY o -
o _ &/:/E PR 3 S L Tt I P ,°$ N Yo
B 9T N °-%{7\:,§. 598
20S - J .l;k.. . -ﬁ s i _5' CRASp. @ .
y () = ROR e B‘. v v R -7 ol
2551 [ ] Z. "'/\) [ ] 46‘—%7}
305 - . A “, Y k(\; | .w 3
N SRR B N ) SR
35S - L] d’-//‘ - S| (Q,ﬂ}.Ngg
N o s e S PR
40S 1 '( PRI B Y —'l V2 // - v & A

» /7 4
455 o P e
%....n ~4

NI . &

Y

s A / 65 :\ ! s (s \
{.& | -% [ VA PP
508 + . . . - : 1 e o 2l L
70W 60w 50W  40W 30w 70W 60W  50W  40W 30w 70W 60W 50w 40W 30w

70W 60W 50w 40W 30W 7EJW 60W

c ’ (d) Weakening (e) Extratropical transition
108 1= T G Te K day? I,
‘“ > «[PVg £ e - ‘NJP f) N ' M 20 m/s
. I 155_?%‘ ‘&\J/"?Q' u .0 9 9{ v «| | . °> : 4 \) - ‘hl v o
L YR OVEIBE IR 4 ¢ o« @BN/aA a_ s (jl £ 12
H ZUS-%‘JM PN -&%ﬁ ’@‘ . 0}. VS e
ﬁ:" ¥ D YR "*‘v:&» °
% | 255 - o : . : is
S S ' I
355 - . F -
a0s{ ] IN
455 - . ™

ure 5. Synoptic fields of 925 hPa horizontal temperature advection (shaded, K day~'), 925 hPa winds and 925 hPa moisture flux convergence (purple contour every
x 1074 gkg s from1 x 107* gkg ts 1to11 x 107% gkg™* s~ 1) for (a) incipient, (b) intensifying, (c) mature, (d) weakening and (e) extratropical transition.
ach plot, the 10° x 10° degree box is centered on the surface low.

C

INVEST
A-1 RAIN
ES-12 VIS

Uure 6. AQUA-1 rain rate (colored shaded with swath edges marked by yellow lines, inches/hr) and GOES-12 visible imagery (black and white shaded) for (a) 1709 UTC
08 March, (b) 1739 UTC 09 March, (c) 1709 UTC 10 March and (d) 1709 UTC 11 March 2010. Imagery were obtained from the NRL group in November 2010.

@;tly to the right of the yellow line) have a more spiral-shape and its core is displaced southeast compared to the previous stage.

pattern, in association to the low pressure core of Anita. Over the The anticyclonic circulation, however, remains almost stationary

center of the surface low, around 31°S—48°W, there is a cloud to the south, preventing the upper level cyclone from moving

free area resembling the eye structure of tropical cyclones. further towards higher latitudes. Note that, by this stage, Anita

has an eastward vertical inclination. Also of note is that there is

In the following hours, however, the convection arising within

. . a large trough in the main stream approaching from the rear of
the core of Anita contributes to weaken the upper level low. Thus,

. . Anita’s cut-off low in 200 hPa, which contributes to weaken the
by the weakening stage (1200 UTC of the 10th; Figs. 3d, 4d and

. . . dipole pattern. The cut-off low at middle levels also begins to lose
5d), the upper level dipole pattern is still prominent but weaker.

. . . intensity, as well as the MSLP core which weakens to 1006 hPa.
The upper level low shows a smaller amplitude in the streamlines

This article is protected by copyright. All rights reserved.



Like its upper counterpart, the surface cyclonic core remains
quasi-stationary compared to the prior stage, retrogressing one
degree to the north. Even though the low level warm air advection
over Anita is intense, the low level moisture flux convergence is
decreased. The clouds still produce heavy precipitation and are
organized in a closed-circle shape, and the eye over the center
of the storm is dissipated as shown in Fig. 6¢. Also of note

isithat another cyclone has developed over eastern Argentina

C

(~41°S—60°W, Fig. 3d).

1

n the following hours, the upper level dipole pattern begins
merge with the main stream, characterizing the final stage

Anita’s upper level low. By the extratropical transition stage

1C

00 UTC of the 11th, Figs. 3e, 4e and 5e), the upper level

t

dipole pattern finally dissipates and only a trough is seen in the

I;

200 hPa streamlines. Just like the incipient and the intensifying
stdge, during the extratropical transition stage diffluence occurs

at;200 hPa over the surface low, leading to divergence aloft

A

(not shown) and contributing to increase vertical motions (see
. 7a). The cut-off low at 500 hPa also dissipates and its

aining trough shifts to the southeast and begins to merge with

d

trough of another cyclonic system located to the south. This

G

mospheric structure in upper and middle levels contributes to

southeastward motion of the surface low, which also merges

f

h the low level counterpart of the cyclone located to the south.

P

this process, Anita undergoes extratropical transition and

pens at a maximum rate. Moisture flux convergence at the

¢

w troposphere increases again, associated with intense low level

C

m air advection east of Anita’s core. Two large-scale cloud

ds with cloud-tops below —50°C develop east of the upper

G

vel trough as lower level winds and convergence increase. The
cipitation field retains its circular shape and its core intensifies

to around 150 mm day~! (not shown); the rainfall affects only

A

oceanic areas however. The visible satellite image on this day

(Fig. 6d) shows Anita displaced far from the coast.

3.2.2.  Vertical profiles

Fig. 7a shows vertical profiles of the pressure vertical velocity
(or omega) averaged over a 10° x 10° box centered on the
surface low and Fig. 7b shows the maximum wind speed

intensity occurring within this box. Fig. 7a shows that the

greatest upward motions occur during the incipient and the
intensifying stages, with the intensifying stage being characterized
by intense convection, as shown in Fig. 4b. Upward motions
decrease substantially during the mature and weakening phases
of Anita, with the weakening stage showing upward motion
from the surface to 600 hPa and weak downward motion aloft.
During extratropical transition, however, upward motions begin
to increase again throughout the troposphere.

During Anita’s hybrid stage, i.e, from incipient until 0600 UTC
of the 11th, winds decrease with height from the surface up
to about 600 hPa and then increase with height up to the
upper troposphere (Fig. 7b). During extratropical transition,
however, the wind intensity increases with height throughout the
troposphere. These wind speed profiles are consistent with the
thermal wind arguments used in CPS to classify the nature of
cyclones. Guishard er al. (2007) describes a subtropical storm
occurred in the North Atlantic in May 2001 with a wind profile
similar to that of Anita during its hybrid stage. Between the
7th and 9th, when Anita is approaching the south coast of
Brazil, maximum winds increase throughout the atmospheric

column and, at 925 hPa, peak values of ~ 30 m s—!

occur
between 0000 UTC of the 8th and 9th. Strong near surface winds
over oceanic areas can generate high sea waves and sink boats
(Gozzo and da Rocha 2013; da Rocha et al. 2004). Prior to that,
from genesis until 1200 UTC of the 6th, low level maximum
winds remained moderate, between 10 and 15 m s~ !. The
weakening of wind speeds throughout the depth of the troposphere
that occurs after the mature stage, but before extratropical
transition, is consistent with the increase of MSLP shown in

Fig. 1b and is also consistent with a decrease of maximum

cyclonic vorticity in the whole atmospheric column (not shown).

3.3. Heat budget

Fig. 8 presents the vertical profiles of the heat budget terms
averaged over a box centered on the surface low for each stage
of Anita’s life cycle (as indicated by the red curly brackets
in Fig. 1b). For the local temperature tendencies, Fig. 8a
shows values around zero (or slightly negative) throughout the
troposphere in the incipient stage. At low levels (1000—850 hPa)

there is a warming tendency which increases from the intensifying

This article is protected by copyright. All rights reserved.
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rt1

the mature stage and then decreases slightly during the
wgakening stage. By the extratropical transition stage, however,
thére is a cooling tendency at lower levels of the troposphere.

At upper levels (between 500 hPa and 200 hPa), the biggest

A

rming tendencies occur during the intensifying stage. Note that
only the intensifying stage presents positive tendencies throughout

troposphere below 150 hPa. The biggest cooling tendencies

d

upper levels (between 450 hPa and 300 hPa) occur in the

eXtratropical transition stage followed by the mature stage.

tc

Vertical profiles of horizontal temperature advection (Fig. 8b)
w that the intensifying and the extratropical transition stages
resent the greatest upper level warm air advection, which is

accordance with the results of Rolfson and Smith (1996),

C.

ere the authors verified that the value of the upper level
rm air advection maximum increases with the intensification

ofysurface extratropical cyclones. These maxima of upper level

CC

warm air advection occur due to a warm layer in the upper level
trough upstream of the surface cyclone (not shown). Previous

tudies have shown that warm air advection maxima at upper

A

atmospheric levels are a typical feature of extratropical cyclone
development (Hirschberg and Fritsch 1991; Lupo er al. 1992;
Rolfson and Smith 1996). From a quasi-geostrophic perspective,
warm advection increasing with the height does not contribute
to cyclone development. However, some studies point out that
warm advection in the upper troposphere may contribute to
lower the pressure due to the atmosphere column heating

(Hirschberg and Fritsch 1991). At the lower troposphere (below

900 hPa), the averaged temperature advection is around zero
during the incipient and intensifying stages, negative (or cold)
during the mature stage and positive (or warm) during the
weakening and extratropical transition stages, highlighting the
transition. Warm air advection maxima in the lowest levels
were also found by Rolfson and Smith (1996) in composites of
extratropical cyclones with moderate-to-strong rates of surface
deepening. Cold air advection (CAA) predominates from the
mature to the extratropical transition stages from 500 hPa to

250 hPa.

The large warm air advection during the intensifying stage
above 900 hPa (Fig. 8b) can explain part of the intense upward
motions occurring at this stage (Fig. 7a). In the quasi-geostrophic
omega equation, the term which includes the Laplacian of the
thermal advection indicates that upward motion occurs in regions
of maximum warm air advection (Trenberth 1978). Similarly, the
cold air advection during the weakening stage at upper levels
(Fig. 8b) likely contributes to the concurrent upper tropospheric

downward motions at this stage (see Fig. 7a).

The profiles of the vertical temperature advection and adiabatic
terms (Figs. 8c and d) are generally opposite in sign. This occurs
because upward (downward) motions in the troposphere lead
to 1) adiabatic cooling (warming) by expansion (compression)
of the air parcels and to 2) warming (cooling) by positive
(negative) vertical temperature advection, since the temperature
generally decreases with height in the troposphere. Out of these

two thermodynamic processes, for Anita subtropical cyclone,
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abatic contributions to local temperature tendencies are, with a

te

w exceptions, mostly greater than contributions from the vertical

ature advection, as shown in Fig. 8e (where S, represents

P

sum of the vertical temperature advection and adiabatic terms).
general, below 200 hPa, the vertical profile of Sy, follows

the profile of the pressure vertical velocity (Fig. 7a), indicating

e

hat adiabatic cooling (warming) predominates as a response to

¢

ard (downward) motions throughout the lifetime of Anita.

ertical profiles of the residue of the thermodynamic equation

Fig. 8f suggest that diabatic processes act to counterbalance

A

the temperature tendencies caused by the vertical motions
mostly in middle and upper levels. This occurs since the
diabatic contributions are mostly associated with water vapor
phase changes in cloudy areas, evaporation of precipitation and
overshooting cloud tops (da Rocha and Caetano 2010). In the
lower troposphere, however, the diabatic term (Fig. 8f) does not
always oppose the temperature tendencies due to Sy, (Fig. 8e).

During the incipient stage, the averaged diabatic heating at low

e calculated as daily averages (from 00 UTC to 18 UTC) for each stage of Anita, as indicated by the red curly brackets in Fig. 1b.

levels is small and increases by the intensifying stage, reaching
maximum values by the mature stage below 975 hPa. By the
weakening stage, diabatic heatic decreases at low levels and
throughout the troposphere, and the extratropical transition stage
is the only stage with low level diabatic cooling. Fig. 8f also shows
that intense diabatic heating occurs throughout the troposphere
above the surface low during the intensifying stage, and some
diabatic cooling occurs at upper levels during the weakening

stage.

The following analysis aims to identify the main mechanisms
of the thermodynamic equation (Figs. 8b-f) responsible for
the local temperature tendencies (Fig. 8a). Fig. 8g shows the
difference between the local temperature tendency (Fig. 8a) and
the horizontal temperature advection (Fig. 8b). Values around zero
in Fig. 8g indicate that horizontal temperature advection is the
main mechanism responsible for the local temperature tendencies.
This occurs mainly in the middle troposphere (between 750 hPa

and 350 hPa) during all stages of Anita, except the weakening
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stage. On the other hand, the larger values in Fig. 8g, which
occur mainly in the lower troposphere, indicate that horizontal
temperature advection is not the sole mechanism to influence
the local temperature tendencies, as further discussed in the
following paragraph. Also note that, during the mature and
extratropical transition stages, the sign of the low level local
temperature tendency (Fig. 8a) is opposite to the sign of the low

Igvel horizontal temperature advection (Fig. 8b), indicating that

C

there are opposing mechanisms acting to cancel all temperature

I

tendencies caused by horizontal temperature advection.

ig. 8g also represents the sum of S, (Fig. 8¢) and the diabatic

t1C

teym (Fig. 8f). By analysing Fig. 8g from this perspective, we

I

cah conclude that during Anita’s main subtropical phases (i.e.,

the intensifying and mature stages) the diabatic heating is an

A

ortant process at low levels, since the positive values indicate
that Sy, can not counterbalance all diabatic temperature changes.

s suggests that low level diabatic heating is essential to the

d

elopment of Anita, and temperature advection (warm during

the intensifying stage and cold during the mature stage) also

C

ays an important role during its evolution. The large diabatic

{;

heating at low levels allows Anita to develop a hybrid temperature
ctyre (warm core at low levels and cold core at upper

evels).

P

da Rocha and Caetano (2010) have demonstrated in a

vious study the importance of diabatic heating on the numerical

C.

ulation of a cyclone over the subtropics of the South Atlantic

*

cean. Davis (2010) used idealized, moist primitive equation

siulations to define subtropical cyclones in a dynamical sense

¢

and found condensation heating as the principal agent of their
development. During the extratropical transition stage however,
he negative values at low levels in Fig. 8g indicate that diabatic
cooling occurs to reinforce the negative contributions of Sy, to the
local temperature tendencies, and both of these mechanisms act
to cancel the low level warming tendencies caused by warm air
advection (Fig. 8b). Such negative contributions of S, are due
to adiabatic cooling at low levels, as shown in Fig. 8d. Thus, for
Anita, when extratropical transition occurs, warm air advection,
adiabatic cooling and diabatic cooling are the main mechanisms

responsible for the local temperature tendencies at low levels.

3.4.  Vorticity budget

Relative vorticity profiles for each phase of Anita are presented
in Fig. 9a, and vertical profiles of the vorticity budget equation
terms are shown in Figs. 9b-h. At the incipient stage, the cyclonic
vorticity (negative values) is weak and occurs only at low levels.
It then increases by the intensifying stage between the low-
to middle levels. By the mature stage, cyclonic vorticity is
intense and increases from the surface to the upper troposphere,
with largest magnitude at 250 hPa (Fig. 9a). Similar vertical
structure evolutions are also found in extratropical cyclones due
to the westward tilt with height of the low pressure core, which
decreases as the system evolves (e.g. Iwabe and da Rocha 2009).
For Anita, as the upper level cut-off low moves southeastward and
dissipates (in the weakening and extratropical transition stages,
respectively), cyclonic vorticity weakens at mid- to upper levels
(Fig. 9a).

At lower levels, the local relative vorticity tendency profile
(Fig. 9b) shows that the cyclonic vorticity increases from the
incipient to the mature stage. By the weakening stage this pattern
of continuous growth of the cyclonic vorticity stalls but is then
followed by a further increase during the extratropical transition
stage. At mid- and upper- levels, large negative tendencies of local
relative vorticity occur during the incipient stage. This indicates a
decrease of the weak anticyclonic circulation that predominates
above 650 hPa (Fig. 9a). The intensifying stage also presents
intense negative vorticity tendencies at the mid troposphere
(Fig. 9b), which reflects the southwestward movement of the
surface low towards the upper level low counterpart (Figs. 3b
and 4b). By the weakening stage, positive values of local relative
vorticity tendencies in all levels indicate a decrease in the intensity
of cyclonic vorticity throughout the troposphere. During the
extratropical transition stage negative tendencies of local vorticity
occur mainly at upper levels (Fig. 9b) as Anita moves towards

extratropical latitudes.

The horizontal relative vorticity advection (Fig. 9c) is
mostly anticyclonic at lower levels for all stages, especially
during the intensifying stage. At upper levels, the horizontal
relative vorticity advection is cyclonic during all stages except

the weakening stage. According with the quasi-geostrophic
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ega equation (Trenberth 1978; Maddox and Doswell 1982),

pt

upward (downward) motion occurs where horizontal cyclonic

ticyclonic) advection increases with height. Thus, the vertical

C

ange of the horizontal relative vorticity advection in Fig. 9¢

explain part of the vertical velocities (Fig. 7a) during some

C

stages (e.g. during the intensifying and the extratropical transition

G

ages and the weakening stage at upper levels). Additionally,
spatial field of the horizontal relative vorticity advection (not

shown) depicts an area of cyclonic horizontal relative vorticity

A

advection to the southwest of the surface low at low levels during
the intensifying stage, contributing to Anita’s southwestward
motion. Moreover, it is noteworthy to mention that the upper
level anticyclonic advection during the weakening stage is the
main mechanism responsible for the positive upper level vorticity

changes seen in Fig. 9b for this stage.

The vertical relative vorticity advection (Fig. 9d) is contributing

to the cyclonic tendencies at mid- and upper levels mainly

in 10719 s=2, The vertical profiles were calculated as daily averages (from 00 UTC to 18 UTC) for each stage of Anita, as indicated by the red curly brackets in

during incipient, the intensifying, the mature and the extratropical
transition stages, partly reflecting the large intensity of the
vertical motion, but also indicating that the vertical gradients of
vorticity are more intense at these levels and stages. Additionally,
these cyclonic contributions from the vertical relative vorticity
advection indicate the transport of cyclonic vorticity from low-

to upper levels by the convective processes.

Positive (negative) values of the planetary vorticity advection
(Fig. 9e) indicate that the mean meridional flow in the box over
the surface low is mostly southward (northward). Even though
planetary vorticity advection (Fig. 9e) tends to be negatively
associated with horizontal relative vorticity advection (Fig. 9e;
Lau 1979), particularly in the mid-latitudes where westerly winds
predominate, it can also reinforce the local relative vorticity
tendencies due to horizontal relative vorticity advection in some
cases, commonly in the subtropics (e.g. during the incipient and

mature stages of Anita at upper levels). Fig. 9e shows that the
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planetary vorticity advection is cyclonic and increases with height
from mid- to upper levels during the incipient phase, contributing
to the upward motion (Fig. 7a). For the intensifying and the
extratropical transition stages, however, the planetary vorticity
advection is anticyclonic throughout the atmospheric column
(Fig. 9e) and thus acts to offset some of the cyclonic tendencies
at middle and upper levels due to horizontal relative vorticity

adyection (Fig. 9c).

C

The profile of the tilting term (Fig. 9f) shows a large amount

|

f cancelation with the profile of vertical relative vorticity
ection (Fig. 9d) in all stages and levels, and thus during

incipient, intensifying, mature and extratropical transition

1

ges, the tilting term contributes to the anticyclonic tendencies

t

throughout the upper troposphere. The propensity for cancelation
between the vertical relative vorticity advection and the tilting
term is also verified in previous studies of cyclones that underwent

ratropical transition (e.g. DiMego and Bosart 1982; Sinclair

Ar

1993). Large values in the tilting term are related to intense
tical shear of the horizontal wind and horizontal gradients of

tical motion.

d

The vertical profiles of vertical relative vorticity advection

d tilting term (Figs. 9d and f, respectively) refer to higher-

e

order terms of the vorticity balance that are usually neglected

analyses of synoptic scale motions. Neglecting these two

P

terms When calculating the residual vorticity does not significantly

nge the qualitative distribution of the residual vorticity profile

>

ot shown). However, it can lead to substantial overestimation

C

underestimation of the vorticity tendencies for some stages

and levels, and consequently to misguided interpretation of the

¢

residual vorticity.

he vorticity due to divergence, also known as the stretching

eym, includes contributions from the vorticity and divergence

A,

product (ZD), and from the planetary vorticity and divergence
product (FD), as in the analyses of Morrison and Businger (2001).
Contributions from ZD are usually smaller than those from FD,
and some studies explore them individually (e.g. Grotjahn 1996).
Convergence of mass in the atmosphere is related to shrinking
of the vortex tubes and consequent production of cyclonic
vorticity, with the opposite being true for divergence (Martin

2006, 132—133). The profile of vorticity due to divergence

(Fig. 9g) for Anita indicates that, at low levels, convergence is
the main process responsible for the cyclonic vorticity tendencies,
with the intensifying stage showing the most intense contributions
of convergence below 800 hPa. Karyampudi and Pierce (2002)
investigated the formations of three tropical cyclogenesis cases
over the Eastern Atlantic and also found that cyclonic tendencies
at low levels are predominantly contributed by the stretching term,
as a result of low-level convergence. During the weakening stage
of Anita, divergence (not shown) is the main forcing for the
anticyclonic tendencies in the 750 hPa to 350 hPa layer.

Also of note is that, during the incipient stage at upper and
middle levels, cyclonic horizontal relative vorticity advection
(Fig. 9c¢), planetary vorticity advection (Fig. 9¢) and vorticity due
to divergence (Fig. 9g) are the main components contributing to
the observed local relative vorticity tendencies (Fig. 9b). Note,
however, that the negative contributions of the vertical relative
vorticity advection (Fig. 9d) are mostly cancelled out by the
positive contributions of the tilting term (Fig. 9f) during the
incipient stage.

Throughout all stages of Anita, the residual vorticity profile
(Fig. 9h) acts mainly as a function of the divergence term
profile (Fig. 9g), showing opposite contributions and reducing its
influence on the local relative vorticity tendencies. It is important
to emphasize that, at some regions and atmospheric levels, the
divergence of mass is strongly related to the vertical motion.
Thus, it is interesting to analyze if convection is acting as a
strong forcing for the observed vorticity imbalances given that
convective process are also related to the vertical motion. This

issue is explored in the next section.

3.5. Association between the residual fields

Reed and Johnson (1974) explored the vorticity budget in ridge
and trough regions of easterly wave disturbances in the tropical
western Pacific. They found that, over the region of most
intense convection, the residual vorticity acts like an apparent
sink of cyclonic vorticity in the lower troposphere and an
apparent source of cyclonic vorticity at upper levels. Virji (1982)
analyzed the upper tropospheric vorticity budget over the tropical
and subtropical South America and found a spatial correlation

between patterns of vorticity imbalances and intense cumulus
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convective activity, suggesting that the vertical advection of
vorticity by subgrid-scale convection greatly influences vorticity
tendencies.

For Anita, the residual vorticity profiles in Fig. 9h show,
for the lower troposphere, a similar pattern of that found by
Reed and Johnson (1974), i.e., apparent sinks of cyclonic vorticity
(positive values) at low levels. At upper levels, however, only

theé intensifying stage presents a clear intense apparent source

C

ofcyclonic vorticity (negative values). During the extratropical

l

ransition stage, this source of cyclonic vorticity is less intense

C

occurs immediately above the low level sink, extending from

hPa to 250 hPa. This pattern in the vertical profile of the

1

idual vorticity, with an apparent sink below and an apparent

t

soprce aloft, likely indicates the upward transport of vorticity
thiough convective processes. For the other stages (incipient,
mature and weakening), although there is a clear sink of cyclonic

ticity at low levels, Fig. 9h shows only small sources of

Ar

cyclonic vorticity spread throughout middle and upper levels,

rcalated with small sinks of cyclonic vorticity.

d

he spatial pattern of residual fields of the heat and vorticity
blidgets have been analyzed in order to establish if the ideas

Reed and Johnson (1974) and Virji (1982) also apply to the

e

regions of great convective-scale motions associated with Anita.

have carefully examined these spatial patterns in all pressure

P

levels,) and chose to display here the fields for 925 hPa, where
ociations between the residual fields are more apparent and

ere all stages present a consistent sink of cyclonic vorticity

CC

e Fig. Oh). Thus, Fig. 10 shows, for 925 hPa, the diabatic

of the thermodynamic equation (shaded) and the residual

G

sinks (green contours) and sources (dashed purple contours)
of! cyclonic vorticity. Similarly, Fig. 11 depicts, for 925 hPa,

Sw (shaded) and the stretching term, where positive values

A,

indicate divergence (green contours) and negative values indicate
convergence (dashed purple contours) of the flow.

In general, Fig. 10 indicates that for all stages there are
regions over Anita and its surroundings in which diabatic heating
coincides with sinks of cyclonic vorticity. Specifically, many
regions with positive values of the residue of the thermodynamic
equation also present positive values of the residue of the vorticity

equation. In these regions, convection would explain part of the

vorticity imbalances. It is interesting to note that, over these
regions, the spatial distribution of the residual vorticity (Fig. 10)
seems to be negatively associated with the spatial distribution
of the stretching term (Fig. 11). Moreover, in these regions, the
diabatic term (Fig. 10) also seems to be negatively associated with
Sw (Fig. 11).

An example of the described associations occurs during the
intensifying and the mature stages over Anita, when areas
of intense diabatic heating are located over the surface low,
coinciding with an apparent cyclonic vorticity sink (see Figs. 10b-
c). In addition, these areas are characterized by a core of negative
contributions by Sy, and a center of negative values of the
stretching term (see Figs. 11b-c).

Similar associations are found in the upper troposphere during
some stages over Anita (not shown), but regions of upward motion
show in general an apparent source of cyclonic vorticity instead
of an apparent sink, supporting the results of Reed and Johnson
(1974). At upper levels, regions with negative values of Sy
(cooling by adiabatic expansion due to upward motion) are
characterized by positive vorticity due to divergence, which
indicates divergence of the flow. In these regions, the diabatic term
is usually positive and there is a source of cyclonic vorticity, that
is, negative values of the residual vorticity.

In contrast, over regions where there is no clear association
between the residual fields, vorticity due to divergence does not
seem to be well associated with the residual vorticity, and likewise
Sw does not seem to be well associated with the diabatic term.

The patterns described can be explained as follows. Positive
(negative) values of the stretching term at the upper (lower)
troposphere are associated with divergent (convergent) flow,
which at those levels is usually related to upward (upward)
motion. Therefore, when the stretching term of the vorticity
equation controls the residual vorticity, it means that this residual
vorticity is strongly related to processes of vertical motion, which
are in turn related to convective activity. Thus, it may be inferred
that convection has an important role in the local relative vorticity
tendencies. Over areas where no clear association between
the residual fields is found, it is hypothesised that convection
probably also influences the vorticity tendencies, but more evenly

throughout the atmospheric column, in the same way as the
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divergence associated with the vertical motion can be distributed
throughout the troposphere, without being concentrated at only
some levels.

Thus, in general, in regions and levels with upward motion
(Sw < 0) where associations between the residual fields of the
heat and vorticity budget are found, it is observed that apparent
sources of cyclonic vorticity are related to divergence, whilst

apparent sinks of cyclonic vorticity are related to convergence of

¢

the flow. This indicates the upward transport of vorticity through

l

convective processes.

t is important to remember that other subgrid-scale processes

C

her than convection) which could not be resolved by the

l

synoptic scale variables or included in the equations can also

!

influence the vorticity tendencies. Moreover, it is important to
highlight that, at upper levels, these associations between the
residual fields are not as evident as in low levels, because both

the residual vorticity and the stretching term field at upper levels

Ar

are noisier, and because at upper levels the stretching term is not

well associated with the vertical motion field.

d

. Summary and conclusions

C

is paper has explored the synoptic, dynamic and thermo-

f;

dynamic evolution of a subtropical cyclone which occurred over

South Atlantic near the Brazilian coast in March 2010. The

P

torm 'was monitored by NRL as Invest 90Q and named Anita
some Brazilian meteorological centers. Here, five stages were

ected to illustrate Anita’s evolution.

CEC

Analysis of the Cyclone Phase Space (CPS) showed that Anita

initially had hybrid characteristics (a warm lower core and a cold

¢

upper core). The surface low pressure center developed around

S—37°W over warm SST anomalies and prior to the cyclonic
igculation at low levels, which later extended upward. By the
incipient stage, diffluence at 200 hPa over the surface low and
contributed to increase the rising motions. During the intensifying
stage, diffluence also occured over the surface low at the 200 hPa
trough exit of an upper level low located southwest of Anita,
which caused divergence aloft and contributed to enhance upward
motions throughout the atmosphere, consequentely intensifying
the low pressure core and enhancing convergence at low levels.

Thus, this upper level low provided dynamical support for further

cyclone deepening and favored its southwestward motion. By this
stage, moisture flux convergence and warm air advection at low
levels increased considerably, and two main synoptic scale cloud
bands extended along Brazil’s coast. In the following hours, the
surface low of Anita started to merge with the upper level low, and
by the mature stage the low pressure core was aligned throughout
the troposphere, with the cloud bands organized in a spiral shape
with a relative lack of clouds over the cyclone core. In the upper
troposphere, a strong forward-falling ridge upstream from the
upper level low separated from the main stream, forming a closed
anticylonic circulation south of Anita’s cut-off low. This north-
south dipole pattern remained quasi-stationary for 24 hours and
prevented the earlier displacement of Anita towards extratropical
latitudes. By the weakening stage, however, a large trough in the
main stream approaching the rear of Anita’s cut-off low at upper
levels contributed to weaken the dipole pattern, and the cyclonic
circulation decreased throughout the troposphere along with low
level moisture flux convergence. By the extratropical transition
stage, with the upper level dipole pattern dissipated, Anita moved
southeast and underwent extratropical transition whilst merging

with a mid-latitude frontal cyclone.

Vertical profiles of the maximum wind speed over the surface
low area were consistent with the thermal wind arguments
used in CPS to classify the nature of cyclones. During the
subtropical phase, winds decrease with height from the surface
to the mid-troposphere and then increase again through the upper
troposphere. During extratropical transition, however, the wind

intensity increases with height throughout the troposphere.

It was found that low level diabatic heating and horizontal
temperature advection (warm during the intensifying stage and
cold during the mature stage) were the main mechanisms
responsible for the local temperature tendencies at low levels
during the main subtropical stages (the intensifying and mature
stages). These two mechanisms were therefore essential for
the subtropical development. By the weakening stage, diabatic
heating decreased considerably at low levels (and throughout the
troposphere). During extratropical transition, however, diabatic
cooling together with adiabatic cooling and warm air advection
were found to be the main mechanisms to influence the local

temperature tendencies at low levels. Note that diabatic cooling
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at low levels occurred only once Anita underwent extratropical
transition, i.e., all stages prior to the extratropical transition
presented diabatic heating at low levels.

The common features found in both subtropical and extra-
tropical intensification phases of Anita (intensifying and extra-
tropical transition stages, respectively) were: 1) intensification

of the cyclone throughout the troposphere; 2) cyclonic vorticity

@izontal advection increasing with height, which contributed to

e:rance upward motions; and 3) diffluent flow at 200 hPa over

the surface low, leading to divergence aloft and contributing to

rease vertical motions.

® ﬁDuring all stages, it was found that: 1) convergence was the
Hin process responsible for the cyclonic tendencies in the lower

trgposphere; 2) diabatic temperature changes mostly opposed the
temperature changes caused by Sy, at mid- and upper- levels; and

)'the residual vorticity primarily acted to destroy some of the

icity changes due to processes of convergence and divergence.
Associations between the residual vorticity field and the

idual of the thermodynamic equation field were also examined

verify how synoptic-scale convective processes relate to the
@ticity tendencies. In general, over Anita and its surroundings,
regions and levels with upward motion (S, < 0) where such

‘ associations occur, apparent sinks of cyclonic vorticity were

ated to negative vorticity due to divergence (i.e., convergent
ow), Iwhilst apparent sources of cyclonic vorticity were related
@positive vorticity due to divergence (i.e., divergent flow).

oreover, these associations between the residual vorticity and

rmodynamic fields were found when the following conditions

@re satisfied:

1. The residual vorticity should primarily be a function of the
stretching term, with opposite contributions;
2. Diabatic heating should primarily be a function of Sy,

which is commonly negative for upward motion.

Condition (1) implies that the residual vorticity should be related
to convergence/divergence of the flow, which at some atmospheric
levels and regions is strongly associated with upward motion,
which is in turn related to convective activity. Condition (2)
implies that diabatic heating should be mostly due to upward

motion, therefore also matching the condition of being related

to convective activity. Thereby, it was found that over Anita
and its surroundings, there were some regions and levels where
convection played an important role in the local relative vorticity
tendencies. When no clear associations between the residual
fields were found, it was hypothesized that convection likely also
influences the local relative vorticity tendencies, but more evenly

throughout the troposphere.
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