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. Monitoring it would require detecting its effects amidst internal variability and in the presence of
other external forcings. We investigate how the use of different detection methods and filtering
techniques affects the detectability of sulphate aerosol geoengineering in annual-mean global-mean
near-surface air temperature. This is done by assuming a future scenario that injects 5Tgyr— of sulphur
dioxide into the stratosphere and cross-comparing simulations from 5 climate models. 64% of the
studied comparisons would require 25 years or more for detection when no filter and the multi-variate
method that has been extensively used for attributing climate change are used, while 66% of the same
comparisons would require fewer than 10 years for detection using a trend-based filter. This highlights
the high sensitivity of sulphate aerosol geoengineering detectability to the choice of filter. With the
same trend-based filter but a non-stationary method, 80% of the comparisons would require fewer than
10 years for detection. This does not imply sulphate aerosol geoengineering should be deployed, but
suggests that both detection methods could be used for monitoring geoengineering in global, annual
mean temperature should it be needed.

Stratospheric aerosol injection (SAI) is one of the proposed solar radiation management (SRM) methods for
limiting global surface temperature rise"2 It involves deliberate injections of sulphate aerosols into the strat-
osphere to reduce incoming solar radiation. The natural analogue of SAI is large volcanic eruptions. In 1991,
Mount Pinatubo erupted 20 Tg of sulphur dioxide (SO,) into the stratosphere, resulting in ~0.5°C global cooling
in 1992% While potential side effects exist*™, SAI scores high for effectiveness, affordability and timeliness in a
preliminary analysis of the Royal Society’. Despite ethical concerns and doubts about the comprehensiveness of
Royal Society’s tentative assessment®, some view SAI as a temporary ‘quick fix’ to undesirable climate warming in
case aggressive conventional mitigation targets are not met.

In the event of SAI deployment, there would need to be a way to confirm it was actually reducing surface tem-
perature and to look for its consequences. A drop in surface temperature after deployment does not necessarily
mean SAI is working, as climate variability plays an important role in temperature fluctuations. This means we
must be able to separate the forced changes due to SAI from climate variability, akin to the familiar ‘detection’” of
historical anthropogenic climate change. A step further would be to attribute the changes observable with geoen-
gineering to SAI in relation to other forcings. This would be necessary if we wanted to limit global warming to a
more desirable rate or surface temperature to be under a particular value above pre-industrial levels via explicit
feedback and management®'°. In other words, we would need to know how much of the observed temperature
change is due to SAI in order to work out the amount or location of aerosol injection for the year following, so that
our climate objectives for the future could be met.

Attribution can only be achieved with detection. This study aims to investigate how sensitive our ability to
detect the influence of SAI on future annual-mean global-mean near-surface air temperature (SAT) time series
is to two different detection methods and three data filtering techniques. Global-mean temperature is chosen
because global cooling is likely to be the primary aim of SAI. It is a simple climate variable that the media and
public are most interested in concerning geoengineering, and it has a high signal-to-noise ratio for detection due
to averaging. Other climate variables may be used to detect a geoengineering response, but they are out of the
scope of this study.

Department of Meteorology, University of Reading, Reading RG6 6BB, UK. 2Met Office Hadley Centre, FitzRoy Road,
Exeter EX1 3PB, UK. Correspondence and requests for materials should be addressed toY.T.E.L. (email: y.t.e.lo@pgr.
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Name Fingerprints Filter Background climate

TfNo SATand RCP4.5 None Multi-model pre-industrial simulations
TfCO SATand RCP4.5 Co Multi-model pre-industrial simulations
TfC1 SATand RCP4.5 Cl Multi-model pre-industrial simulations
BgCO SAI C0 Multi-model RCP4.5 simulations
BgCl1 SAI Cl1 Multi-model RCP4.5 simulations

Table 1. Detection methods and filters that are used to test the sensitivity of sulphate aerosol
geoengineering detection. TfNo, TfCO and TfC1 are the conventional, two-fingerprint method with no filter,
Co filter and Cl1 filter applied, respectively. BgCO and BgCl1 are Biirger and Cubasch’s non-stationary method
with the CO0 filter and Cl1 filter applied, respectively. Filter width is 14 years where applicable.

We assume a future geoengineering scenario, G4 from the Geoengineering Model Intercomparison Project
(GeoMIP)'!, which involves daily injections of SO, into the stratosphere (16-25km) at a rate equivalent to
5Tgyr~! during the period 2020 to 2070, in addition to the Representative Concentration Pathway of greenhouse
gases that leads to 4.5 Wm™2 increase in radiative forcing in year 2100 relative to pre-industrial values (RCP4.5)'2.
Please refer to Kravitz et al.' for the schematic of radiative forcings in G4. This rate of SO, injection is equivalent
to one Mount Pinatubo eruption every 4 years, and was designed to reduce the global-mean temperature to about
1980 values!!. The background scenario in G4 is RCP4.5, in which greenhouse gas emissions peak at around 2040
and then decline, as this was thought to be a plausible concentration pathway with greenhouse gas emission mit-
igation implemented. Nonetheless, just as the RCP scenarios!?, the G4 scenario is chosen to be illustrative only.
We do not suggest a real-world application would be likely to follow this pathway.

Conventional detection and attribution estimates the amplitudes, or scaling factors, of model-simulated
responses to different forcings or different groups of external forcings in the observations, with the null hypothesis
of unforced, internal climate variability. This is done by regressing the observations against the model-simulated
responses, or fingerprints, taking into account unforced variability in the observations and sampling uncertainty
in the simulated responses. Assuming fingerprints of different external forcings, x;, are linearly additive and inde-
pendent of internal variability, 1, the total least squares (TLS) multi-variate detection model'* is as follows:

y= [ixi - “i]ﬁi + u
i=1 (1)

where y is the observations, u; is the sampling noise in x;, m is the total number of fingerprints and (3; is the scaling
factor of the i*" fingerprint to be estimated. If the solution 3; and its two-tailed confidence interval, usually its 5 to
95 percentiles, include zero, then the null hypothesis that the i fingerprint is absent from the observations cannot
be ruled out at P_ ;. Rejection of this null hypothesis, i.e. §; and its uncertainty range differ from zero, implies
detection of the i fingerprint at the 10% level.

The Intergovernmental Panel on Climate Change (IPCC) have used this multi-variate detection method to
robustly demonstrate human influence on the climate system over the last few decades!>!¢. We explore how this
method could be used in a new way for detecting geoengineering signals. Using pseudo-observations (observa-
tions mimicked by climate model simulations) and cross-comparing them with simulations from other models,
the time horizon over which SAI detection would become possible in annual-mean global-mean SAT time series
from the start of deployment (taken in G4 to be in 2020) is estimated to the nearest 5 years. This metric is referred
to as ‘SAI detection horizon’ hereafter.

As an alternative to the conventional, multi-variate method, Biirger and Cubasch!” have used a non-stationary
detection method to study the detectability of sulphate aerosol geoengineering. The major difference between
these two methods lies in their null hypotheses. Applied to the case of geoengineering in G4, the multi-variate
method attempts to detect the SAT and RCP4.5 signals simultaneously against the climate system’s internal var-
iability, whereas the non-stationary method attempts to detect the SAI signal against a gradual warming back-
ground caused by RCP4.5 forcings and internal variability. Using the non-stationary method and a trend-based
data filter, Biirger and Cubasch found that spatial and spatio-temporal SAI signals would become detectable in
temperature and precipitation after just a few years of sulphur dioxide injection in G4. Here we also apply this
new method to detect the influence of SAI on future SAT pseudo-observations. We compare the SAI detection
horizons estimated using these two methods, in conjunction with three different filtering procedures for noise
removal in the data.

Results
Summary of detection methods and filters used. Table 1 summarises the 5 variations of TLS detection
that are applied to detect the SAI signal in future annual-mean global-mean SAT time series in our study. Each
of them is a unique combination of a detection method and a data filtering technique. Averaging and filtering
raw observations and climate model simulations is often used in detection and attribution studies to increase
the signal-to-noise ratio and, thus, the chance of successful detection'®". In addition to annual mean and global
averaging, a mean-based CO and a trend-based C1 filter are used in 4 of our experiments, so that the effect of data
filtering alone on the detection results can be investigated.

C0 is a moving filter that estimates the climate at a certain year from the mean climate of its previous N years.
N is equal to 14 throughout our study. The estimation is based on the past because future information that is not
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HadGEM2-ES (3) CSIRO-MKk3L-1-2 (3) | CanESM2 (3) | BNU-ESM (1) | MIROC-ESM (1)
HadGEM2-ES r1 — 25 10 15 25
HadGEM2-ES r2 — 5 10 5 25
HadGEM2-ES r3 — 25 30 5 30+
CSIRO-MK3L-1-2rl 25 — 15 30+ 25
CSIRO-MK3L-1-2 12 25 — 25 30+ 25
CSIRO-MK3L-1-213 30+ — 30 30 30
CanESM2 r1 5 30+ — 30 20
CanESM2 r2 25 30+ — 20 25
CanESM2 r3 20 10 — 10 25
BNU-ESM r1 5 5 10 — 25
MIROC-ESM r1 30+ 30+ 30+ 30+ —

Table 2. Estimated minimum number of years that are needed for the SAI influence to become detectable
in annual-mean global-mean SAT from deployment in 2020, using the TfNo method at the 10% level. There
are 44 pseudo-observation (in rows) model (in columns) comparisons in total. r1, r2 and r3 stand for the first,
second and third G4 realisation, respectively. Numbers in brackets indicate the number of members over which
ensemble mean is taken in the model-simulations.

available would be needed otherwise. Application of the 14-year-wide CO filter results in a smoother time series
that has a lag of approximately 7 years from the true mean climate!’. On the other hand, the Cl filter estimates the
climate in any given year from the trend of its previous N years (N = 14 in this study). The trend is estimated by
using ordinary least squares regression. A 14-year-wide C1 filter does not result in an obvious phase shift from the
true mean climate, but nonetheless produces a noisier time series than C0'”. In addition to data smoothing, these
two filters extract climate signals and deal with the short-term non-stationarity arising from abrupt geoengineer-
ing deployment, both of which are necessary procedures in the non-stationary detection approach.

N=14is found to be the optimal width for both filters, for capturing the short-term climate response to the
SAI shock in G4 and retaining the temporal shape of the data without a large time delay’. A longer filter period,
e.g. 30 years, results in a much smoother time series but also a time lag of around 15 years even with the C1 fil-
ter. We completed our own sensitivity test to confirm this result and agree with the conclusions of Biirger and
Cubasch.

As opposed to the non-stationary method, the application of the C0 or the C1 filter is not necessary for the
multi-variate method to work. We nevertheless also use them in conjunction with multi-variate detection to
reduce noise in the observations and model simulations while retaining their temporal shapes, and to facilitate
fairer comparison between the performance of the two detection methods.

Detection using the multi-variate method and no filter (TfC0). The time horizons over which
SAI-forced changes would become detectable in annual-mean global-mean SAT in the G4 scenario estimated
with TfNo are shown in Table 2. Each row represents pseudo-observations from a plausible geoengineering reali-
sation, and each column corresponds to a different choice of climate model for generating fingerprints for detec-
tion purposes. The climate models included in this study are HJdGEM2-ES?, CSIRO-Mk3L-1-2, CanESM2%,
BNU-ESM? and MIROC-ESM* (see Supplementary Table S1 for their modelling groups). The number in brack-
ets in each column indicates the number of members over which ensemble mean is taken when estimating finger-
prints from the simulations. BNU-ESM and MIROC-ESM have 1 ensemble member available each, while the rest
of the models have 3 ensemble members in their G4 simulations. Using only 1 member to generate fingerprints is
likely to result in insufficient separation of the forced signal from climate variability, and is not recommended'*?°.
However, its sensitivity to different detection methods is still useful to study in this paper.

There are 44 pseudo-observation model comparisons in total. Comparisons between pseudo-observations
and fingerprints that are generated from the same climate model are excluded from the results. This is to avoid
biases as the scaling factors estimated in these comparisons are very close to 1, as one would expect. These scaling
factors nonetheless prove the credibility of the detection algorithm used.

For each comparison, the length of the input SAT time series in the detection algorithm is varied from 5 to
30 years at 5-year intervals. All time series start at year 2020, the year at which SAI is implemented in the geoen-
gineering scenario and G4 simulations begin. The first time that the estimated scaling factor and its uncertainty
range for the SAI fingerprint exclude zero is taken as the detection horizon.

At least 25 years of observations are needed for successful SAI detection in more than half of the studied
comparisons. In particular, more than 30 years are needed in the combinations where the first ensemble member
of MIROC-ESM is used as pseudo-observations, regardless of the model used for simulating fingerprints. This
is because MIROC-ESM has the weakest global-mean cooling response to SAI among the models. The results
suggest that SAI detection in this scenario will be challenging using the multi-variate detection approach and no
filter, especially if future observations follow the MIROC-ESM trajectory.

Figure 1 shows the distribution of the results from Table 2. Despite being spread out across different horizons,
it can be seen that most comparisons require more than 25 years for SAI detection. This indicates that although
swift cooling is generally expected from SAI, and is indeed observed in all of the model-simulated G4 time series,
a longer time period would be required to robustly detect its influence if TfNo is to be used.
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Figure 1. Distribution of the detection horizons estimated with TfNo. For most of the combinations, more
than 25 years are required for SAI detection.
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Figure 2. Distributions of the estimated time horizon over which the SAI influence would become
detectable in the temporal pattern of global-mean SATs after 2020 by using the (a) TfCO, (b) TfC1, (c) BgC0
and (d) BgCl, respectively, at the 10% level. The results are more sensitive to the choice of filter than to the
detection methods alone.

Sensitivity of detection horizon to different filters. Figure 2(a) and (b) show the distributions of
detection horizons estimated for exactly the same 44 pseudo-observation model comparisons as above using
TfCO0 and TfC1, respectively. Compared to not filtering the observations, model-simulated fingerprints and the
control at all, detection of the SAI influence on global-mean SAT becomes possible within the first 15 years
of SAI deployment in more comparisons when the CO filter is used. However, the detection horizons are still
spread out with a peak at more than 30 years. This peak is mostly contributed from comparisons that involve
CSIRO-MKk3L-1-2, in which solar irradiance reduction is used instead of aerosol prescription or injection.

The residual consistency test'*? fails more often with the CO filter than when no filter is applied, even though
exactly the same comparisons are being studied throughout. This means that when the CO filter is used, the
weighted sum of squared residuals of regression is inconsistent with the model-simulated noise variance in more
comparisons than when no filtering is done. This has affected some of the estimated detection horizons, as detec-
tion cannot be claimed when the control simulation of climate variability, and hence uncertainty estimates on the
scaling factors, is distrusted. Inconsistencies in model responses on longer timescales may have contributed to the
increased number of failures in the residual check.
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The application of the Cl1 filter alone, however, results in a significant shift in the estimated detection horizons
to shorter timescales, as can be seen in the comparison between Figs 1 and 2(b). The SAI influence would become
detectable at the 10% level within the first decade of SAI deployment in 29 of the 44 studied combinations. This
suggests that even with the same null hypothesis, pseudo-observations and set of climate models, the detection
results are highly sensitive to the change from not filtering the data to using a trend-based filter to define the input
time series. The small peak at more than 30 years on Fig. 2(b), again, mostly comes from comparisons that involve
CSIRO-MK3L-1-2.

Sensitivity of detection horizon to different methods. The distributions of detection horizons esti-
mated by using BgCO0 and BgCl1 are shown in Fig. 2(c) and (d), respectively. Switching from the conventional,
multi-variate method to the non-stationary method results in a slight shift in detection horizons from longer
timescales to within a decade, as can be seen by comparing Fig. 2(a) with (c), and Fig. 2(b) with (d). However, the
results are not as sensitive to detection methods as they are to the choice of filter. The residuals mismatch problem
seen with TfCO persists when BgCO0 is used. With the Cl1 filter applied, the distribution of detection horizons esti-
mated with the non-stationary method is very similar to that estimated by using the multi-variate method, both
having peaks at the first 5 and 10 years of SAI deployment.

The early detectability, i.e. within a decade, of SAI found in the BgC1 experiment is consistent with the conclu-
sion drawn by Biirger and Cubasch'?, even though spatial information is not included in our study. Furthermore,
the similarity in the distributions of detection horizon estimated by using TfC1 and BgC1 confirms the robustness
of such a finding, regardless of whether the multi-variate or the non-stationary detection method is used.

Discussion

By applying two variants of total least squares detection and three different data filtering procedures to
annual-mean global-mean near-surface air temperature time series in the G4 scenario, we detect sulphate aer-
osol geoengineering signals after 2020 at the 10% level. We have shown the high sensitivity of sulphate aerosol
detectability to the choice of filter for data smoothing. Filtering pseudo-observations, model-simulated finger-
prints and the background climate with a trend-based filter (C1) results in earlier detection, compared to when a
mean-based filter (C0) or no filter is used. This is because the C1 filter effectively removes noise while keeping the
temporal shape of the raw data without an obvious lag, like temporal mean does.

The use of the conventional, multi-variate detection method in conjunction with a 14-year wide C1 filter
(TfC1) results in successful detection of the sulphate aerosol signal within a decade of geoengineering deploy-
ment, in around 66% of the studied pseudo-observation model pairs. This result is comparable to that of Biirger
and Cubasch!’, even though a significantly different null hypothesis and additional spatial information are used
in their study. Our results, therefore, confirm our ability to detect the influence of injected sulphate aerosols on
near-surface air temperature within 10 years of geoengineering deployment regardless of the null hypothesis cho-
sen, should the future observations follow the G4 projections, and the same climate variable, models and filtering
technique are used.

In comparison to the filtering technique, the detection method alone has a smaller effect on geoengineering
detectability. Nonetheless, the combined use of the non-stationary method and the 14-year wide C1 filter (BgC1)
results in early detectability in the highest number of studied comparisons. The sulphate aerosol signal becomes
detectable within 10 years of deployment in around 80% of the studied comparisons. This is consistent with
Biirger and Cubasch’s results. It is, therefore, evident that the early geoengineering detectability found in their
study is mainly the result of a good choice of filter, rather than the null hypothesis that includes a forced warming
trend.

Whilst neither the multi-variate method nor the non-stationary method is incorrect, there are certain advan-
tages of using TfC1 over BgC1. Firstly, the multi-variate detection method has been very widely used for detect-
ing and attributing climate change in many different climate variables. On the other hand, there is no proven
credibility of the non-stationary method except for its application to surface temperature and precipitation in
hypothetical geoengineered worlds. Secondly, the multi-variate method allows simultaneous detection of climate
responses to different forcings or groups of forcings. This means the detection of anthropogenic warming before
geoengineering could serve as a check, as climate warming should have been robustly detected before geoengi-
neering is considered and deployed. Indeed, with the use of TfC1, the RCP4.5 signal is detected before or at the
same time as the geoengineering signal in almost all of our studied comparisons. This is a useful check that the
non-stationary method cannot provide.

Moreover, although not included in this study, one could attribute a change in climate observable with geoen-
gineering to individual factors such as solar activity, volcanic eruptions, or many other climate forcings simulta-
neously only with the use of the multi-variate method. Understanding how much of the observed changes is due
to the intentionally injected sulphate aerosols relative to other external forcings would be crucial in the event of
deployment, especially if we wanted to manage geoengineering via explicit feedback®!?. An attribution approach
could also help us to understand by what extent the climate models that we use to calculate the amount of SAI
needed for achieving certain climate goals are underestimating or overestimating the real world’s responses to the
injected sulphate aerosols. Future work could investigate this using the multi-variate detection method.

Only data from 2020 onward have been included in this study, as SAI only starts in 2020 in G4 and this is
the point at which the G4 simulations diverge from RCP4.5. In reality, any detection in the real-world may also
make use of observations and model simulations prior to deployment. To investigate the impact of prior observa-
tions we also performed sensitivity studies in which we extended the time series backwards. This means adding
historical and RCP4.5 data to the pseudo-observation and fingerprint time series. It potentially leads to noise
contamination in the non-stationary method!” and, therefore, has been avoided in the main study for detection
method comparison. In the sensitivity experiment where a diagnostic beginning in 2000 and TfC1 were used,
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Figure 3. Ensemble-mean annual-mean global-mean SAT anomaly (relative to the corresponding 2020
levels) time series in G4 (thick solid line) and RCP4.5 (dashed line) from BNU-ESM, CanESM2, CSIRO-
MKk3L-1-2, HadGEM2-ES and MIROC-ESM, respectively.

10 comparisons would need 5 years of geoengineering observations for SAI detection at the 10% level, while
14 other comparisons would require 10 years to do so. The drop in the number of successful detections in the
first 5 years of SAI implementation may be explained by signal degeneracy'>'*: the extended 2000-2024 G4 and
RCP4.5 fingerprints are so similar that amplifying one of them while diminishing the other may explain the
pseudo-observations just as well as the other way round.

Nevertheless, allowing the use of pre-deployment data is another advantage of the multi-variate method over
the non-stationary method and may result in earlier detection when less pre-deployment data or further spatial
information is included (although this is beyond the scope of the present study). Future work could then investi-
gate how much pre-deployment data would be optimal for SAI detection using the multi-variate method.

Given the high sensitivity of the geoengineering detection horizon to the choice of filter, further work could
also test the effect of the width of a moving filter on the results. Also, our experiments are highly idealised to
assume observations at evenly distributed grid points. A more realistic study could use data at points that are
available in the current observational system only. Future work could also attempt to detect the geoengineering
signal at other scales or in other climate variables such as precipitation and reflected shortwave radiation. These
variables are expected to respond to the radiative forcing changes associated with geoengineering aerosols, but
detection may be more challenging due to a larger spread in model responses and lower signal-to-noise ratio,
especially at regional scales.

Finally, this study has heavily relied on hypothetical climate scenarios and climate model simulations, as SAI
has not happened in reality at large scales. A background climate following RCP4.5 has been assumed in our
study, but stabilising radiative forcing to 4.5 Wm~? above pre-industrial levels by 2100 would require greenhouse
gas emission mitigation!®?’. Radiative forcings in the real world are uncertain, unlike the known forcings used
in the RCP4.5 simulations. The lack of perfect knowledge of radiaitve forcings particularly at short time periods
would add uncertainty to the detectability of SAI in a real-world application. Sulphate aerosols have been injected
or prescribed in the climate models at a fixed rate of 5 Tgyr?, but this scenario may not be optimal or achievable,
and is only one of the many possible ways of geoengineering implementation®®?*. Therefore, the robust early
detectability of sulphate aerosol injection on global-mean temperature found in this study does not imply geoen-
gineering of this kind should be deployed. Whether or not it will be needed depends highly on future greenhouse
gas concentrations and climate trajectories, countries’ efforts to mitigate greenhouse gas emissions and their
climate objectives. Also, the unintentional effects of SAI on the climate system, its socio-economic impacts, and
associated ethical and political complications, all of which are out of the scope of this study, should be taken into
serious consideration in future climate policymaking?®.

Methods

Data sets. The GeoMIP!! was designed to establish a coordinating framework for modelling groups to
explore possible climate responses to various SRM methods. There were 9 models participating in the G4 exper-
iment®. 7 of them were fully coupled atmosphere-ocean general circulation models (AOGCMs), and 2 were
coupled chemistry-climate models. Using output from the 7 AOGCMs, a recent study*” estimated the difference
between 2030-2069 and 2010-2029 global-mean SAT under the RCP4.5 scenario to be 0.8140.21 °C. The dif-
ference would reduce to 0.28 £ 0.31 °C in the comparison between 2030-2069 G4 and 2010-2029 RCP4.5 glob-
al-mean SATS.

SAT output from 5 of the participating AOGCMs, namely HadGEM2-ES, CSIRO-Mk3L-1-2, BNU-ESM,
MIROC-ESM and CanESM2, were used in this study. Figure 3 shows the time series of ensemble-mean
annual-mean global-mean SAT anomalies relative to the corresponding 2020 levels in G4 (thick solid lines) and
RCP4.5 (dashed lines) from these models. Temperatures in G4 are lower than that in RCP4.5 throughout the
deployment period in all of the models. BNU-ESM and MIROC-ESM have nosier time series as they have only 1
ensemble member each, while the rest of the models have 3. GISS-E2-R* and MIROC-ESM-CHEM?** were not
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included because of incorrect initialisation in G4!7 and unavailable pre-industrial output for download at the time
of study, respectively. The 2 coupled chemistry-climate models have prescribed sea surface temperature, making
them non-comparable to other models.

BNU-ESM has an imperfect initialisation in G4 which results in a slight discrepancy between RCP4.5 and G4
pre-2020 temperatures. However, given their very similar pre-2020 climatologies, BNU-ESM was retained in the
study (Duoying Ji, personal communication, 2015). Although CSIRO-MKk3L-1-2 uses solar irradiance reduction
instead of prescribed or injected stratospheric sulphate aerosols, it was retained in this global-mean study to
maintain a sizeable sampling pool.

Data processing. The global-mean annual-mean SAT time series used throughout our study were produced
by taking the area-weighted global average from temperatures at all available grid points, followed by calculating
the annual means.

For TfNo, TfCO0 and TfC1, the pseudo-observations, y1, was a time series of annual-mean global-mean G4
SAT anomalies with respect to the ensemble member’s own 2006-2019 SAT mean that was filtered according to
the experiment. The time series started in 2020 and the filter window width was 14 years. The model-simulated
fingerprints, X5, and Xycp, Were time series of ensemble-mean annual-mean global-mean G4 and RCP4.5 SAT
anomalies with respect to the model’s corresponding 2006-2019 SAT mean, respectively. They were filtered in
exactly the same way as was yr. All of these time series had the same length, which depended on the future time
period of interest.

Unforced pre-industrial simulations (piControl) from HadGEM2-ES, CSIRO-Mk3L-1-2, GISS-E2-R,
CanESM2, BNU-ESM and MIROC-ESM were used to estimate internal climate variability. The power spectra of
all model’s temperature variability were found to be comparable to those of HadCRUT4** and GISTEMP?® on the
timescales of 5 to 30 years individually (see Supplementary Fig. S1, cf. Gillett et al.>®). A linear trend was removed
from the annual-mean global-mean piControl time series if it had a linear shift (BNU-ESM and MIROC-ESM),
while a mean was removed if there was no obvious trend in the piControl time series (HadGEM2-ES,
CSIRO-MK3L-1-2, GISS-E2-R and CanESM2). Each of the model’s standardised piControls was then split into
segments of the length of y;. The same diagnostic as was applied to y; was applied to every segment here. Half of
these segments were used for optimisation, while the other half were used for hypothesis testing in the detection
and attribution algorithm. The number of degrees of freedom of internal variability estimation was the number of
segments used for hypothesis testing. The same multi-model internal variability dataset was used irrespective of
which model was used to represent pseudo-observations and which was used to generate fingerprints.

For BgCO0 and BgCl, yp, was a time series of annual-mean global-mean G4 SAT time series starting from
2020, anomalised and filtered in the same way as described above, but with a mean RCP4.5 background climate
removed!’. This was achieved by subtracting the corresponding mean SAT over 114 RCP4.5 simulations from
each value in the G4 time series. A list of the climate models used to estimate the RCP4.5 background climate can
be found in Supplementary Table S1. The ensemble-mean model-simulated response of interest in this case, Xg,
was processed in the same way as yp,.

The 114 RCP4.5 simulations were processed in exactly the same way as was yy, to estimate the non-stationary
background climate. Similar to the treatment to piControl, these simulations were divided into two groups for
optimisation and hypothesis testing. This background climate estimation was fixed across the pseudo-observation
model comparisons.

Optimal detection. Equation 1 was solved using the TLS function in the Environment Canada’s Optimal
Fingerprint (ECOF) package (Yang Feng, personal communication, 2015). In the optimal detection algorithm,
the pseudo-observations and fingerprints described above were projected onto empirical orthogonal functions
(EOFs) of the control (eigenvectors of the climate noise covariance matrix) and weighted by their inverse singular
values so that the signal-to-noise ratio was maximised?®. Since the number of independent piControl segments
for optimisation was lower than the rank of the pseudo-observations, the inverse noise covariance matrix neces-
sary to solve Equation 1 was estimated from a truncation of projections onto the leading EOFs'*%.

Both optimisation and hypothesis testing in the detection algorithm require knowledge of the characteristics
of internal climate variability. This was obtained from the piControl simulations, as mentioned in the previous
section. While modelled internal variability is not expected to completely reproduce variability in the real world,
it should be a realistic representation at the truncated scales retained in the analysis. The maximum reliable trun-
cation was chosen via a residual consistency test'*?, in which the weighted sum of squared residuals of regression
was compared to the model-simulated noise variance via an F test. For each pseudo-observation model compar-
ison, the highest truncation at which the F test probability fell within the 5-95% range while the corresponding
estimated scaling factor varied little with truncation was selected. The detection result then depended on whether
the uncertainty range on the scaling factor at the selected truncation included zero or not.

Linear transformation of scaling factors. For the two-fingerprint experiments, TLS regression against
the G4 and RCP4.5 simulations, X¢, and Xycp, was used instead of Xs,; and Xpcp, due to a lack of SAI-only simu-
lations. We extracted the scaling factors for the SAT and RCP4.5 forced signals from that of xg, by transforming
scaling factors after regression'®. Assuming X, = Xga; + Xpcp:
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Yo = BiXgy + BoXpcp
Bi(Xsa1 + Xpcp) + BoXpep
Bixsar + (B + 55)Xpcp

= BsarXsar T BrepXrep (2)

where s are best-estimate scaling factors. Linear transformation in matrix form is thus:

g B
) (} (1)) B: 3)

ﬁ RCP

Equation 3 was used to estimate both the best estimates and uncertainty ranges of scaling factors for hypoth-

esis testing in TfNo, TfCO and TfCl.
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