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Abstract. The Intergovernmental Panel on Climate Change
(IPCC) has accepted the invitation from the UNFCCC to
provide a special report on the impacts of global warming
of 1.5°C above pre-industrial levels and on related global
greenhouse-gas emission pathways. Many current experi-
ments in, for example, the Coupled Model Inter-comparison
Project (CMIP), are not specifically designed for inform-
ing this report. Here, we document the design of the half a
degree additional warming, projections, prognosis and im-

pacts (HAPPI) experiment. HAPPI provides a framework
for the generation of climate data describing how the cli-
mate, and in particular extreme weather, might differ from
the present day in worlds that are 1.5 and 2.0°C warmer
than pre-industrial conditions. Output from participating cli-
mate models includes variables frequently used by a range of
impact models. The key challenge is to separate the impact
of an additional approximately half degree of warming from
uncertainty in climate model responses and internal climate
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variability that dominate CMIP-style experiments under low-
emission scenarios.

Large ensembles of simulations (>50 members) of
atmosphere-only models for three time slices are proposed,
each a decade in length: the first being the most recent ob-
served 10-year period (2006-2015), the second two being es-
timates of a similar decade but under 1.5 and 2 °C conditions
a century in the future. We use the representative concentra-
tion pathway 2.6 (RCP2.6) to provide the model boundary
conditions for the 1.5 °C scenario, and a weighted combina-
tion of RCP2.6 and RCP4.5 for the 2 °C scenario.

1 Introduction

In its Paris Agreement, the parties of the United Nations
Framework Convention on Climate Change (UNFCCC) have
established a long-term temperature goal for climate pro-
tection of “holding the increase in the global average tem-
perature to well below 2 °C above pre-industrial levels and
pursuing efforts to limit the temperature increase to 1.5°C
above pre-industrial levels, recognising that this would sig-
nificantly reduce the risks and impacts of climate change”
(UNFCCC, 2015). Such an agreement has naturally received
interest from the academic community, with numerous au-
thors commenting on this outcome (e.g. Hulme, 2016; Pe-
ters, 2016; Rogelj and Knutti, 2016; Mitchell et al., 2016b;
Anderson and Nevins, 2016; Boucher et al., 2016; Schleuss-
ner et al., 2016). However, the body of research assessing im-
pacts under a 1.5 °C world is small compared to higher emis-
sion scenario studies (James et al., 2017), though there are
notable exceptions (Fischer and Knutti, 2015; Schleussner
et al., 2016). It has been argued that current coordinated in-
ternational climate modelling experiments, such as the Cou-
pled Model Intercomparison Project (CMIPS) (Taylor et al.,
2012), may not be best suited to address this question, and
so we need dedicated climate experiments (Mitchell et al.,
2016Db).

HAPPI is proposed to provide a framework to assess the
impacts of a 1.5°C world, and the impacts avoided from
higher degree worlds, such as 2°C. As argued in Mitchell
et al. (2016b), assessment of the impacts of a 1.5 °C world re-
quires large sets of simulations in order to adequately sample
the extreme weather that often is associated with the highest
climate-related impacts and risks, and it also requires sim-
ulations under steady forcing conditions in order to address
the 1.5 °C target. Figure 1 shows a schematic of how HAPPI
differs from scenario-based approaches, such as CMIP. The
more traditional scenario-based approach (top panel) starts
with either an emission scenario, such as those used in
CMIP3 (Special Report on Emissions Scenarios; SRES) (Na-
kicenovic and Swart, 2000), or a pathway to reach a certain
radiative forcing by 2100, such as those used in CMIP5 (rep-
resentative concentration pathway; RCP) (Van Vuuren et al.,
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2011). As uncertainty increases with time, and is dominated
by responses and variability in CMIP-style experiments, as
illustrated in Fig. 1 (upper panel), such experiments are not
ideal to inform assessments of impacts at specific levels of
warming such as 1.5 or 2 °C, let alone the difference between
two such warming levels. For example, the lowest CMIP5
scenario, the RCP2.6, shows a median global-mean temper-
ature increase of 1 °C above 1986-2005 levels, with a likely
range between 0.3 and 1.7°C over the CMIP5 model en-
semble (Collins et al., 2013). This range includes 1.5 and
2 °C warming above pre-industrial levels, which introduces
some issues into the assessment of differences in impacts
of these warming levels based on such a model ensemble.
Some studies have used methodologies with CMIP5 mod-
els that partially address this issue, for instance Fischer and
Knutti (2015) pick 20 year periods from transient simula-
tions centred on a specific global-mean temperature thresh-
old. Such a method has advantages over the HAPPI method
in that it taps into the wealth of model integrations already
performed in CMIP, but also that it samples SST variabil-
ity across the board (the atmospheric models are coupled to
interactive oceans)l. Howeyver, it also adds an extra level of
complexity in that there is a large spread in timing for when
transient CMIP models cross 1.5 °C, and different forcings
will be at play during different times. One example is ozone-
hole recovery and the implications for Southern Hemisphere
circulation patterns, which are likely to be different if, for
example, a model crosses 1.5°C in 2030 rather than 2050
(e.g. Son et al., 2010). It is also harder to calculate a robust
return period from transient simulations, because contiguous
data will only be consistent with a global-mean temperature
threshold for a short period of time.

The parties of the UNFCCC have chosen to frame their
goals for climate protection in terms of a global tempera-
ture response, rather than an emission scenario. As such, the
UNFCCC is not asking for the risks associated with emis-
sion scenarios that is “likely” to maintain temperatures below
1.5°C (or some other criterion): it is asking about the risks
associated with 1.5 °C warming per se, irrespective of what
emission path is followed to achieve it (emission paths being
addressed in the second challenge). As such, the global re-
sponse is where the HAPPI design starts, tracing through to
regional extreme weather and potential impacts.

2 Experimental design

The experiments under HAPPI are designed to be as sim-
ilar as possible in experimental design as current (or pro-
posed) climate experiments, notably the International CLI-
VAR Climate of the 20th Century Plus Detection and At-
tribution (C20C+ D&A) project (Gillett et al., 2016; Fol-
land et al., 2014). Synergies between the experiments allow

IThis is explicitly addressed in Sect. 2 as a sensitivity test to the
HAPPI design.

www.geosci-model-dev.net/10/571/2017/
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Figure 1. A schematic comparing the emission-scenario-based approaches (top), such as CMIP, with the HAPPI approach (bottom). The
HAPPI approach flows from the constraint on global temperatures to the comparison of extremes using the large-ensemble approach to impact
models. The histogram depicts an illustrative example of distributions for extreme-event indicators (such as maximum daily temperature) for
the present day (green), 1.5 °C (blue) and 2 °C (red) above pre-industrial levels.

Table 1. Table of models that will likely contribute to HAPPI, with specifications and expected number of simulated model years per
experiment tier. Regional climate models (RCMs) are also listed. In addition to the simulations detailed here, modelling centres will run five
ensemble members of 1959 to 2015 conditions for bias-correction purposes.

Model Horizontal Tier 1 Tier2 RCM  References
resolution

CAM4 2 x2° 15000 0 N Neale et al. (2013)

CAMS.1.2-0.25degree 25 x 25km 150 0 N Wehner et al. (2014)

CAMS.1-1degree 1.25 x 0.94° 3000 6000 N Neale et al. (2010)

CanAM4 T63 1500 0 N von Salzen et al. (2013)

HadAM3P 1.88 x 1.25° 30000 30000 Y Massey et al. (2014)

HadGEM3 N216 1500 0 N Walters et al. (2016)

MetUM-GOML2 1.875 x 1.25° 0 450 N Hirons et al. (2015)
Walters et al. (2016)

MIROC5 150 x 150km 3000 0 N Shiogama et al. (2014)

MPI-ECHAMS6.3 T63 3000 0 Y -

NorESM1_Happi 1.25 x 0.94° 3750 2000 N Bentsen et al. (2013)

Kirkevag et al. (2013)
Iversen et al. (2013)

to minimise the additional computational time required from
modelling centres. The core experiments will be driven with
a spectrum of different leading atmosphere-only Global Cir-
culation Models (GCMs), the initial participants of which
are listed in Table 1. By using atmosphere-only models in-
stead of fully coupled models, we are able to generate larger
ensemble sizes (due to decreased computational cost) while
providing more accurate regional climate projections (He and
Soden, 2016). Boundary conditions for the models are taken

www.geosci-model-dev.net/10/571/2017/

from the CMIP5 experimental design and from models that
participated in that initiative.

There are two tiers of experiments, intended to charac-
terise various climate scenarios, as well as uncertainties in
the specifications of the temperature-based scenarios.

2.1 Tier 1 experiments

Three core experiments are proposed:

Geosci. Model Dev., 10, 571-583, 2017
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Figure 2. Time series of global annual mean surface-air tempera-
ture anomalies (relative to 1861-1880) from CMIP5 RCP2.6 and
RCP4.5 experiments. Solid lines show the multi-model mean and
shaded regions show the 5-95 % range across all 26 models. Only
one simulation is used for each model. All models where the data
were available for both scenarios were used, leading to 26 models
in total.

1. Current decade (2006-2015) conditions (50- to 100-
member ensembles).

2. 1.5°C warmer than pre-industrial (1861-1880) condi-
tions (50- to 100-member ensembles) relevant for the
2106-2115 period.

3. 2.0°C warmer than pre-industrial (1861-1880) condi-
tions (50- to 100-member ensembles) relevant for the
2106-2115 period.

Each simulation within an experiment differs from the oth-
ers in its initial weather state. The use of 50-100 10 year
time slices provides 500—1000 years of data per experiment.
Simulations are limited to 10 years in length because the ob-
served ocean temperatures, upon which all HAPPI experi-
ments are based, have been approximately constant during
this period (at least within the context of the anthropogenic
warming scales considered by HAPPI). However, 10 year pe-
riods should provide material for some analysis of multi-year
events, such as droughts. The degree to which the output of
the simulations can be used to estimate unbiased return val-
ues for a specific return period will depend on various aspects
of the event, such as region and climate variables. In the ex-
tratropical summer, for instance, the 500-1000 years may be
considered an unbiased sample, whereas in the tropics it may
be important to acknowledge the major El Nifio and La Nifia
events during the 20062015 period.

Current decade experiment: Modelling centres will use

observed forcing conditions as in the DECK AMIP de-
sign, including Sea Surface Temperatures (SSTs) and

Geosci. Model Dev., 10, 571-583, 2017

sea ice (Taylor et al., 2012). The 2006-2015 decade
is chosen because it is our most recently observed pe-
riod, but also because it contains a range of different
SST patterns over the decade, allowing for an assess-
ment of how the ocean conditions vary on inter-annual
timescales. From 2017 onward, modelling centres will
also have the option of simulating observed 2016 cli-
mate, thereby capturing the large El Nifio event in 2015—
2016. Note that the C20C project will also perform these
experiments.

The 1.5°C experiment: It is difficult (without many
climate-model-specific iterations) to explicitly design
an emissions scenario that would lead to a world
exactly 1.5°C warmer than pre-industrial conditions.
This is because the CMIP community are set up to
use particular emission scenarios or RCP scenarios,
rather than a scenario that leads to some chosen amount
of warming. Here, we take 1.5°C to mean “1.5°C
as measured as the near-surface air temperature”,
as is the formal definition of the transient climate
response, rather than some mix of measuring systems
(for instance surface ocean) that may have implications
for the energy budget (Richardson et al., 2016).

By chance, the multi-model average across climate
model simulations submitted to CMIP5 under the
RCP2.6 forcing scenario results in a global average tem-
perature response at 1.55°C relative to pre-industrial
levels (2091-2100 relative to 1861-1880). Figure 2
shows the average and 5-95 % spread in global-mean
temperature anomaly for all available CMIP5 models
for the RCP2.6 scenario (dark blue). Within HAPPI, we
assume that this amount of warming is sufficiently close
to inform the call of the UNFCCC on a special report
on the “impacts of global warming of 1.5 °C above pre-
industrial levels” (UNFCCC, 2015), and thus HAPPI
adopts the end-of-century anthropogenic radiative forc-
ing conditions from the RCP2.6 emissions scenario.
Specifically, forcing values for the year 2095 for green-
house gases, aerosol, land-use, and land-cover changes
are repeated for each of the years within the 1.5°C
decade. Natural radiative forcings, however, are set to
the same values as in the current-decade experiment.

Projected SSTs are calculated by adding to the observed
20062015 SSTs a change in SST (ASST) between
the decadal average of the modelled 20062015 period
and the decadal average of the modelled 1.5 °C world
over 2091-2100. Hence the SST patterns are still time-
varying because they are based on the 2006-2015 ob-
servations, but they have an additional warming added
to them. As CMIPS5 historical simulations stopped in
2005, the decadal average of the 2005-2015 SSTs is
estimated from RCP8.5 simulations, as this is the sce-
nario that is closest to observations over this period.

www.geosci-model-dev.net/10/571/2017/
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Sigma dSST (23 models) | annual mean | RCP2.6 (2091-2100) vs.RCP8.5 (2006-2015)

MMM (23 models) | annual mean dSST RCP2.6/4.5 (2091-2100) vs.RCP85 (2006-2015) | +0.81K
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The decadal average of the 2091-2100 SSTs is esti-
mated from CMIP5 RCP2.6 simulations. The spread of
these models is shown in Fig. 2, of which 23 models
have the required data (see Sect. 2.2 for more details on
the individual patterns). The resulting multi-model av-
erage ASST, used in the 1.5°C experiment, is shown
in Fig. 3. The global-mean SST response is 1.02 °C rel-
ative to the pre-industrial period, with larger warming
over land providing the global 1.55°C total. Because
of the time period we use as our baseline (2006-2015)
some of the so-called hiatus effect may bias our results
cold, and this will be partially compensated for by the
fact that our global-mean temperature is 0.05 °C higher
than desired, but we also note that it is the difference be-
tween the 0.5 °C warming in these relatively low emis-
sion scenarios that is important, rather than the exact
magnitude.

Estimated sea ice is more problematic than estimated
SSTs, because the CMIP-projected Arctic and Antarc-
tic sea ice extents vary dramatically between mod-
els (Collins et al., 2013). In the Arctic, most climate
models show a decrease at all longitudes in sea ice.
In the Antarctic, the overall model responses show a
similar decrease with equally variable projections. The

www.geosci-model-dev.net/10/571/2017/
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Figure 3. Left: SST warming pattern added to the current decade to produce the (top) 1.5° and (bottom) 2° scenarios. Right: the standard
deviation of annual mean delta SSTs across the 23 models. Units are in °C.

CMIP5 climate models are also unable to capture the
observed increases in Antarctic sea ice over the satel-
lite era (Turner et al., 2013), leading to low confidence
in their ability to predict future changes. As such, we
use a different method to estimate sea ice under 1.5 °C
and higher scenarios, which is an adaptation of Massey
(2017). In short, we calculate an anomaly (from 1996 to
2015) for every month from 1996 to 2015 in both SSTs
and sea ice from the operational sea surface temperature
and sea ice analysis (OSTIA) data set (Stark et al., 2007)
and fit a linear relationship between SSTs and sea ice as
a function of month and grid box. We use as the regres-
sor the meridional average of SST grid boxes, within
a hemisphere, at grid points where there is ice present
at some point in time between 1996 and 2015 (i.e. the
climatological monthly mean ice concentration for the
grid box is non-zero). This represents temperature at
that longitude under and near the ice edge, thereby min-
imising poorly observed values in ice-covered regions.
We use ice cover in an index grid box as the regressand,
and smooth the resultant field with a 500 km smoother.
We then apply the sea ice—SST relationship to the 1.5 °C
experiment SST anomalies, to give a projected sea ice
concentration anomaly. These anomalies are added on

Geosci. Model Dev., 10, 571-583, 2017
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Figure 4. Polar stereographic projections of decadal-mean (top) sea ice concentration from the 1.5° experiment and (bottom) the difference
in sea ice concentration between the 1.5° experiment and OSTIA. The OSTIA data cover the decade 2006-2015. Left panels show the
Northern Hemisphere, right panels show the Southern Hemisphere.

to the observed OSTIA data spanning the most recent
decade. The absolute sea ice concentration fields and
anomalies from observations are given in Fig. 4. This
methodology has the added benefit that the SSTs and
sea ice are consistent with each other in the HAPPI ex-
periments.

The 2 °C experiment: For the 2°C experiment, no analo-

gous CMIPS5 simulations are available. The RCP sce-
nario resulting in the second coolest temperatures by
the end of the 21st century is RCP4.5, which reaches
~2.5°C relative to pre-industrial levels by the end of
the 21st century (Fig. 2). Both RCP2.6 and RCP4.5 have
5-95 % ranges that overlap a global mean temperature
of 2°C, and the mean of both scenarios are a similar
distance from this threshold.

To calculate the future SST and sea ice conditions of
a 2°C world we therefore take a weighted sum of
the two RCP scenarios, W x RCP2.6 + W, x RCP4.5.
The weights are calculated such that the global-mean
temperature response is 2.05 °C (i.e. exactly half a de-

Geosci. Model Dev., 10, 571-583, 2017

gree above the 1.55 °C response from the 1.5 °C exper-
iment), and results in W; = 0.41 and W, = 0.59. These
weights are used to calculate the SSTs and sea ice cov-
erage using the same methodology as in the 1.5 °C ex-
periment.

The same weightings are applied to the radiative forc-
ing of each well-mixed greenhouse gas (e.g. CO,, CHay,
N, O, CFCs etc). Some concentrations do not scale lin-
early with radiative forcing, for instance CO; concen-
trations following a logarithm, and the CH4 and N;O
concentrations follow a square root. All other concen-
trations are linearly related to the radiative forcing. A
full list of these relationships is given by the IPCC
(AR3, 2001). Natural forcings remain at the 1.5 °C ex-
periment (and current-decade experiment) values. Land
cover and land use are represented in a discretised
form in the climate models, and so cannot be inter-
polated. Meanwhile, the climate responses to anthro-
pogenic aerosols and ozone concentrations (or, for some
models, emissions of their precursors) do not follow a
simple functional form, and in the case of aerosols this

www.geosci-model-dev.net/10/571/2017/
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is further complicated by major differences in the spatial
distributions of concentrations between the two RCPs.
Considering that the parties of the UNFCCC are most
concerned about a CO,-dominated warming, and CO;
is the dominant contributor to changes in the radiative
budget by 2100 (e.g. see Fig. 12.3 of Collins et al.,
2013), we chose to set the remaining (i.e. other than
CO,, SST, sea ice, and natural forcings) 2 °C experi-
ment forcings to their 1.5 °C experiment values.

In addition to the three core experiments, modelling cen-
tres will also run at least five ensemble members spanning
the period 1959-2015, thereby allowing for a range of biases
in the climate models to be assessed (see Sect. 5).

2.2 Tier 2 experiments

The Tier 2 experiments will replicate the Tier 1 1.5 and 2°C
experiments, but also take into account SST and sea ice un-
certainty at the expense of ensemble size. Individual esti-
mates of SST response patterns from the 23 different CMIP5
models will be used, the annual means of which are presented
in Appendix A for both scenarios. Each individual model pat-
tern will be scaled to have the same SST mean response as the
multi-model mean (MMM) response (1.02 °C for the 1.5°C
experiment); this will give a measure of the impact of uncer-
tainty in the pattern of large-scale warming, conditioned on a
specific global temperature change, consistent with research
demanded by the UNFCCC call.

Additional Tier 2 experiments will determine the sensi-
tivity of the response to 1.5 and 2.0°C of warming to the
inclusion of atmosphere—ocean interactions in models, and
hence to the choice of an AMIP-type approach for the Tier
1 HAPPI experiments. This is an important question, given
that air—sea feedbacks have been shown to affect the fi-
delity of model representations of key phenomena that con-
trol weather and climate extremes (e.g. the Madden—Julian
oscillation; DeMott et al., 2015). These Tier 2 experiments
use atmospheric GCMs coupled to either one-dimensional
mixed-layer oceans (i.e. with vertical resolution) or zero-
dimensional slab oceans. These models require bias correc-
tions to either the full vertical profile of temperature and
salinity (for mixed-layer oceans) or to SST (for slab oceans)
to represent missing ocean dynamics and to correct for biases
in atmospheric surface fluxes (e.g. Hirons et al., 2015). A key
advantage of these models is that they can maintain a given
global-mean temperature effectively indefinitely. They do not
include modes of coupled atmosphere—ocean variability that
rely on ocean dynamics (e.g. the El Nifio—Southern Oscilla-
tion or the Indian Ocean Dipole), which can be an advan-
tage as it avoids issues of under-sampling natural variability.
These models are also much less computationally expensive
than coupled models with full ocean GCMs.

Here, we describe the experiment design for Tier 2 exper-
iments with the MetUM-GOML2 model, which comprises

www.geosci-model-dev.net/10/571/2017/

the Global Atmosphere 6.0 configuration of the Met Office
Unified Model (Walters et al., 2016) coupled to the Multi-
Column K Profile Parameterisation mixed-layer ocean (MC-
KPP), as described in (Hirons et al., 2015). First, we perform
a present-day ensemble using forcing for the 1976-2005 pe-
riod: greenhouse gases and aerosols are set to the average val-
ues of the period 1976-2005; temperature and salinity cor-
rections constrain MC-KPP to the ocean climatology from
Smith and Murphy (2007); and climatological sea ice extent
and concentrations are prescribed. Climatological SSTs are
also prescribed in regions of seasonal sea ice cover in the
high latitudes, where the model is not coupled (see Hirons
et al., 2015). 19762005 differs from the 2006-2015 period
chosen for the Tier 1 experiments, but the objective is to un-
derstand the effect of air—sea coupling on the response to
warming, not to compare the MetUM-GOML?2 present-day
simulation to any other model.

Secondly, we adjust the CO; in MetUM-GOML2 to
achieve target global-mean warming levels, relative to the
present-day ensemble, consistent with 1.5 and 2.0 °C above
pre-industrial levels, measured by near-surface air tempera-
ture. The target levels are computed by first finding the ob-
served global-mean surface temperature difference between
19762005 and pre-industrial values, which is 0.52°C in
HadCRUT4. The target levels are set to 1.5 and 2.0 °C mi-
nus this difference, or 0.98 and 1.48 °C, respectively. This is
equivalent to projecting the change between a 1.5 or 2.0°C
warmer world and the 1976-2005 period. Finding the correct
CO; concentrations involves a trial-and-error approach, but
the effort is mitigated by the fact that warming is a roughly
linear function of CO; (for small amounts of warming) and
the model reaches steady state in 5-10 years. There are no
changes to the temperature or salinity corrections, which as-
sumes that the mean ocean heat and salt transports do not
change for relatively small warming. However, we impose
changes to sea ice and the prescribed SSTs in uncoupled (sea-
sonally ice-covered) regions. We compute these using a tran-
sient simulation of the fully coupled MetUM-GC2 (Williams
et al., 2015) with a 1% yr~! CO, increase, by averaging
20 year periods with global-mean warming closest to our
0.98 and 1.48 °C target levels and taking the difference be-
tween these periods and the climatology of the MetUM-GC2
present-day control simulation. We apply these differences to
the 1976-2005 observed climatologies.

Thirdly, we perform initial condition perturbation ensem-
bles of MetUM-GOML?2 simulations at the target warming
levels, using the CO; concentrations and sea ice and high-
latitude SST boundary conditions determined above. Finally,
we perform AMIP-type experiments with the same atmo-
spheric model, in which we prescribe the daily SSTs and sea
ice from the MetUM-GOML?2 ensembles. MetUM-GOML?2
uses a 3 h coupling frequency; converting to daily SSTs intro-
duces sufficient noise to cause the coupled and atmosphere-
only experiments to diverge.
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Comparing the coupled and AMIP-type experiments at the
same level of warming allows one to determine the sensi-
tivity of the response to the presence of atmosphere—ocean
interactions, in a framework in which the mean and inter-
annual variability of SST and sea ice are consistent between
the simulations. Similarly, comparing the relative difference
between the 1.5 and 2.0 °C simulations in the coupled and
AMIP-type experiments allows one to determine whether the
response to an additional half-degree of warming is sensi-
tive to inclusion of air—sea coupled feedbacks. We expect
that analysis of these experiments will focus mainly on sub-
seasonal variability and extremes (e.g. heatwaves, intense
precipitation events), but it is possible that air—sea coupling
will also affect the mean response.

3 Toward understanding impacts

Assessing potential impacts of 1.5 and 2°C of warming
goes beyond climate scenarios and requires integrated im-
pact model projections. HAPPI therefore cooperates with
the Inter-Sectoral Impact Model Intercomparison Project
(ISIMIP, Warszawski et al., 2013b) range of sectors including
agriculture and agro-economic modelling (Rosenzweig et al.,
2013; Elliot et al., 2013), water (Schewe et al., 2014), biomes
and forestry (Warszawski et al., 2013a), permafrost, and hu-
man health (Mitchell et al., 2016a). To allow for the HAPPI
modelling effort to be most useful for the impact community,
the HAPPI diagnostics provided resemble the climate model
input required for the ISIMIP modelling protocol.

Specifically, a priority subset of HAPPI AGCM output will
be provided in bias-corrected format following the ISIMIP2b
bias correction approach (Frieler et al., 2016). A sector-
specific modelling protocol will be available following the
ISIMIP2b simulation protocol including socio-economic and
management options.

4 Summary

HAPPI has been developed to explicitly inform one of the
primary aims of the Paris Agreement, which seeks to under-
stand impacts of a world limiting global-averaged warming
to 1.5 °C. It provides climate data for analysis of a range of
impacts under current, 1.5 and 2 °C climate scenarios. The
high number of ensemble members (> 50) allow for infor-
mation on policy-relevant timescales to be assessed, while
the 10 year length of the simulations also allows for long-
lived extremes, such as droughts, to be characterized. The
two tiers of experiments provide an assessment of not only
the desired climate change scenario, but also the uncertain-
ties in how we developed the scenario, most notably through
sensitivity tests in the SSTs and sea ice conditions. The data
are available in bias-corrected or raw formats, and are ready
for direct input to a range of common climate-impact models.
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5 Data availability

Data published on the portal will be compliant with a mod-
ified version of the C20C+ D&A conventions. All raw data
will be available, as well as a bias-corrected ISIMIP subset
using the Frieler et al. (2016) methodology.

Output from all HAPPI and associated experiments are to
be published through the joint C20C+D&A project-HAPPI
portal, hosted by the National Energy Research Scientific
Computing center (NERSC) at http://portal.nersc.gov/c20c/
data.html. The HAPPI data policy uses the same principles
as the Coupled Chemistry Model Validation (CCMVal) pol-
icy. The HAPPI data are therefore made available to all re-
searchers outside the HAPPI community, provided that they
become official HAPPI collaborators. All collaborators are
asked to respect the interests of the HAPPI community, and
are therefore encouraged to keep lines of communication
open throughout any analysis. Publications of HAPPI data
and corresponding scientific analysis are encouraged, and the
data policy involves two phases in line with CCMVal. Phase
1 runs up to the cut-off date for publications to be included in
the IPCC Special Report (in April 2018). During this phase
users are obligated to offer co-authorship to the HAPPI core
team, and to acknowledge NERSC for data storage. Phase 2
follows publication of the IPCC Special Report, and requires
acknowledgment of the HAPPI core team and NERSC. Dur-
ing the latter phase it is intended that HAPPI data will be
used to inform AR6 among other initiatives, and may well
include high-temperature scenarios, such as 3 °C.

HAPPI website: The project is kept up-to-date with
news, collaborations, publications and experiments at http:
/Mhappimip.org.
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Appendix A

b 1-1] dSST RCP2.6 (2091-2100) minus RCP85 (2006-2015) | +0.39 K

‘GFDL-ESM2G | annual mean dSST RCP26 (2091-2100) minus RCP85 (2006-2015) | -0.01 K

bee-csm1-1-m | annual mean dSST RCP2.6 (2091-2100) minus RCP85 (2006-2015) | +0.25 K BNU-ESM | annual mean dSST RCP2.6 (2091-2100) minus RCP85 (2006-2015) | +0.54 K

‘GFDL-ESM2M | annual mean dSST RCP2.6 (2091-2100) minus RCP85 (2006-2015) | +0.31 K

2 -5 - 05 0 05 1 15 2

Ot Mo+ 20, e 20, om0

2 -5 - 05 0 05 1 155 2 2 45 1 05 0 05 1 152

DM+ 2, Mo+ 27, Mean =03 Ot i1, 22, Mern =03

Figure A1l. As in the 1.5° experiment delta SST pattern in Fig. 3 but for the first set of 12 individual models.
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GISS-E2-R | annual mean dSST RCP2.6 (2091-2100) minus RCP85 (2006-2015) | +0.08 K. HadGEM2-ES (4) | annual mean dSST RCP2.6 (2091-2100) minus RCP85 (2006-2015) | +0.57 K IPSL-CMSA-LR (4) | annual mean dSST RCP2.6 (2091-2100) minus RCP85 (2006-2015) | +0.56 K

IPSL-CM5A-MR | annual mean dSST RCP2.6 (2091-2100) minus RCP85 (2006-2015) | +0.53 K MIROC-ESM | dSST RCP2.6 (2091-2100) minus RCP85 (2006-2015) | +0.98 K MIROC-ESM-CHEM | annual mean dSST RCP2.6 (2091-2100) minus RCP85 (2006-2015) | +0.86 K

MRI-CGCM3 | annualmean dSST RCP2.6 (2091-2100) minus RCP85 (2006-2015) | +0.56 K NorESM1-M | annual mean dSST RCP2.6 (2091-2100) minus RCP85 (2006-2015) | +0.35 K NorESM1-ME | dSST RCP2.6 (2091 inus RCP85 (2006-2015) | +0.41K

2 -5 4 65 0 05 1 15 2 2 s 4 05 0 05 i 152 2 4§ 1 95 0 05 1 15 2

Dot v 22, Mo 2.4 Mesn =0 Dot v 1., e 47, M= 04 Ot Mo 12 e . Mesn =04

Figure A2. As previous but for the second set of 12 individual models.
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