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A CHARACTERISATION OF coc-HARMONIC AND p-HARMONIC
MAPS VIA AFFINE VARIATIONS IN L~

NIKOS KATZOURAKIS

Communicated by Peter Bates

ABSTRACT. Let v : © C R” — RN be a smooth map and n, N € N. The
oo-Laplacian is the PDE system

Aot 1= (Du ® Du + |Dul*[Du]* ® I) :D%u =0,

where [Du]t := ProjR(Du)L. This system constitutes the fundamental equa-
tion of vectorial Calculus of Variations in L°°, associated with the model
functional
Eoo(u, Q) = |||Du|2||LOO(Q/), Q' e

We show that generalised solutions to the system can be characterised in terms
of the functional via a set of designated affine variations. For the scalar case
N = 1, we utilise the theory of viscosity solutions by Crandall-Ishii-Lions.
For the vectorial case N > 2, we utilise the recently proposed by the author
theory of D-solutions. Moreover, we extend the result described above to the
p-Laplacian, 1 < p < oo.

1. INTRODUCTION

Let n, N € N. Given a (smooth) map u : Q@ C R® — R defined on an open
set, let RV™ and RN n* denote respectively the space of matrices and the space of
symmetric tensors wherein the gradient matrix and the hessian tensor

a=1,....N =1,...,
Du(z) = (Dyua ()5, "7, D?u(w) = (D3jua(@))i52y70,
of u are valued. Obviously, D; = 8/0z;, x = (x1,...,2,) , u = (ug,...,un)'.

In this paper we are primarily interested in the so-called oo-Laplacian which is the
quasilinear 2nd order nondivergence system

Aoott = (Du ® Du + |Dul?[Du]* ® 1) . D*u = 0. (1.1)

Here [Du]t denotes the orthogonal projection on the orthogonal complement of the
range of Du and |Dul| is the Euclidean norm of Du on RV™. In index form, (I.1))
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2 N. KATZOURAKIS EJDE-2017/29

reads
N n
3 (DiuaDjuﬂ + |Du|2[Du]§ﬁ5ij)D§juﬁ =0, a=1,...,N,
A=1i,j=1

[DU]L = Proj(R(Du))i .

We are also interested in the more classical p-Laplacian for 1 < p < oo, which is
the divergence system

Apu = div (|DulP~?Du) = 0. (1.2)

System ([1.1)) is the fundamental equation which arises in vectorial Calculus of Vari-
ations in the space L°°, that is in connection to variational problems for the model
functional

Eoo(u, Q) = [||Du|| gy, @ € Q, ue W (QRY). (1.3)
The scalar counterpart of (|1.1) when N = 1 simplifies to

n
Du® Du : D*u = Z DiuDjquju =0
i,j=1

and first arose in the work of Aronsson in the 1960s ([AlL 2] and for a pedagogical
introduction see [7, 25]) who pioneered the field of Calculus of Variations in the
space L>°. The full system first appeared in recent work of the author [I8] who
initiated the systematic study of the vectorial case in a series of papers [18]-[24] (see
also the recent contributions with Abugirda, Ayanbayev, Croce, Pisante, Manfredi,
Moser and Pryer [1l [B, @, B0, 32 33 B1]). Let us note also the early vectorial
contributions by Barron-Jensen-Wang [4, 5] who, among other deep results, proved
existence of absolute minimisers for general supremal functionals in the “rank-one”
cases min{n, N} = 1 and also defined and studied the correct vectorial L>-version
of quasiconvexity. However, their fundamental contributions were at the level of
the functional and the correct (non-obvious) vectorial counterpart of Aronsson’s
equation was not known at the time.

On the other hand, the p-Laplacian is a classical model which arises in
conventional Calculus of Variations for integral functionals, in particular as the
Euler-Lagrange equation of

Ep(u7 Q/) = H|Du‘pHL1(Q/)7

A standard difficulty in both the scalar and the vectorial case of is that it
is nondivergence and since in general smooth solutions do not exist, the definition
of generalised solutions is an issue. In the vectorial case, an additional difficulty is
that the system has discontinuous coefficients even if the solution might be smooth
(see [19]). This happens because the projection [Du(z)]* “feels” the dimension of
the tangent space R(Du(z)) C RV,

In this article we are concerned with the variational characterisation of appro-
priately defined generalised solutions to and (|1.2)) in both the scalar and the
vectorial case in terms of the supremal functional (1.3)). The main results of this
paper are contained in the statements of Theorems 4.1} and (and Corollaries
. Roughly speaking, these results claim that for 1 < p < oo we have

For all Q' € Q and A € AP, (u),
Eo(u, ) < Exo(u+ A, Q)

Q' €, ueWrP(QRY). (1.4)

loc

Apu=00n <= {
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where AP, (u) is a designated set of affine mappings depending on u and on the
subdomain €2’. This result is quite surprising in that both the oco-Laplacian
and the p-Laplacian are associated to the respective supremal/integral func-
tionals , (and not both associated to ) when the classes of variations
are compactly supported. In the scalar case, the appropriate notion of minimisers
for characterising co-Harmonic functions has been discovered by Aronsson
and today we know several more characterisations involving e.g. comparison, Lip-
schitz extensions and Game Theory (see [7, 25]). In the vectorial case, the correct
extension of Aronsson’s notion of Absolute Minimals which characterises via
has been introduced in [21].

A central point in both the statements and the proofs of our main results The-
orems and is that solutions to — in general are nonsmooth
and they need to be considered in a generalised sense. We discuss below about
generalised solutions separately when N =1 and N > 2.

For the scalar case, we invoke the well established notion of viscosity solutions of
Crandall-Ishii-Lions [8] which effectively is based on the maximum principle. Since
the p-Laplacian is singular for 1 < p < 2, we actually use a “feeble” variant of the
original viscosity notions taken from [22]. Although is in divergence from and
the natural definition of weak solution to it is via duality, we find it more fruitful
to treat it instead in the viscosity sense. Due to the results in the aforementioned
papers, it is known that viscosity and weak solutions of the p-Laplacian coincide.

For the vectorial case, things are much more intricate. Motivated by (L.1)), in the
very recent works [27], 26] we introduced a new duality-free theory of weak solutions
which allows for just measurable maps to be rigorously interpreted and studied as
solutions to PDE systems of any order

F(~,u,Du,D2u,...,Dpu) =0 on (1.5)

which can be allowed to have even discontinuous coefficients. Using this new ap-
proach, in the papers [26]-[29] we studied efficiently certain problems which we
discuss briefly at the end of the introduction.

Our generalised solutions are not based either on integration-by-parts or on the
maximum principle. Instead, we build on the probabilistic interpretation of limits of
difference quotients by utilizing Young measures valued into compactifications. We
caution the reader that we are not using the “standard” Young measures of Calculus
of Variations and of PDE theory which are valued into Euclidean spaces (see e.g.
[1T1, 35 15 6, 14} [V1[34]). In the current setting, Young measures valued into spheres
are utilised by applying them to the difference quotients of our candidate solution.

The motivation for Wli)’coo solutions of 2nd order systems which are relevant to this

paper is the following: let u € Wli’COO(Q,RN ) be a strong solution to a 2nd order
system of the form

F(Du(z), D*u(z)) =0, ae. z€Q. (1.6)
We now rewrite ((1.6]) in the unconventional form
sup ’F(Du(m),XI)’ =0, ae €

X2 Esupp(0p24,(4))

and we view the hessian D?u as a probability-valued mapping given by the Dirac
mass: dpz,. The hope is then that we may relax the requirement to have con-
centration measures and allow instead general probability-valued maps arising as
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limits of difference quotients of Wli’coo maps. Indeed, if u : Q@ C R® — RY is just
Wli)’coo, we may view the usual difference quotients of Du as Young measures into
the 1-point compactification

—Nn?
5D1,hDu 1 Q g R™ — @(Rg ), T = 6D1,hDu(x)

(see Section |2| for the precise definitions). Since the Young measures are a weakly*
compact set, there exist probability-valued limit maps such that along infinitesimal
subsequences (h,)?° we have

* .
Spiiw pu — D?u, in Young measures, as v — 00 (1.7)
. . 1 .
(even if u is merely W >°). Then, we require

sup F(Du(x),X,@) =0, ae. xz€q, (1.8)
Xz €supp(D2u(z))\{oco}
for any“diffuse hessian” D?u. Since and are independent of the twice
differentiability of u, they can be taken as a notion of generalised solution which
we call D-solutions. In the event that u € Wf)’coo, then D?u = §p2,, and we reduce
to strong solutions.

A flaw of our characterisations is that we require our generalised solutions to be
C' and not just Wli)’coo. This is not a restriction for the p-Laplacian since it is well
know that p-Harmonic maps are C*< ([U]). However, except for the case of n = 2,
N = 1 (see Savin and Evans-Savin [36] [13]), the C! regularity of oo-Harmonic
functions (and a fortiori of maps) is an open problem, at least to date. However,
even with the extra C' hypothesis, the results are new even in the scalar case. We
believe that they are interesting anyway and might allow to glean more information
that will unravel the still largely mysterious behaviour of co-Harmonic functions
(and maps). For the p-Laplacian we restrict our attention only to N = 1 and we
refrain from extending Theorem to N > 2. This however can be done relatively
easily along the lines of Theorem [5.1]

Further, we postpone the discussion of the more difficult question of relation of
viscosity and D-solutions for future work. It is easily seen though that D-solutions
do not have comparison built in the notion as viscosity solutions (in the vectorial
case in general not even C'*°-solutions are unique, see [23]) and hence D-solutions
are not stronger than viscosity solutions. On the other hand, absolutely minimising
D-solutions are viscosity solutions and we conjecture that the opposite is true as
well. (Let us note that in [31] is was recently proved that absolutely minimising
D-solutions of higher order L® variational problems are unique.)

We conclude this introduction with certain interesting results we have obtained
via the new theory of D-solutions. In the paper [26] we proved existence to the
Dirichlet problem for (uniqueness of smooth solutions has been disproved
in [23]). Again in [26], we also proved uniqueness and existence to the Dirichlet
problem for the fully nonlinear degenerate elliptic system F(-, D?u) = f. In [27] we
proved existence to the Dirichlet problem for the system arising from the functional

Io(u, Q) == HH(-,u,u’)HLw(Q,), w:QCR—-RY, Q e

In [28] we established the equivalence between weak and D-solutions to linear
symmetric hyperbolic systems and in [29] we developed a systematic mollification
method for D-solutions. We finally note that to the best of our knowledge, the
only vectorial contribution by other authors relevant to the content of this paper is
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the work by Sheffield-Smart [37] which however is restricted to the class of smooth
solutions.

2. BASICS ON GENERALISED SOLUTIONS TO FULLY NONLINEAR SYSTEMS

We begin with some basic material. A much more detailed introduction of the
theory of D-solutions can be found in [26]-[29].

Preliminaries. Let v : Q C R® — RY be a map defined over an open set. Unless
indicated otherwise, Greek indices «,3,7,... will run in {1,..., N} and Roman
indices 7, j,k,... will run in {1,...,n}. The norm symbols | - | will always mean
the Euclidean ones, whilst Euclidean inner products will be denoted by either “”
on R™, RN or by “” on RN, Ri\mz. For example,

N n

XP=X:X=Y Y XoXaiy, XeRV,

a=14,j=1
etc. Our measure theoretic and function space notation is either standard as e.g.
in [II, 12] or self-explanatory. For example, “measurable” means “Lebesgue mea-
surable”, the Lebesgue measure will be denoted by | - |, the LP spaces of maps u
as above by LP(2,R™), etc. Especially for the space L>(Q, RN"), we will simplify
the notation and since the norm on RN™ is always the Euclidean, we will write

[ Dul| o (@) = esssupg |Dul.

We will systematically use the Alexandroff 1-point compactification of the space
RY n* Tts topology will be the one which makes it homeomorphic to the sphere of
dimension Nn(n+1)/2 (via the stereographic projection which identifies the north
pole with {cc}). We will denote it by

RY™ = RY™ U {00}

S
Then, the space RY n* will be viewed as a metric vector space, isometrically con-
tained into its 1-point compactification.

Young Measures. Let {2 C R" be open. The Young measures can be identified
with a subset of the unit sphere of a certain L space of measure-valued maps and
this provides very useful properties, such as compactness.

— n2
Definition 2.1. The set of Young Measures from €2 to Riv is the subset of the unit
— TL2
sphere of the space L% (Q, M (Riv )) which contains probability-valued maps:

YO E") = {0 e Ln(@ME™)) d@) € PE™), for ac. ze ).

— ’I’L2
The space LS. (Q,M(Riv )) is a dual Banach space and consists of measure-
valued maps 3 x — ¥(x) € M(Riv ) which are weakly* measurable, in the

N2
sense that for any Borel set & C Rivn , the function Q@ > z — [J(2)](U) € R is
measurable. The norm of the space is given by
—Nn?
190, ety = 55Bce [0 (B2
where “|| - ||” denotes the total variation. For background material on these spaces
we refer e.g. to [15] [10] [V] and to [26]-[29]. The L2 space above is the dual space

w*
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of the space L*(Q,C? (Riv )) of Bochner integrable maps. The points of this L!

—Nn?
space are the Carathéodory functions ® : 2 x R, — R which satisfy

”q)”Ll(Q,CO(RiV”?)) = /Q H(I)(mv')HCO(RgVn"‘)dx < 0.

It is well known that the unit ball of L% is sequentially weakly* compact. Hence,
for any bounded sequence (¥)3° C L%, there is a limit map ¢ and a subsequence

of m’s along which 9™ >4 as m — co.

Remark 2.2. We note the following facts about Young measures (proofs can be
found e.g. in [14]):

(i) [Functions as Y.M.] The set of measurable maps U : @ C R* — RN"’
can be identified with a subset of the Young measures via the embedding
U du, 6u(®) = 0y (a).-

(ii) [Weak* compactness of Y.M.] The set of Young measures is convex and
sequentially compact in the weak* topology induced from L2%.

The next lemma is a minor variant of a classical result (see [I4] [I5] [26]) but it
plays a fundamental role in our setting because it guarantees the compatibility of
classical/strong solutions with D-solutions.

Lemma 2.3. Let UY,U*® : Q C R" — Ri\/"Q be measurable maps, v € N. Then,
up the passage to a subsequence, the following equivalence holds

Suv — Sy in @(Q,Ri\m) — U" - U™ a.e. on .

Notion of D-Solutions to fully nonlinear 2nd order systems. Herein we
consider the special case of once differentiable solutions to second order systems
which is relevant to the co-Laplacian. For the general case of measurable solutions
to pth order system we refer to [26] [29].

Let D" denote the usual difference quotient operator on R™, i.e. given a map
v:Q CR" — RY and h # 0, we understand v as being extended by zero on R™\ Q
and we set

_ v(x+ he') —v(z)
h 7
DYVhy(z) = (D}’hv(x), ce Dl’hv(x)) , x e

n

Definition 2.4. Let u: Q CR™ — RY be a locally Lipschitz continuous map. We
define the diffuse hessians D?u of u as the subsequential weak™ limits of the differ-
ence quotients of the gradient in the space of Young measures along infinitesimal
sequences (h,)$°:

— ’I’L2
S plhvy pu A D% in @(Q,Riv ), as k — oo.

Next is our notion of generalised solution for the vectorial case. We will use the
2

. . —N
notation “supp,” to denote the reduced support of a probability measure ¢ on R, "
“off infinity”, namely,

supp, (9) := supp(¥) \ {o0}, V€ @(@ivnQ).
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Definition 2.5 (Lipschitz D-solutions to 2nd order systems). Let @ C R™ be an
open set and F : RV? x RY n® L RN g mapping which is Borel measurable with

respect to the first argument and continuous with respect to the second argument.
Consider the PDE system

F(Du,D*u) =0 on Q. (2.1)

We say that the locally Lipschitz continuous map u : Q C R® — RY is a D-solution
of (2.1) when for any diffuse hessian D?u of u, we have

sup |F(Du(z),X,)| =0, ae z€Q. (2.2)
X €supp, (D2u(w))

In particular, for the co-Laplace system , a I/Vli)fo map u: Q C R* — RN
is co-Harmonic in the D-sense, when for a.e. € Q and all X, € supp, (D?*u(x)),
we have

(Du(z) ® Du(z) + |Du(z)*[Du(z)]*® I) : X, = 0.

Note that at certain points it may happen that D?u(z) = {0} Which implies that
the reduced support of D?u(x) is empty. The criterion then is understood to be
trivially satisfied. Further, the D-notions are compatible with the strong/classical
notions of solution: this is a direct consequence of Lemma [2.3] and the definition of
diffuse hessians.

Remark 2.6 (An alternative formulation of D-solutions). We give an alternative
“integral” form of Definition above which we put foremost in [26]-[28] because
of its technical convenience for the existence/uniqueness proofs therein. We will
not use this version herein, however. Note first that can be rephrased as the
following differential inclusion for the support:

supp(D2u(z)) C {X e RM : |F(Du(x), X)| = o} U{co}, ae z€

Then, for any compactly supported ® € C? (Rév "2) off infinity and for a.e. z € Q,
the continuous function

g 7L2

R)" 35X — ®(X)F(Du(z),X) € RY

S

is well-defined on the compactification and also vanishes on the support of any
diffuse hessian measure. As a consequence, we have the statement

/R s ®X)F(Du(z), X)d[D*u(2))(X) =0, ae. z €, (2.3)

s

A2
for any ® € C? (Ri\”ﬂ) and any diffuse hessian D?u € @(Q, Ri\m ) It can be easily
seen that the converse is true as well (see [26]) and hence ([2.3)) is a restatement of

22).

For more details on the material of this section (e.g. analytic properties, equiv-
alent formulations of Definition etc) we refer to [20]-[29].

Notion of feeble viscosity solutions to fully nonlinear 2nd order equa-
tions. The definitions of this paragraph are taken from [22] (see also [16, [I7] where
the “feeble” counterparts of the “usual” viscosity notion first appeared) but here
we apply them only to the case of the p-Laplacian for 1 < p < co. The standard
viscosity notions as in [8) 7}, 25] do not apply here because we treat also the singular
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case of the p-Laplacian when p < 2 which is not even defined when the gradient
vanishes.

Let F: (R"\{0}) x RQQ — R be a continuous function which satisfies the mono-
tonicity hypothesis F(P,X) < F(P,Y) when X < Y in R?z. We consider the
PDE

F(Du, Dzu) =0 on .
Let u :  CR™ — R be a continuous function. Given a triplet (z, P, X) € Q x R™ x
]RZQ, we define the quadratic polynomial Tpx ,u by setting

1
Tpx u(z) :==u(x) + P2+ 5X:2®z z€ R™.
‘We then set
<
Iy u(z) = {(P, X) € (R™\{0})xR™ : u(z+a) S Tpxaul(2)+o(z]?), as z — o}

and call Jg’iu(x) the feeble 2nd order sub/superjet of u at x. We say that u is a
feeble viscosity solution of F(Du7 Dzu) >0 (resp. of F(Du, D2u) < 0) on Q when
for any z € Q

inf F(P,X)>0 (resp. sup F(P,X) < 0).
(P,X)eJ2 T u(z) (P,X)€J2 u(z)

Feeble viscosity solutions of F’ (Du7 Dgu) = ( are defined as the combination of the
above one-sided sub/super solution statements.

If u € C(£2), then any pair (P,X) in Jo'Fu(z) satisfies P = Du(z). In this case
we will use the notation

D**y(x) = {X € R’j : (Du(x),X) € Jg’iu(ac)}

and we will call D>*u(z) the set of feeble 2nd order sub/super derivatives of u at
x €.

3. TWO ELEMENTARY LEMMAS

In this brief section we isolate a couple of very simple technical results which
contain an essential common part of the proofs of the main results in both the
scalar and the vectorial case.

Lemma 3.1. Let Q C R" be open and u € C1(Q,RYN). Given Q' € Q, we set
Q' (u) :={z € ¥V : |Du(z)| = | Dul| L~ (o) }

Let further A : R™ — RY be an affine map.
(a) Suppose that for some Q' € Q and any A > 0, u satisfies

[ Dullpee o) < HD“ + ADAHLOO(Q’)’

Then, we have

max {Du(z) : DA} > 0.
zeQY

(b) Given x € Q and 0 < e < dist(x, 9Q), the set
Q(z) == {y € Q||Du(y)| < |Du(z)|} NB.(z)
is open and compactly contained in Q and also x € (Q(z))(u), that is

| Du(x)| = || Dul o~ (0. (a))-
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Proof. (a) By assumption we have

IDullfs (@) < 1Dw + ADA|[f (o)
and hence

esssupq, [Dul? < esssupg, {|Du|® + 2ADu : DA + \*|DA|*}
< esssupgy |Dul® + 2\ esssupg, {Du: DA} + \?|DAJ”.

Consequently,

€ss SUPg; {Du : DA} + g|DA|2 >0
and by letting A\ — 0T, we obtain the desired inequality. (b) is immediate from the

definitions. O

Lemma is in general true for locally Lipschitz maps, once we replace |Dul| by
the local L>° norm
1Dl (@) = lim || D] e, a1

which has enough upper semi-continuity properties.

Lemma 3.2. Let Q C R" be open and u € CH(Q,RY). Given Q' € Q, let Q' (u) be
as in Lemmal[3.1} Let further A : R™ — RN be an affine map. We set

h(t) == || Du+ tDA|} . ) = IDul3 (s >0,

Then, h is convex, h(0) = 0 and also the lower right Dini derivative of h at zero
satisfies

Dh(0") 1= Tim i D= O)

> 2D : DAL,
t—0+ t ygslz%@{ u(y) }

Proof. Effectively, this is an application of Danskin’s theorem [D], but we may also
prove it directly. By setting

H(t,y) := |Du(y) + tDA|2

we have

ye)’ yeQ

Also Er any ¢ > 0 the maximum max, g7 H(, y) is realised at (at least one) point
yt € . Hence

—(h(t) = h(0))

: [max H(t,y) — max H(0,y)]

[H (") ~ H(0,9")]
[(H(t7 yt) - H(t’ yO)) + (H(tv yO) - H(Oa yO))]

(H(t7 yO) - H(Oa yo))»

S R N B I e N )

>

where 40 € (' is any point such that
|Du(y®)| = H(0,4°) = ngXH(Q ) = || Dul| oo ().
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Hence, by the definition of the set {’(u) in Lemma [3.1} we have

Dh(0") = lim infl(h(t) — h(0))

t—0+ ¢

> max, {hgénft( (t,y) — H(0,9))}
= max {hm 1nf (‘Du + 1?DA|2 — |Du(y)|2)}
yEQ (u)
= 2D : DAY,
7/é}f{lzax {2Du(y }
The lemma follows. O

Let us also record for later use the elementary inequality
h(t) — h(0) > Dh(0%)t, ¢ >0,

which is an immediate consequence of the definitions of convexity and of the lower
right Dini derivative.

4. SCALAR CASE N =1

The following is the first main result of this section, for C! co-harmonic functions.

Theorem 4.1. Let Q CR"™ be open and u € C*(Q). Given ' € Q, let Q' (u) be as
in Lemma [3.1) and consider the sets of affine functions

Aézo‘“‘(u) ::{A :R" - R: D*4 =0 and there exist £ € R,

z € Q(u) and X, € D**u(x) s. t. DA= fXIDu(:E)}
UR.

Then, we have the equivalences

Du® Du : D*>u >0 on , For all ' € Q and A € AL (u),

in the Viscosity sense | Dull Loy < |Du+ DA Lo oy,
and

Du® Du : D*u <0 on €, For all Y € Q and A € Ay, (u),

in the Viscosity sense | Dull oy < |Du+ DA Lo (o).

We note that by the C'! regularity results for co-harmonic functions of Savin and
Evans-Savin [36] [13], if n = 2 the hypothesis that u is a C1(£2) viscosity solution is
superfluous.

Obviously, for certain subdomains it may happen that Aé;oo(u) contain only the
trivial (i.e. constant) functions if J**u(z) = () for all points = € Q' (u). Hence, the
minimality property above with respect to affine functions is an effective restate-
ment of the definition of viscosity sub/super solutions.

In the event that the solution is smooth, Theorem above simplifies to the fol-
lowing statement for classical solutions of the co-Laplacian, i.e. for C? co-Harmonic
functions.
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Corollary 4.2. Suppose that Q C R™ is open and u € C%(2). Then, we have the
equivalence

For all ' € Q and A € (AL UAG™) (w),
[Dull L= (@) < [|Du + DA|[ (o)

{ For all ¥ € Q and A € A (u),
[Dull L= () < [|Du+ DAl (o).

Here A (u) is the set of affine functions

Du®Du:D*u=0onQ < {

o (u) = {A :R" - R:D*A =0 and there exist £ € R, 2 € ' (u)
such that A is parallel to the tangent of €| Dul|* at x}

Proof of Theorem[{.1 Suppose that for any ' € Q and any affine function in
AL (u), we have

| Dull <o) < 1D+ DAJ g e,
Fix any z € Q such that (Du(z), X;) € J>Fu(z), whence X, € D> u(z). Consider
the affine function

A(z) :=&X, : Du(z) ® (z —z), z€R",

where £ > 0. Fix also € > 0 and let Q.(z) be as in Lemma Then, for any
A > 0, the affine function AA is contained in Agc@)(u) Hence,

| Dull Lo (. (z)) < [[Du+ ADA| Lo (9, (2))-
By applying Lemma [3.1] to u and A, we have
0< max {Du(z) DA}

2€Q:(z)

= max {DU(Z) : (fXx : Du(w))}
2€Qc(x)

= max {¢{(X,: Du(z) ® Du(z))}
Zeﬂs(x)

— &(X, : Du(x) ® Du(x)),

as € — 0. Hence, Du ® Du : D>y > 0 on Q in the viscosity sense.
Conversely, fix any ' € Q and x € ' (u). If it happens J? T u(x) # (), then any
A € AL (u) can be written as

Az)=a+&X, : Du(z)® 2, z€eR",

for some a € R, € > 0 and X, € D>V u(z). Let h be the function of Lemma (3.2 for
such an A. By applying Lemma [3.2] to this setting, we have

Dh(0") > max {2Du(y)- DA}
yeQ (u)

> 2Du(zx) - DA
= 2Du(z) - (X, : Du(z))}
= 2¢(X, : Du(z) ® Du(z)) > 0,

since by assumption Du® Du : D*u > 0 on €2 in the viscosity sense. Since h(0) =0
and h is convex, it follows that

h(t) > h(0) + Dh(0T)t >0, t >0,
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and hence, by the definition of A we obtain
[ Dull o<y < [|Du+ DA L~

for any ' € Q and any A € A} (u). The case of supersolutions follows similarly
and hence the theorem has been established. O

Proof of Corollary[{.4 The first equivalence of the statement is immediate. Since
by assumption u € C?(£2), we have

J¥ u(z) N I u(z) = {(Du(z), D*u(z)) }

and hence D*Tu(x) N D%~ u(z) = {D?*u(x)}. The second equivalence of the state-
ment follows by making the choice X, € D*%*u(zx) in the proof of Theorem
above and repeating all the steps. Then, by noting that

X, Du(z) = D(%|Du|2) (z)

it follows that for any €' € Q the set AJ (u) contains only affine functions of the
form

A(z) =a+¢D(|Duf?)(z) - (2 —z), =z€R",
for a,€ € R and z € '(u). The corollary ensues. O

Theorem extends relatively easily to the case of the p-Laplacian for 1 < p <
oo which, quite surprisingly, can also be characterised by the L°° functional via
affine variations. In view of the well known C1:® regularity results for p-Harmonic
mappings [U], the hypothesis that solutions are C! is actually superfluous.

Theorem 4.3 (p-harmonic functions). Let Q@ C R™ be open and u € C*(). Given
QO € Q, let Q' (u) be as above and consider the sets of affine functions
AEP(u) = {A :R" - R:D*A =0 and there exist ¢ € R,z € Q' (u)

and X, € D**u(z) s. t. DA=&((p— 2)X, + (I:X“I)Du(x)}
UR,

where p € (1,00). Then, the following statements are equivalent:
(a) div (|DulP~2Du) > 0 weakly on Q;
(b) ((p—2)Du® Du+ |Dul*I) : D*u >0 on §, in the feeble Viscosity sense.
(c) For all ¥ € Q and all A € AL (u), we have

HDUHLoo(Q/) < HD’U, + DA”LOO(Q/).

The case “< 07 of supersolutions is symmetrical and corresponds to Ay’ (u) as in

Theorem [{.1].

In the case of the usual Laplacian for p = 2, the affine functions in Ag,’Q (u) of
Theorem [4.3 satisfy DA = £(X,, : I)Du(x), where ¢ > 0, X, € D>%u(z), Q' € Q
and z € Q' (u).

Proof of Theorem[/.3 The idea is similar to that of the proof of Theorem $0
we basically need to indicate the points where it differs. We begin by noting by the
results of the papers [22] [17] [16], it follows that a function is weakly p-subharmonic
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on  (that is we have div (|Du[P"2Du) > 0 holding weakly on Q) if and only if it
is p-subharmonic on €2 in the feeble viscosity sense for the p-Laplacian expanded:

|DuP~*((p — 2)Du ® Du + [Dul*I) : D*u >0, on Q.

Since by definition of the feeble Jets we do not check anything in the viscosity
criterion when the gradient vanishes, the p-Laplacian is equivalent in the feeble
viscosity sense to

((p—2)Du® Du+ [Du’I) : D*u >0, on Q.
As a consequence, (a) < (b). We suppose now that for any ' € Q and any affine
function A € A% (u), we have
HDUHLoo(Q/) < HD’U, + DAHLoo(Q/).
Fix any « € Q such that (Du(z), X,.) € J3 " u(x), whence X, € D> u(z). Consider
the affine function
Az) = ((p—2)Xp+ (I : X)) : Du(z) ® (2 —x), z€R"

Fix also € > 0 and let Q.(z) be as in Lemma and note that for any A > 0,
M € Agﬁx) (u). Hence, by arguing as in Theorem we have that

0 < Du(z)- DA
— Du(z) - ((p — 9)X, Du(z) + (I : Xz)Du(az))

= ((p —2)Du(z) ® Du(x) + |Du(x)\21) X,

Hence, u is a feeble viscosity solution on €.
Conversely, fix any Q' € Qand z € Q' (u). If Jo " u(z) # 0, then any A € AP (u)
can be written as

Aiz)=a+&((p—2)Xe + (I : Xp)I) : Du(z) ®z, z€R",
for some a € R, € > 0 and some (Du(z),X,) € Jo' u(z). Let h be the function of
Lemma [3:2] for such an A. By applying Lemma[3.2] we have
Dh(0") > 2Du(z) - DA
= 2¢((p — 2)Du(z) ® Du(z) : X, + |Du(z)|*I : X,) > 0,
since by assumption u is a subsolution on 2 in the feeble viscosity sense. By using
that 2(0) = 0 and that h is convex, we deduce as in Theorem [4.1] that h(t) > 0 for

t > 0 and hence

| Dl <oy < 1D + DA| ey
for any A € A" (u) and any ' € Q. Thus, (b) < (c). The case of supersolutions
follows analogously and hence the theorem ensues. O

5. VECTORIAL CASE N > 2

In this section we extend the results of the previous section to the full case of
the oo-Laplace system. We begin by noting that (1.1) actually consists of two
independent systems, the second of which is identically trivial in the scalar case.
Namely, if u : Q@ € R” — RY is smooth, then
Du® Du: D*u =0,

Aju=0 <— 9 n
| Du|*[Du]~Au = 0.
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This is an immediate consequence of the mutual perpendicularity of the vector
fields Du ® Du : D?u and | Du|?*[Du]* Au; indeed, it suffices to recall that [Du]* is
the projection on the orthogonal complement of R(Du) and to note the identity

2Du® Du : D*u = DuD(|Dul?).
Our last main result is the following resutl for C' co-Harmonic mappings.

Theorem 5.1. Let  C R™ be open and u € CH(,RN). Given a set Q' € ), let
Q'(u) be as in Lemmal[3.1l Consider first the set of affine maps

Agi™ (u)
= {A :R" - RN : D?A =0 and there exist € € RN,z € O (u)

— ’I’L2
Dy € @(Q,Ri\r ), X4 € supp, (Dzu(x)) s. t. DA=£® (X, Du(x))}
URY.
Then, we have the equivalence

Du® Du: D*u=0 } { For all ¥ € Q and A € AL (u),

on €, in the D-sense | Dul| ooy < [[Du+ DA|| ().

Further, consider the set of affine maps
A5 () == {A :R™ — RN : D*A =0 there exist v € Q' (u), D*u € @(Q,RivnQ),
X, € supp, (D*u(z)) s. t. Az) € R(Du(a:))L, DA ¢ &Xe (A(a:))}
URN
where for any a € RN, X< (a) is an affine matriz space defined as

2% (a) = {X eRY": Du(z): X = —(a®1): X, }, if Du(z) #
{0y, if Du(x) =
Then, we have the equivalence

|Duf2[Du]t Au =0 For all ¥ € Q and A € A5 (u),
on 2, in the D-sense | Dul| oo oy < [[Du+ DA poo 27y

0
0.

In view of Theorem [5.1] a mapping is co-Harmonic in the D-sense if and only if it
minimises with respect to the union of the sets of affine variations of the tangential
and the normal component:

Asu =0 on Q, } { For all ' € Q and A € (Ag;‘x’ U Aé}oo)(u),

in the D—Sense ||Du||Loo(Q/) S HDU + DAHLoo(Q/).

In the event that u € C2(Q, RY), Theorem simpliﬁes to the following statement
for classical solutions of the co-Laplace system, i.e. for C? oo-Harmonic mappings.

Corollary 5.2. Suppose that  C R" is open and u € C%(Q,RYN). Then, we have
the equivalence
For all QY €Q and A € (Ag;"o U .%lég,’oo)(u)7

Asu=0 on Q) <—
| Dull o< @) < | Du+ DA Lo 1y,
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where Ag}oo(u), AL (u) are the sets of affine maps
Ag,’oo(u) = {A ‘R - RN : D?A =0 and there exist £ € RN, and x € Q' (u)
s. t. A is parallel to the tangent of £|Dul* at x},
and
A5 (u) = {A :R" = RN : D?A =0 and there exists x € Q' (u)such that
A is normal to Du at x and A"Du is divergenceless at }

Proof of Theorem[5.1. We begin by a general observation about the notion of D-
solutions u :  C R® — RY in C1(Q,RY) to a homogeneous 2nd order quasilinear
system of the form

A(Du) : D*u =0, on Q,

2
when A is Borel measurable. By definition, every diffuse hessian D?u € % (Q, Ri\m )
of a candidate solution u is defined a.e. on € as a weakly* measurable probability
valued map  — RY n’ U {oco}. Hence, we may modify each D?*u on a Lebesgue
nullset and choose from each equivalence class the representative which is redefined
as 0foy at points where D?u(z) does not exist. Moreover, let u be a fix map in
CH(Q,RN). Since Du(z) exists for all x € Q, by perhaps a further re-definition of
every D?u on a Lebesgue nullset, it follows that u is D-solution to the system if
and only if for (any fixed such representative of) any diffuse hessian, we have

A(Du(z)) : X, =0, forall z € Qand X, € supp, (D?u(z)).

(We remind that at points = € ) for which D?*u(z) = 6} and hence supp, (D?*u(z))
= (), the above condition is understood as being trivially satisfied.) We will apply
this observation to the two independent systems

Du® Du: D*u = 0, |Du\2([Du}J‘® I):D*u=0

comprising the oo-Laplace system.

Suppose now that for some ' €  and some affine mapping A € Ag;“(u), we
have

| Dull Loy < [|Du+ DA Lo 1y

Fix any 2 € Q and any diffuse hessian D?u € @(Q, Rivn ) such that supp, (Dzu(x))

# () and pick any X, € supp, (’D2u(x)) Fix also ¢ € RY and consider the affine
map which is defined by

A(z) =€® (X; : Du(z)) - (z — ), z€R™
In index form this means
N n
An(z) =&, Z Z ((Xw)gjiDjUB(a:))(z —x);, a=1,...,N.
B=14,j=1

For € > 0 small, let Q.(z) be as in Lemma Then, \A € Ag;czz) (u) for any
A > 0. Thus,

‘DUHLOO(QE(x)) < ||Du + )\DA”LDO(QE(Q:))
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and by applying Lemma [3.1] to u and A, we have
0 < max {Du(z) F(E@Xy Du(m))}

2€Q: ()
N n N n
= max { Z Z Diua(2)éa Z Z(Xx)ﬁjiDjUﬁ(l‘)}
2€0:(2) ~ 21 =1 B=1j=1

N
Sz%{ > , §aDiua(2)DjU@($)(Xz)ﬁji}

as € — 0, and hence
¢ (Du(z) ® Du(z) : X;) >0,
for any ¢ € RY. By the arbitrariness of ¢ we deduce that Du(z) ® Du(z) : X, = 0.
As a consequence, Du @ Du : D?u = 0 in the D-sense on .
Now we argue similarly for the normal component of the system. Suppose that
for any ' € Q and any A € A5 ™ (u), we have
[ Dul[ o=@y < [|Du+ DA| Lo~ (-

We fix as before z € Q and X, € supp, (D?u(z)). If Du(z) = 0, then the system
|Dul?[Du]*Au = 0 is trivially satisfied at z. If Du(x) # 0, then we choose any
direction normal to Du(x); that is,

n, € R(Du(z))” CRY,

which means that n,; Du(x) = 0. We note that if Du(z) : R® — RY is surjective,
then we can find only the trivial n, = 0, but the system |Du|?[Du]*Au = 0 is
satisfied at 2 anyhow because [Du(z)]* = 0. We also fix any matrix N, in the
affine space .£X+(n,). By the definition of .#*=(n,), this means that

N :Du(z) =—(n, 1) : X,.
We consider the affine map which is defined by
A(z) :==ny + Ny(z —1z), ze€R"™

We now claim that A4 € Aé,’oo(u) for any A € R. Indeed, this is a consequence of
our choices and of the following homogeneity property of the space .Z%=(a):

LX(Na) = L% (a), NER.
Hence, we have
||Du||Loo(Q/) S HDU —+ )\DA”LOQ(Q/)
By applying Lemma [3.1] to u and A, we have

0 < max {Du(z) : Nw} — Du(z) : Ny = —(n, ®1I) : X,
2€Q(z)

as e — 0. Hence, we have (n,®1I) : X, < 0 and by the arbitrariness of the direction
ng LR(Du(z)), we obtain that (n, ® I) : X, = 0. Thus, ([Du(z)]* @) : X, =0
and as a consequence |Du|?[Du]tAu = 0 in the D-sense on €.
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Conversely, we fix Q' € Q and z € ' (u) and any A € Ag,’m(u) corresponding to

N2
a diffuse hessian D?u € @(Q,Ri\/n ) and some X, € supp, (D?u(z)) and ¢ € RV,
We take as h to be the function of Lemma [3.2] By applying Lemma to this
setting, we have

Dh(0") > max {2Du(y) : DA}
yeQ (u)

> 2Du(x): DA

N n
> 2 Z Z Diug ()60 (Xa)gjiDjus(x)

a,B=11,j=1
and hence
Dh(0T) > 2¢ - (Du(z) ® Du(z) : X;) =0,
since by assumption Du ® Du : D?u = 0 on €2 in the D-sense. In view of the fact
that h(0) = 0 and h is convex, it follows that

h(t) > h(0) + Dh(0T)t >0, t>0,
and hence
IDul ooy < |1Du+ DA|pe(ary, A€ AT (u), Q' € Q.
The case of A € Aé,’oo is completely analogous: any such nonconstant A satisfies

A(z) LR(Du(z)) and DA € £*=(A(z)) for some X, € supp,(D?*u(z)) and some
x € Q'(u). By applying Lemma again, we have

Dh(0") > nglag() {2Du(y) : DA} > 2Du(z) : DA.
ye (u

If Du(z) # 0, then by the definition of £*= (A(z)) we have
Dh(0%) > 2DA : Du(x)

=-2n,®I1): X,

= 2] ((IDu(@)* © 1) : X, ) =0
because by assumption |Du|?[Du]*Au = 0 on Q in the D-sense. If Du(x) = 0,
then again Dh(0") > 0. In either cases, we obtain

h(t) > h(0) + Dh(0T)t >0, t>0,
and hence
| Dul| ooy < ||Du+ DA| ooy, A € A (u), Q' € Q.

The proof is complete. O

Proof of Corollary[5.3. If u € C?(2,RY), then it is an immediate consequence of
Lemma [2.3] that any diffuse hessian of u satisfies
D2U(l‘) = 5D2u(ac)7 T € Qv

and by the remarks in the beginning of the proof of Theorem [5.1] this happens for
all x € Q. Hence, the only possible X, in the reduced support of D?u(x) is X, =

D?u(x). For Ag,’oo, we have that any possible A satisfies DA = D(¢|Dul?)(z). For
Aé}oo, we have that any possible A satisfies

A(x) T Du(z) =0, DA€ £P@(A(x)),
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which gives
DA : Du(z) = —(A(z) ® I) : D*u(z) = —A(z) - Au(z).

Thus,
div (ATDU) () = DA : Du(z) + A(z) - Au(z) = 0.
The proof is complete. |
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