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Abstract The unprecedented availability of 6-hourly
data from a multi-model GCM ensemble in the CMIPS
data archive presents the new opportunity to dynamically
downscale multiple GCMs to develop high-resolution cli-
mate projections relevant to detailed assessment of climate
vulnerability and climate change impacts. This enables the
development of high resolution projections derived from the
same set of models that are used to characterise the range
of future climate changes at the global and large-scale, and
as assessed in the IPCC ARS. However, the technical and
human resource required to dynamically-downscale the full
CMIP5 ensemble are significant and not necessary if the
aim is to develop scenarios covering a representative range
of future climate conditions relevant to a climate change
risk assessment. This paper illustrates a methodology for
selecting from the available CMIP5 models in order to
identify a set of 8—10 GCMs for use in regional climate
change assessments. The selection focuses on their suitabil-
ity across multiple regions—Southeast Asia, Europe and
Africa. The selection (a) avoids the inclusion of the least
realistic models for each region and (b) simultaneously
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captures the maximum possible range of changes in surface
temperature and precipitation for three continental-scale
regions. We find that, of the CMIP5 GCMs with 6-hourly
fields available, three simulate the key regional aspects of
climate sufficiently poorly that we consider the projections
from those models ‘implausible’ (MIROC-ESM, MIROC-
ESM-CHEM, and IPSL-CMS5B-LR). From the remaining
models, we demonstrate a selection methodology which
avoids the poorest models by including them in the set only
if their exclusion would significantly reduce the range of
projections sampled. The result of this process is a set of
models suitable for using to generate downscaled climate
change information for a consistent multi-regional assess-
ment of climate change impacts and adaptation.
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1 Introduction

Modelling centres participating in the fifth Coupled Model
Inter-comparison Project (CMIP5) experiment (Taylor
et al. 2012) agreed to make available the 6-hourly instan-
taneous fields of prognostic variables from GCMs for use
as lateral boundary conditions (LBCs) for driving regional
climate models (RCMs). This provides the opportunity for
those interested in higher-resolution baseline and future cli-
mates derived by downscaling with multiple combinations
of global and regional climate models or statistical downs-
caling techniques, allowing exploration of a wide range of
high-resolution projections for one or more regions of the
world consistent with the latest GCM-based climate projec-
tions assessed in the Intergovernmental Panel on Climate
Change (IPCC) Assessment Report 5 (ARS). However,
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the human and computational resource-intensive nature of
high-resolution downscaling places a restriction on the size
of ensembles generated and downscaling the full ensemble
may not be desirable or necessary to generate a representa-
tive range of future climate conditions relevant to assessing
risks associated with future climate change. This implies
the need to develop strategies to sample from the available
General Circulation Models (GCMs) and Representative
Concentration Pathway (RCP) scenarios in order to gener-
ate projections that are policy relevant and manageable to
develop, analyse and disseminate.

This paper explores the selection of GCMs from the
CMIPS5 ensemble in order to identify a subset that is repre-
sentative of the range of future climate outcomes indicated
by the full ensemble. Such an approach could be adopted
by large model intercomparison projects such as the Cor-
dinated Regional Downscaling Intercomparison Project
(CORDEX) (Giorgi et al. 2009).

The selection process also provides the challenge and
opportunity to discount any models which we find unsatis-
factory in their representation of key processes or features
of climate. The down-weighting or exclusion of GCMs has
been explored in a number of studies (e.g. Tebaldi et al.
2005; Greene et al. 2006; Tebaldi and Sanso 2009; Watter-
son and Whetton 2011; Sexton et al. 2012). However, this
is a challenging problem with respect to both the practi-
calities of identifying unsatisfactory models, and the more
philosophical considerations of how we relate apparently
poor performance to the plausibility of future projections
(see Knutti 2010; Knutti et al. 2010 for discussion). Criti-
cally, the elimination of some GCMs may narrow the range
of uncertainty represented by the remaining models (e.g.
Overland et al. 2011). While this is often considered desir-
able given the policy challenges in responding to projec-
tions with large uncertainty ranges, provision of a falsely
narrow range of projections may lead to over confidence
and mal-adaptation. The IPCC is one key institution that
has avoided attempting to weight or eliminate individual
models, adopting a ‘one-model-one-vote’ interpretation
of CMIP3 and CMIP5 projections in its fourth and fifth
assessment reports, respectively (IPCC 2007, 2013).

Previous examples of weighting or selection on the
basis of realism have argued that it may be more justifi-
able for specific regions or applications where the key
aspects of model behaviour can be identified and assessed
(e.g. Overland et al. 2011; McSweeney et al. 2012). We
explore whether it is either practical or justifiable to extend
a regional approach in order to identify a subset of mod-
els which are suitable for use across multiple regions. Such
an approach would yield practical benefits by reducing
the overhead of interfacing between GCMs and RCMs for
modelling groups involved in providing downscaled infor-
mation for more than one region, as well as reducing the
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need for multiple selection studies. Further, projects with a
global scope such as ISIMIP (Intersectoral-Impacts model
inter-comparison project) (Warszawski et al. 2013) have
expressed interests in the use of a consistent set of GCMs
for downscaling in order to generate datasets with consist-
ently generated uncertainty ranges globally.

We present an approach to selection that considers the
large-scale performance of the models in the regions of
interest, with a view to excluding those that are considered
very unrealistic, while also considering the effect on the
spread of models in the final subset of eliminating models
that perform poorly. We demonstrate the application of this
approach to the selection of 8—10 CMIP5 models that could
be used in generating climate information for three clima-
tologically diverse continental-scale regions of the world:
Southeast Asia, Europe and Africa.

Section 2 describes the rationale underlying the pro-
posed methodology. Section 3 describes the CMIP5 model
data used throughout. In Sect. 4 we explain the evalu-
ation criteria used, assess for each of the three regions
how well each of the GCMs generates key features of the
large-scale climate, before applying these results to make a
multi-regional decision on elimination in Sect. 5. Section 6
explores the subsequent selection of an ‘optimal’ subset of
8-10 of the remaining models in order to span most fully
the range of future outcomes. In Sect. 7 we discuss the ben-
efits and limitations of the approach proposed.

2 Selection rationale

The default ‘one-model-one vote’ approach to interpreting
ensemble projections can be considered to be precaution-
ary—that is, generally speaking, we cannot confidently
link the observed shortcomings in the realism of baseline
simulations directly to the plausibility of that model’s pro-
jections. Therefore when considering projections of future
change for planning and decision-making purposes, all
projections should be considered to have a non-negligible
likelihood of occurring. However, in the context of gen-
erating higher resolution projections for an increasingly
large ensemble of available GCMs, this is no longer a case
of ‘should we select?’, but now a question of ‘how should
we select?’; downscaling all the available projections so
that all may be considered is simply not an option for most
experiments, except perhaps those undertaken at the larg-
est climate centres or collaboratively. Given that selection
is desirable, the equivalent precautionary approach would
be to select based on a requirement to span the range of
outcomes most effectively, giving no consideration to each
model’s relative realism or the plausibility of its projec-
tions. Let us consider a hypothetical ensemble in which
1 out of the 20 available ensemble members (‘Model X’)
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Table 1 Decision making matrix for potential elimination of ensemble members

Model performance

Model projections

Outlier

Other models predict similar outcomes too.

Model suffers sufficient shortcoming that it signifi-
cantly reduce our confidence in its projections
(‘Implausible”’)

Model suffers significant shortcomings which we
cannot clearly link to confidence in its projections

Exclude: we should carefully document justi-
fication for this, however, as exclusion will
affect the range of outcomes

Include: we do not have strong enough evi-
dence to exclude these outcomes from the

Exclude: We can avoid using these models
without much affecting the range of
projected outcomes

Exclude: We can avoid using these models
without much affecting the range of

(‘Biases/Significant Biases’) projections

Model performance is satisfactory (‘Satisfactory’)  Include

projected outcomes

Include

displays a clear and distinct shortcoming compared with
the other 19 models, which leads us to have a consider-
ably reduced confidence in the plausibility of the projec-
tions from that model. In the situation that we can consider
all 20 models (i.e. we do not need to downscale) and we
choose to follow the accepted precautionary approach then
Model X contributes 1/20 of the results of the ensemble. If
we were to select 5 of those models with no reference to
any performance metrics, and happened to include Model
X, then Model X now contributes 1/5 of the results of the
ensemble. The inherent up-weighting of selected models
means that we must re-consider the precautionary approach
that results from our lack of confidence in discounting pro-
jections from models which perform less well in validation.

In reality, making decisions about elimination is diffi-
cult and often subjective. An earlier paper by McSweeney
et al. (2012) describes a two-stage approach whereby ini-
tially all models were assessed to ensure that they realisti-
cally reproduced key aspects of the regional climate, and
secondly, a subset of all remaining ‘plausible’ projections
was selected to span the range of outcomes in surface vari-
ables. However, we suggest that these decisions could be
restricted to only a few cases by combining our knowledge
about performance with some information about the future
projections to identify models which present key decisions.
Returning to our hypothetical ensemble of 20 models and
the poorly-performing Model X, we can also consider the
model’s position in the ensemble of projections. If Model
X sits well within the range of future projections compared
with other models, then we could easily avoid including
this model in favour of others which give similar projec-
tions, but in which we have more confidence, avoiding
the difficult question of whether the projection should be
considered implausible. A more significant decision arises
if the projections from Model X lie outside the range of
the rest of the ensemble; in this case we must make this
key decision based on our best knowledge. However, by
employing this approach we minimise the burden and
impact of this decision-making process.

This approach to the decision-making is summarised as
a matrix in Table 1. Here the key decisions occur in allocat-
ing a model its position on the y-axis between ‘implausible’
and ‘significantly biased’ if it is classed as an ‘outlier’. Our
criterion in this situation is that if it is clear that a model
fails to simulate a large-scale process that is a significant
driver of the climate of a region, for example extra-tropical
storm tracks or monsoonal circulations, then this model is
unlikely to correctly capture how global climate change
will manifest itself over the region. It may be unlikely, for
example, to represent realistically future changes in the
transport of heat or moisture resulting from climate change
into or out of the region. Where we find evidence of very
significant shortcomings of this nature in a model then we
feel it reasonable to class it as ‘implausible’ and elimi-
nate it. However, only these clearly justified process based
assessments are used to eliminate models. Other aspects
of performance, such as the realism of surface variables,
which may indicate shortcomings in key processes, but
may also reflect less significant errors such as coarse reso-
lution, are not eliminated outright, but classed as ‘biased’
or ‘significantly biased’.

The classification of model performance into the four
categories of ‘Implausible’, ‘Significantly biased’, ‘Biased’
and ‘Satisfactory’ allows us to assess models against a
range of criteria, including both quantitative and qualita-
tive assessments and with reference to results of our own
analyses as well as those which appear in the literature.
This classification scheme is designed to allow necessarily
subjective decisions to be made in a transparent way. We
use 4 classifications for model performance in this matrix,
allowing for 2 degrees of ‘biased’ and ‘significantly biased’
to reflect a range in performance, but also reflecting the
relative importance of some aspects over others. We apply
these classifications based on the framework described in
Table 2 (the criteria relevant to each region are discussed
further in Sect. 4). These criteria are based on the underpin-
ning principles for selection proposed in McSweeney et al.
(2012) based on guidance in Knutti (2010) as follows:
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Table 2 Ceriteria for performance categories

What might cause a model’s performance to be judged as...

Implausible Significant biases

Biases

Very unrealistic
representation of
a key large-scale
circulation fea-
ture e.g. where
lower tropo-
spheric flow in
a key region
is reversed
compared with
observations

be improved by downscaling

Very poor representation of a key circulation feature, but
where other models do not offer much improvement

Very unrealistic representation of a surface climate feature Substantial systematic biases—i.e. where the position and tim-
(e.g. the annual cycle of rainfall or temperature). The
poor representation of surface features may indicate a
failure in the large-scale circulation in the model, but
might also be a result of the restricted resolution or
parameterisation errors in the GCM and therefore could

ing of features are realistic but magnitude is inaccurate

Where particularly poor performance is indicated in external
literature but the assessment does not include all models that
we are selecting from

The model performs relatively less well than almost all other
models in the ensemble

Some necessary variables/fields that we have assessed for other
models are missing from the CMIP5 archive

Key aspects cannot be assessed due to missing data

1. Metrics and criteria for evaluation should be demon-
strated to relate to projection.

2. It may be less controversial to downweight or eliminate
specific projections that are clearly unable to mimic
important processes than to agree on the best model.

3. Process understanding must complement ‘broad brush
metrics’.

After the decision making framework is applied, and
models eliminated, a further selection process is required
in order to identify statistically the subset of n models
which best span the range of the remaining models. Fig-
ure 1 shows how the 3 stages of the selection process that
we describe compare with the simpler 2-stage process of
McSweeney et al. (2012).

3 CMIP5 model data

The coupled models analysed are listed in Table S1, where
the models for which 6-hourly atmospheric fields required
as lateral boundary conditions (LBCs) for dynamical down-
scaling are available are highlighted (29 of 43 analysed,
from hereon referred to as ‘LBC-Avail’). The experimen-
tal design of the CMIP5 experiment is described in Taylor
et al. (2012).

Our model validation assesses the historical simula-
tions of the period 1961-1990, while future changes are
based on the period 2070-2100 relative to 1961-1990 in
the RCP8.5 experiment in order to use projections with the
greatest potential signal compared to internal variability. In
all cases we use a single realisation. All fields are re-grid-
ded to a common 2.5° x 3.75° grid for all analyses except
those of the storm tracks assessment in section referred
to in Sect. 4.2 (see Hodges et al. 2011 for a full descrip-
tion of the storm tracking methodology employed) and the

@ Springer

teleconnections for Africa in Sect. 4.3 (See Rowell 2013,
for documentation of this analysis).

We analyse all models for which the relevant historical
and RCP8.5 variables are available, including those which
we do not have the option to select for downscaling. We
do this for several reasons. (1) The behaviour of all avail-
able models provides a useful benchmark for those models
which we can select. (2) It is possible that modelling cen-
tres have provided LBC fields only for their ‘better’ mod-
els, and the comparison might give us some impression of
this. (3) For the purposes of interpreting the scenarios gen-
erated by downscaling, it is useful to know whether the set
of models downscaled is representative of the full range of
CMIP5 projections, rather than just those for which LBC
data are available. A full set of evaluation figures available
in the supplementary information in order to all readers to
consult this information in their own selection studies.

4 Evaluation criteria and results

Our selection of evaluation criteria includes key aspects of
the large-scale climate of the regions (i.e. relevant to driv-
ing the high resolution downscaling) and also takes advan-
tage of specific CMIP5 regional assessments documented
in the existing literature. However, we note that for many of
these existing studies the analysis is limited to only a subset
of the LBC-avail models due to the lag in data availabil-
ity in the CMIP5 archive. An example of this is the thor-
ough evaluation of the Asian summer monsoon of Sperber
et al. (2013) in 25 of the CMIP5 GCMs. This limits our
scope to make use of this potential very valuable source of
information. We therefore note the outcomes of other stud-
ies where relevant, and use them as supporting evidence for
our model assessment, but we cannot rely on this evidence
alone to influence the selection of a model if the assessment
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Fig.1 The GCM selec-

tion process demonstrated in
McSweeney et al. (2012) (left)
compared with the approach
proposed in this paper (right)

1. Evaluate all models and
identify very unrealistic
models for elimination.

2

2. From remaining models ,
identify an optimal sub-set
to span range of future
outcomes

does not extend to all models. As the body of literature on
the assessment of CMIP5 models becomes more complete
over coming years and an increasing volume of well-docu-
mented processed-based evaluation results becomes avail-
able, in future it might be possible to undertake a thorough
selection exercise based solely on information available in
existing literature.

Our assessments combine the use of metrics with more
qualitative assessments (e.g. the visual inspection of clima-
tological fields). In order to combine this information into a
summary which can be used to make elimination decisions,
we assess all models on a 4-point qualitative scale for each
criterion, corresponding with our rationale described in
Sect. 2. Any aspects of the models behaviour identified as
‘biased’ (B), ‘significantly biased’ (SB) or ‘implausible’
(IP) are indicated in text where the relevant evidence is
described.

For each region, we assess the realism of the annual
cycles of rainfall against GPCP (Adler et al. 2003) and
CMAP (Xie and Arkin 1997) gridded datasets and annual
cycles of temperature against CRU (Mitchell and Jones
2005) observations. For this analysis we use 2 metrics
for each of several sub-regions in each region described
in Table 3 to describe (a) the pattern correlation of the
monthly average values with those in observations and (b)
the root mean square error (RMSE). We use these met-
rics to identify models for visual inspection by highlight-
ing the 5 lowest scores for each metric. It is not clear how
such metrics could be used solely to assess models due to
the complexities in identifying appropriate thresholds, or
indeed ensuring that these are useful metrics in every case,
but they allow us to reduce the amount of data required for
visual inspection. Judging the implications of the realism
of these surface variables for the credibility of the model is
more problematic—for example, given good representation

1. Evaluate all models and categorise poorer models
as ‘implausible’, with ‘significant biases’ or
‘biases’

U

2. Refer to each models future projections, and
complete decision making matrix to identify models
for exclusion

U

3. From remaining models identify optimal subset of
size n.

of synoptic-scale dynamics in a global model, downscal-
ing with a regional RCM may improve the representation
of poorly-resolved local surface characteristics. However,
in some cases, poor representation of the surface variables
may be an indicator of large scale deficiencies which would
be inherited by any RCM. We are also cautious of exclud-
ing models based on metrics where the underlying data
used to generate these observed climatologies is relatively
sparse or of poor quality and thus may not provide a good
estimate of the models’ performance. We therefore only
apply ‘biased’ or ‘significantly biased’ ratings to models for
characteristics of surface variables, reserving the ‘implau-
sible’ category for clear deficiencies in large scale features.

The following sections summarise the key aspects of cli-
mate analysed for each region, and the outcomes are sum-
marised in Sect. 4.4.

4.1 Southeast Asia

Following the methodology of McSweeney et al. (2012),
we look at the monsoon circulation as the main driver of
seasonal rainfall in the region, as well as extending this
analysis to include the north-east (winter) monsoon (Fig. 2)
as well as the south-west (summer) monsoon (Fig. 3).

A key detail of the north-east monsoon is the north-east-
erly near-surface flow (850 hpa winds) over the South China
Sea directing near-surface flow towards the Malaysian
peninsula. In many of the CMIP5 models, the flow in this
region has too strong an easterly component, such that flow
is directed more towards the coast of Vietnam rather than
further south towards the Malaysian peninsula—this is par-
ticularly true of the models inmcm4, MIROC-ESM, MIROC-
ESM-CHEM, NorESM-1-M and NorESM-ME (SB), and, to
a lesser extent, CCSM4, CNRM-CM5, HadGEM?2-ES and
HadGEM2-CC (B). The ‘significant biases’ and ‘biases’

@ Springer
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Table 3 Definitions of regions and sub-region

North South East West

Europe 725 35 25 —-10
UK UK 60 50 2.5 —10
Scandinavia SCA 725 55 25 5
Mediterranean MED 45 35 25 —10
W Europe WEU 55 35 175 —10
E Europe EEU 55 35 25 17.5
Africa 36 =35 53 -20
N Africa NAF 36 20 40 —20
W Sahel WSH 20 10 20 -20
E Sahel ESH 20 10 40 20
W Tropical Africa WTA 10 —-10 275 =20
Horn of Africa HA 15 —-15 53 27.5
Southern Africa SA —-10 =35 42 10
Southeast Asia (SEA) 25 —11 127 93
Continental SEA CSEA 25 7.5 110 93
Malaysia peninsula and MPS 7.5 —6 107 95
Sumatra
Java v -5 —11  127.5 105
Borneo BN 7.5 -5 125 107.5
New Guinea NG 0 —10 150 130
Phillipines PL 20 5 127.5 120

categories are used here because this is a relatively subtle
characteristic of the flow which may be corrected to some
degree in the higher-resolution RCM simulations.

Most models capture the observed broad-scale char-
acteristics of the south-west (SW) monsoon, i.e. that the
occurrence of strongest flow in the core of the Somali Jet
is clear, and flow is largely westerly across peninsular
India before diverting to a south-westerly flow across the
Bay of Bengal, westerly across continental southeast Asia
and finally turning directly southerly before reaching the
Philippines. While most models exhibit some variations on
these key features, MIROC-ESM-CHEM and MIROC-ESM
both have a monsoon flow which diverts to a southerly flow
before reaching continental southeast Asia, representing a
substantial deviation from the patterns observed. The impli-
cations of this unrealistic representation of the large-scale
characteristics of the SW monsoon in MIROC-ESM and
MIROC-ESM-CHEM is that representation of the charac-
teristics of flow over southeast Asia are particularly poor—
notably, the resulting flow over the South China Sea is pre-
dominantly north-westwards instead of north-eastwards as
seen in observations. We argue that this significant short-
coming suggests strongly that these models will be unable
to represent the potential implications of changes in the SW
monsoonal circulation in southeast Asia (Implausible—IP).

The model inmcm4 has an 850 hpa flow which is sig-
nificantly weaker than observations throughout the region,
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although the features are otherwise reasonably realistic
(Significant Biases—SB), while IPSL-CM5B-LR and MRI-
CGCM3 (SB) both have a very weak Somali jet combined
with flow over southern Asia which is predominantly west-
erly (compared with the observed flow which is southerly
around southern India and becomes south-westerly in the
Bay of Bengal).

Other models which demonstrate errors in the circu-
lation are MIROCS (flow is directed too southerly over
continental southeast Asia) (Biases—B), ACCESSI-3,
which underestimates the strength of the Somali jet (B),
and FGOALS-g2 and IPSL-CM5A-LR all have flow which
is significantly too westerly across the Bay of Bengal (B,
although we note that there are several other models which
offer only a marginal improvement in this characteristic).
All GISS models demonstrate a weak Somali jet and sub-
stantially too-strong southerly component of flow into the
Bay of Bengal (not rated as not an LBC-avail model).

The annual cycles of temperature demonstrate a warm
bias in most models (Fig. 4). The models bcc-csmi-1-m
(B) and ACCESS1-3 (B) have the largest warm biases, and
this is consistent across most sub-regions. EC-EARTH (B)
conversely demonstrates a cool bias throughout the region,
but significantly has a much weaker seasonal cycle of tem-
perature than observations. The models’ representations
of annual rainfall cycles are highly varied (Fig. 4). Whilst
most models capture the July—August peak in rainfall over
CSEA realistically (although with tendency to over-esti-
mate the magnitude somewhat), the seasonal cycles in other
regions such as MPS and BN are generally much poorer.
Because the performance in these two sub-regions is unre-
alistic in so many of the models, we cannot differentiate
enough between their performance to class any models as
having ‘biases’ for these regions. In other regions, models
which demonstrate particularly poor behaviour compared
to other models are MIROC-ESM (B) and MIROC-ESM-
CHEM (B), which capture the seasonal cycle poorly in JV
(not capturing the drier JAS period at all) and PL (peak
rainfall occurs in SON rather than JJA).

A thorough assessment of the monsoon and seasonal
rainfall characteristics for a set of CMIP5 and CMIP3
models can be found in Sperber et al. (2013) a number of
metrics describing the climatological and interannual/intra-
seasonal variability are presented. The study does not spe-
cifically endeavour to highlight the underperforming mod-
els as we do, but does observe that no individual model can
be identified as the ‘best’ considering all metrics, based on
an analysis which highlights the ‘best’ 5 models in each
category. We reverse their analysis of the listed metrics and
ask whether any model(s) can be identified as significantly
‘worse’ by identifying which of the models analysed have
the lowest scores. First, we identify those models with the
lowest 5 scores across both CMIP3 and CMIP5 ensembles,
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Observed ERA40 1979 98 DJF

15N

HadGEM2- ES 1961 -90 (B)

CNRM-CMS: 1961-90 (S)

45E 75E 105E 135E 45E 75E

MPI-ESM-LR: 1961 -90 (S)

I 15N

105E 135E 45E 75E 105E 135E

NorESM1-M: 1961-90 (SB)

15N

45E 75E 105E 135E 45E 75E

105E 135E 45E 75E 105E 135E

12 15 18 21

DJFAverage 850hPa Windspeed (m/s)

Fig. 2 The north-east (winter) Asian monsoon circulation in 850 hpa flow for ERA40 reanalyses (Uppala et al. 2006) and a sample of CMIP5
models. For equivalent plots for all available CMIP5 models see figures S1(a) and S1(b) in the online supplementary material

and then ask (1) are these lowest scores significantly lower
than the scores for the majority of other models and (2)
are other scores close to the values found for lowest scor-
ing models, which should therefore be treated similarly?
Those models with particularly low scores for any of the
indices were assessed as having ‘biases’, as errors in their
representation of present-day variability of the monsoon
imply that they are unlikely to represent future change in
monsoon variability realistically (The limited scope of this
study to a set of available CMIP5 models means that we
use only the ‘biases’ category). Values for selected metrics
most relevant to this study are listed in Table 4.

The skills scores that describe the model climatol-
ogy include the spatial pattern correlation of rainfall and
850 hpa flow with observations and a suite of metrics
describing the annual cycle of rainfall including onset,
peak, withdrawal and duration. We do not use these scores
to contribute to our analysis due to the overlap with char-
acteristics we have already assessed, but cite the outcomes
here as supporting evidence. The lowest scoring CMIP5
models for these climatological metrics were found to be

MIROC-ESM, MIROC-ESM-CHEM and MRI-CGCMS3.
The two MIROC models scored badly on pattern correla-
tion between model and observed precipitation and 850 hpa
(as expected given our observations that the 850 hpa flow
does not extend far enough east) and MRI-CGCM3 scored
badly on almost all metrics reflecting the annual rainfall
cycle (this model was also identified as one of the worst
models in our analysis of annual cycles of rainfall (Fig. 4)
but we noted that it did not perform significantly worse
than other CMIP5 models).

The indices relating to interannual variability provide
an assessment of aspects of the model behaviour that we
have not already assessed. Sperber et al. calculate the tem-
poral correlation between anomalies of All-India Rainfall
(AIR) and the Nino3.4 index, finding that only 11 of the
25 CMIPS5 models simulate a statistically significant anti-
correlation (whilst the observed relationship in observed
datasets is around —0.5, bounds of —0.3 to —0.75 reflect
inter-decadal range of values). CMIP5 models with low
scores were MIROC-ESM, inmcm4,FGOALS-g2, GISS-
E2-H and MIROC-ESM-CHEM (B). Sperber et al. also
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Fig. 3 The south-west (summer) Asian monsoon circulation in 850 hpa flow for ERA40 reanalyses and a sample of CMIP5 models. For equiva-

lent plots for all available CMIP5 models see figures S2(a) and S2(b)

calculate the pattern correlation between anomalies of
Nino3.4 and the AIR index. The strong positive correla-
tion of 0.79 indicated by observations is underestimated
by most models, with models bcc-csm-1, CanESM?2,
HadGEM?2-CC, MIROC-ESM, MIROC-ESM-CHEM and
MIROCS demonstrating very low or weakly negative cor-
relation (B).

A further pair of indices describes the interannual vari-
ability associated with the east Asian summer monsoon,
calculated by regressing the June—August Wang—Fan
(WFN) zonal wind shear index (Wang and Fan 1999)
against anomalies of observed rainfall and 850hpa wind.
One CMIP5 model clearly behaves less realistically than
the others with a negative pattern correlation of rainfall
anomalies—inmcm4 (B), whilst all other models captured
the observed positive correlation. Correlations between
850hpa wind anomalies were consistently positive and
above 0.65 in CMIP5 models, such that lowest values
were not considered to be significantly lower than values
for other models.
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4.2 Europe

European weather and climate is dominated by the pas-
sage of frontal systems, dominantly from the south west.
The passage of these systems (the North Atlantic storm
track) is sensitive to the local atmospheric dynamics (for
example, the position of the jet stream, the impact of block-
ing anticyclones which disrupt the path of these systems,
and, on inter-annual to multi-decadal timescales, the North
Atlantic Oscillation) as well as ocean currents, specifically
the Gulf Stream. While current models simulate European
climate with considerable skill, common errors such as a
tendency to underestimate blocking frequencies (Woollings
2010) highlight limitations that should be considered when
interpreting their projections. We assess the models’ repre-
sentation of the large scale climatological flow at 850 hpa,
the position and frequency of storm tracks and the annual
cycles of surface temperature and precipitation in order to
identify large scale behaviour in the models which is repre-
sented too poorly to be considered credible.
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The climatological seasonal circulation is shown in
Figs. 5 and 6. The stronger winter flow is often more west-
erly in models than is observed—this is most notable in
models ACCESSI-3, bcc-csml-1, BNU-ESM, CanESM?2,
CCSM4, CSIRO-mk3-6-0, FGOALS-g2, IPSL-CM5A-LR,
NorESM1-M and NorESMI-ME (B). In several models
the region of strongest flow sits considerably too far south
towards Spain and the Mediterranean rather than the UK—
this is particularly so in FGOALS-g2 and CSIRO-mk3-6-0
(SB).
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and metrics do not lie in lowest 5, pale-grey dotted line, models are
not LBC-avail and do not have metrics in lowest 5. Black observa-
tions from CRU (temperature) and GPCP and CMAP (precipitation)
datasets

During summer the flow is weaker and more westerly,
which is replicated by most models. However, in FGOALS-
g2, the flow remains significantly too far south, such that
there is no clear westerly flow across the UK (SB) and in
IPSL-CM5B-LR and MIROCS, there is no clear westerly
flow across Europe from the Atlantic (IP) (this is also the
case for all 4 GISS models, but these are not rated as are
not LBC-avail).

Storm frequency in the Northern Hemisphere mid-lati-
tudes is shown for zonal means in Fig. 7 for CMIP5 models
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Table 4 Indices of summer monsoon variability for CMIP5 models
from Sperber et al. (2013)

Indian Monsoon E. Asian Summer Monsoon
AIR/N34  Pr pattern corr Pr 850hpa
Observations | —0.533 0.798 0.959 0.989
BCC-CSM-1 | —0.250 —0.140 0.695 0.93
CanESM2 | —0.273 0.014 0.672 0.861
CCSM4 | —0.556 0.337 0.789 0.947
CNRM-CM5 | —0.307 0.245 0.642 0.894
CSIRO-MKk3.6.0 | —0.487 0.162 0.346 0.858
FGOALS-g2 | —0.052 0.238 0.739 0.936
GFDL-CM3 | —0.442 0.192 0.315 0.867
GFDL-ESM2G | —0.289 0.251 0.458 0.972
GFDL-ESM2M | —0.187 0.251 0.606 0.955
GISS-E2-H | —0.094 0.254 0.586 0918
GISS-E2-R | —0.366 0.379 0.656 0.906
HadCM3 | —0.299 0.180 0.773 0.897
HadGEM2-CC | —0.335 —0.068 0.787 0.935
HadGEM2-ES | —0.344 0.216 0.839 0.949
INM-CM4 | —0.033 0.110 —0.047 0.816
IPSL-CM5A-LR | —0.700 0.611 0.450 0.708
IPSL-CM5A-MR | —0.763 0.636 0.532 0.749
MIROC-ESM | 0.088 0.061 0.596 0.694
MIROC-ESM-CHEM | —0.104 0.045 0.687 0.882
MIROC4h | —0.327 0.529 0.723 0.921
MIROC5 | -0.321 0.010 0.567 0.946
MPI-ESM-LR | —0.291 0.401 0.283 0.899
MRI-CGCM3 | —0.274 0.338 0.819 0.937
NorESM1-M | —0.690 0.522 0.811 0.959

Values in bold and italics are those which lie in the lowest 5 across
all CMIP3 and CMIP5 models studied, values in italics were close
to those found in the ‘lowest’ models. Highlighted in grey are those
models which were allocated a ‘biases’ rating as a result of these
indices. ‘AIR/N34’: Correlation between anomalies of Nino3.4 index
and All-India rainfall. ‘Pr Pattern Corr’: Spatial correlation of JJAS
precipitation anomalies obtained from regression with the Nino3.4
SST. ‘E.Asian Pr’: Negative of Wang—Fan zonal wind shear index
regressed against JJA precipitation anomalies. ‘E.Asian 850 hpa’:
Negative of Wang and Fan (1999) zonal wind shear index regressed
against JJA 850 hpa wind anomalies

and ERA-Interim storm tracks identified using TRACK
(Hodges et al. 2011). Observations indicate a clear tri-modal
pattern with peaks in storm tracks at around 40 N (Medi-
terranean), 55-60 N (northern Europe) and 70 N (Arctic
Circle). Most models overestimate the number of tracks in
southern Europe (the ‘trough’ in between the Mediterranean
and northern Europe peaks) and under-estimate the number
of tracks northern-most latitudes, but most broadly capture
the tri-modal pattern. Five models clearly behave less realis-
tically than others, mis-representing this geographical distri-
bution in all seasons—MIROC-ESM, MIROC-ESM-CHEM,
FGOALS-g2, BNU-ESM and bcc-cmsi-1 (IP).

The annual cycles of precipitation and temperature
(Fig. 8) show a notable negative bias in IPSL-CM5B-LR
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(SB) in winter months of around 5 degrees in UK and Scan-
dinavia. In the case of the IPSL-CM5B-LR cool bias, this
takes the winter temperature well below 0 °C over the UK,
and is therefore likely to have significant implications for
the extent of sea-ice in the northern oceans (SB). All three
IPSL models demonstrate poor realism of the annual cycle
of rainfall in most regions, but particularly MED, WEU and
EEU, where erroneous peaks in JJA rainfall occur (B).

4.3 Africa

The wide range of climate conditions encountered across
Africa are strongly influenced by the seasonal migra-
tion of the Inter-Tropical Convergence Zone (ITCZ) and
the associated seasonal rainfalls. For example, the west-
African monsoon brings rainfall to the southern coast of
west Africa and into the Sahel in summer months. The
climate of many regions is affected by strong interannual
variability; teleconnections with major modes of variabil-
ity in sea-surface temperatures (SST) such as ENSO and
the IOD are found in observations, and are described in
greater detail in Rowell (2013). The three key aspects of
African climate that we assess here are the west African
monsoon circulation, the climatological annual cycles of
temperature and precipitation for African sub-regions and
key teleconnections.

Mapped 850 hpa flow indicates that most models cap-
ture the significant features in the flow during DJF (not
shown) and JJA (Fig. 9). One aspect where we can dif-
ferentiate between the models is their ability to capture
the west African monsoon—the reversal of flow onto the
west-African coast from the south and west during JJA.
While there is considerable variation in the strength and
direction of this return flow, it is notable that the feature
does not appear at all in any of the three /PSL models or
MRI-CGCM3 (as well as non LBC-avail models GISS-
E2-H, GISS-E2-R-CC, GISS E2-H-CC, and FIO-ESM)
(SB). We further note that the flow across the African
region is exaggerated in magnitude in MIROC-ESM and
MIROC-ESM-CHEM (B).

Assessing the annual cycles of rainfall and tempera-
ture, models tend to simulate, on average, too much rain-
fall, and average temperature tends to be too cool (Fig. 10).
The three /PSL models and EC-EARTH suffer the largest
cool biases (although these are not significantly larger than
in other models). Sub-regionally, EC-Earth shows particu-
larly large cool biases in the two Sahel sub-regions ESH
and WSH and WTA (B). Rainfall realism is very mixed. In
the Sahelian regions, models can overestimate peak rain-
fall by 100 % (e.g. GFDL-ESM2G, GFDL-ESM2 M mod-
els, CSIRO-mk3-6-0, in WSH, and MROCS5/MIROC-ESM-
CHEM in ESH), or similarly underestimate by almost 80 %
(e.g. MRI-CGCM3, inmcm4 in WSH, B). Most however,
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Fig. 5 Winter 850 hpa flow for ERA40 reanalyses and a sample of CMIP5 models for Europe. For equivalent plots for all available CMIP5

models see figures S3(a) and S3(b)

replicate the timing of the rainfall reasonably, with the
notable exception of FGOALS-S2 (rainy season is late in
both ESH and WSH, B), NorESM-1 (flat peak in both WSH
and ESH, B) and bcc-csmi-1 which has no peak JJA rain-
fall in ESH (B). For other regions, WTA, HA and SA per-
formance is mixed and no models emerge as significantly
‘worse’ than others.

In Table 5 we draw on results of an assessment of 36
key teleconnections affecting Africa manifest as 6 coher-
ent rainfall anomalies with statistically significant cor-
relations to one or more of 6 modes of sea surface tem-
perature (SST) variability (Rowell 2013). The results are
summarised for each model as the proportion of those
teleconnections that do not differ significantly from those
observed at the 10 % level. This metric therefore incorpo-
rates information from a range of teleconnections, includ-
ing whether the models correctly replicate the lack of
relationship between some of the SST modes and regional
rainfall. The five models with the lowest overall scores are
CanESM?2, IPSL-CM5A-LR, INMCM4, IPSL-CM5B-LR
and CMCC-CMS (B).

5 Completing the decision-making matrix for model
elimination

Having assessed the models against a range of criteria in
each region, we summarise this information to provide an
overall outcome across the three regions (Table 6). The
overall outcome is allocated based on (a) the lowest rating
across all criteria assessed and (b) whether those low rat-
ings are given based on more than one of the sub-regions,
according to the following criteria:

e Implausible: Must score ‘implausible’ in at least one
region and at least ‘significant biases’ in another.

e Significant biases: Scores ‘implausible’ in one region,
but not in any others; or, scores ‘significant biases’ in
one or more regions, and/or biases in another region.

e Biases: Scores ‘significant biases’ in just one region, or
‘biases’ in 2 or more regions.

It is clear that the performance of models varies
between regions, and that applying an ‘overall’ score on a

@ Springer



3248

C. F. McSweeney et al.

CanESM2: 1961-90 (S)

JJAAverage 850hPa Windspeed (m/s)

Fig. 6 Summer 850 hpa flow for ERA40 reanalyses and a sample of CMIP5 models for Europe (see For equivalent plots for all available

CMIP5 models see figures S4(a) and S4(b)

multi-region basis using the above criteria involves making
some compromises on the outcomes for individual regions.
Notably, we do not exclude all models which contain
an ‘implausible’, only those for which there is evidence
of ‘significant biases’ or ‘implausible’ characteristics in
another of the three regions.

Note that for models EC-EARTH and FGOALS-g2 their
overall scores are lowered by a category reflecting the fact
that the 850hpa wind components were not available at
the time of analysis. We now combine this with informa-
tion about the projections in order to complete our decision
making matrix Table 1).

We can gain an impression of the projections from the
ensemble, and each models position within the ensem-
ble using scatter plots of the change in mean tempera-
ture between the two 30 year periods of 1961-1990 and
2070-2099 under RCP 8.5 (AT) and similarly the change
in mean precipitation (AP) (Fig. 11). Further, in order to
capture the variations in spatial patterns of precipitation
change within each region, we follow the methodology
used in McSweeney et al. (2012) by calculating the pattern
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correlation between the AP fields from each model with
that of the ensemble median AP, providing an indication of
whether the spatial patterns of change are ‘typical’ (highly
correlated with ensemble mean) or ‘atypical’ (lowest or
anti-correlation with the ensemble mean change). This is
plotted against the root-mean-square of the precipitation
change, representing the average magnitude of rainfall
response (Figure S6).

Amongst the ‘implausible’ models that are excluded
based on performance, we see that MIROC-ESM and
MIROC-ESM-CHEM can be identified as ‘outliers’ over
Europe in JJA and SON (the warmest and wettest projec-
tions), and also in Africa in JJA as the wettest (Fig. 11).
The remaining model classed as ‘implausible’, IPSL-
CM5B-LR, does not lie outside the ensemble range in any
of our analyses (Fig. 11). So the implication of exclud-
ing these models is greatest for Europe and Africa. For
Europe we exclude projections with the largest precipi-
tation increases in summer and autumn, but given the
poor representation of the geographical distribution of
the storms with which a large proportion of the European
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Fig.7 Zonal mean storm track density in the CMIP5 models
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CMIP5 models for Europe and its sub-regions (see Table 3 for sub-
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LBC-avail. Dark grey ‘dash-dot’ one of the metrics lies in the lowest

rainfall is associated, we argue that excluding these mod-
els, and therefore narrowing the range of projections is
justifiable. For Africa, the elimination of these models
does narrow the range of projections in one season (JJA)
slightly.

@ Springer

UK CMIP5 Temp UK CMIP5 Precip

20— —— — g
Py
o
o
b
a
£
E
or 1 3
JFMAMJJASOND JFMAMJJASOND
Mediteranean CMIP5 Temp Mediteranean CMIP5 Precip
4F 3
25
3l
20 g
g 2
15 a
£
E 1
10
o, 4
5

JFMAMJJASOND JFMAMJJASOND

Eastern Europe CMIPS Temp Eastern Europe CMIPS Precip
of T T
4F 3
3k E
>
g
P g 2
o a
a
£
0
HadGEM2—ES
ACCESS1-0 GFDL—ESM2M
ACCESS1-3
bee—esm1-1
bce—csm1—-1-m
BNU—ESM HadGEM2-CC
inmcm4
IPSL—CM5A—MR
CMCC—CM
CCSM4 MIROC5
MIROC—ESM
FGOALS—g2
GFDL—CM3 NorESM1—M

5, but data are not LBC-avail. Pale grey solid line Models are LBC-
avail and metrics do not lie in lowest 5, pale-gray dotted line, models
are not LBC-avail and do not have metrics in lowest 5. Black Obser-
vations from CRU (temperature) and GPCP and CMAP (precipita-
tion) datasets

Among the models identified as having ‘biases’ and
‘significant biases’, inmcm4 frequently lies at one end
of the ensemble range, consistently projecting the least
warming in almost all regions and seasons. In Europe this
model also gives the driest projections, whilst in SEA it
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Fig. 9 Summer 850 hpa flow for ERA40 reanalyses and a sample of CMIP5 models for Africa. For equivalent plots for all available CMIP5

models see figures S5(a) and S5(b)

tends to project amongst the wettest (Fig. 11). Change in
rainfall projections from the model inmcm4 also appear to
show relatively low correlations with the ensemble mean
change particularly for Africa (Figure S6). BNU-ESM
is out-lying amongst projections for Europe suggesting
drier projections than most other models (notably in DJF
it is the only model to project negative mean precipitation
change), and also indicates amongst the largest increases
in rainfall for Africa in JJA and SON (this is important
given that models MIROC-ESM and MIROC-ESM-CHEM
have similar projections but are considered ‘implausible’
do to their poor performance in other regions). IPSL-
CM5A-MR and IPSL-CM5A-LR tend to behave similarly
to one another in future projections and for southeast Asia
comprise the models with the largest temperature and pre-
cipitation increases annually. We therefore exclude only
one of these IPSL models and we retain IPSL-CM5A-MR
with a ‘biases’ rating in preference to LR which has a ‘sig-
nificant biases’ rating. CSIRO-mk3-6-0 is an outlier as a
model projecting drying in southeast Asia. We therefore
retain four models classed as having ‘biases’ or ‘significant

biases’—CSIRO-mk3-6-0, BNU-ESM, IPSL-CM5A-MR
and inmcm4.

The remaining models with ‘biases’ or ‘significant
biases’— bcc-csm-1, CanESM?2, EC-EARTH, FGOALS-g2,
IPSL-CM5B-LR, NorESM1-M and MPI-ESM-LR—do not
lie outside the range of outcomes according to our analy-
sis, and therefore we conclude that we can exclude these
models. These outcomes are summarised in the completed
decision-making matrix (Table 7).

6 Sampling ranges of future projections
6.1 Sampling methodology

In order to identify the ‘optimal’ sample of n models from
the remaining 16 models which are both LBC-avail, and
have not been rejected as a result of analysis in Sect. 4,
we explore how randomly selected samples span the range
of outcomes across the 3 regions and all seasons. While
we have a remit to select 810 models, it is useful to
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understand the potential added benefit of additional mod-
els, or how well a smaller subset might perform, so we
explore values of n between 3 and 13.

For each value of n, we randomly sample 500 unique com-
binations of n models, and calculate the fraction of the range
of changes in surface temperature and precipitation that are
spanned by the subset at each 3.75 x 2.5° grid-cell. This
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metric is from hereon described as the Fractional Range Cov-
erage (FRC). A regional average of the FRC is calculated for
each season, and annually. The range of regional FRC values
at each sample size is shown in Fig. 12. As would be expected,
for smaller sample sizes, the range of coverage varies more
with sample, highlighting the greater need for careful selection
when the number of models to be downscaled is very small.
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Table 5 Summary of CMIP5 model representation of key telecon-
nection relationships in Africa

Model Number of Teleconnections
represented (of 36)
MPI-ESM-P 30
HadGEM2-AO 29
GFDL-ESM2G 29
NorESM1-ME 29
MPI-ESM-LR 29
HadGEM2-CC 29
MPI-ESM-MR 28
MIROCS5 28
HadGEM2-ES 27
ACCESS1.0 27
BNU-ESM 26
ACCESS1.3 26
bce-csml-1-m 25
CMCC-CESM 25
NorESM1-M 25
IPSL-CM5A-MR 25
GISS_MODEL-E-R 25
GFDL-CM3 24
FIO-ESM 24
CMCC-CM 24
MIROC-ESM 24
MIROC-ESM-CHEM 24
FGOALS-g2 24
CNRM-CM5 24
bce-csml-1 23
CSIRO-Mk3.6.0 23
GISS-E2-R 22
GISS-E2-H 22
GFDL-ESM2M 22
MRI-CGCM3 22
CMCC-CMS 21
IPSL-CM5B-LR 20
INM-CM4 20
IPSL-CM5A-LR 19
CanESM?2 19

After Rowell (2013). The lowest scoring 5 models are highlighted in
italics

Typically, a sample size of 8-10 of the remaining 16
models yields a precipitation FRC value of around 0.9-0.95
in the ‘best samples’ (i.e. the top whisker for each sample
size) in the SEA and Europe regions and can be as low as
0.85 for Africa (the lower values for this region may reflect
it relatively large size); the equivalent FRC for temperature
is 0.95-1.0 for all regions. In a smaller sample of models
(5-6) these values drop to around 0.75-0.9, and 0.7-0.85
for precipitation (SEA/Europe and Africa, respectively) and

remain high at above 0.95 for temperature across regions
SEA and Europe, and around 0.9-0.95 for Africa. Maxi-
mum FRC across samples at each size reaches close to 1.0
for temperature when n = 8-10, but for precipitation only
when nis 12 or 13.

6.2 How well do the optimal n models span the range
of outcomes?

For each sample size, region and season, the upper
whisker of the box-plots might be considered to represent
the optimal subset of that size, for that specific region and
season. However, here we require a single sample at each
size which provides the greatest average FRC across all
regions, seasons and both variables. In order to identify
an optimal sample we normalise the fractional-coverage
values at each grid-cell by the mean and standard devia-
tion of the 500 samples for each value of n (Normalised
Fractional Range Coverage—NFRC), and re-calculate the
regional averages. Each sample thus has a score which is
the averaged NFRC across all regions, seasons and the 2
variables. Due to the lesser probability of capturing the
range of changes in precipitation compared with tempera-
ture noted above, the precipitation values were weighted
x2 compared with those for temperature. The ‘optimal
sample’ for each value of n is simply the sample with the
largest average NFRC.

An optimal sample might be that which gives the best
coverage over a region, multiple regions, or globally. We
may find a lower level FRC for each region within the
pan-regional or global optimal samples than in the optimal
sample chosen specifically for that region, and all three val-
ues are indicated in Fig. 12. Note that our remit here is to
identify a set specifically for the 3 regions (the pan-regional
optimum), but we explore the implications of extending
this to a global optimum for context.

The loss of FRC for any region that is incurred by broad-
ening our requirement for an optimum from the regional to
pan-regional, and then to satisfy a global range is explored
here. The pan-regional ‘optimal sample’ typically achieves
a value for each region, season and variable well-within
the upper quartile of the 500 samples. Extending our opti-
misation criteria to a global generally leads to a small loss
of fractional range coverage at each region, as would be
expected. This reduction is relatively larger in temperature
than for precipitation; for temperature, there is relatively lit-
tle loss in FRC between the regional and pan-regional opti-
mal sample, and then a greater loss between pan-regional
and global. This is reversed for precipitation, where we see
a greater disparity between regional and pan-regional than
between pan regional and global, which reflects the dif-
ferences in the spatial characteristics between rainfall and
temperature.
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Table 6 CMIP5 model
performance summary South East Asia Europe Aftica
s v s )
o — o 2
%. - 8 o - - g E § § 5\, a. § 8'\ Overall
89=2 588 82 4|82 =S| & = D=
2 2S5 E3 E28|2 8l 2 sS85, 272
g2 EZ E28|=5 B E Ec | <8 EZ
SSS | 58 582 |&~8 & 8 g 5 O
Z2<8 a2 a=5|c0§ O|a <% |B|rOE
ACCESS1-0 ACCESS1-0
ACCESS1-3 ACCESS1-3
bee-csml-1 bee-csml-1
bee-csm1-1-m ee=gsinl-=l-
m
BNU-ESM BNU-ESM
CanESM2 CanESM2
CCSM4 CCSM4
CMCC-CM CMCC-CM
CNRM-CMS5 CNRM-CM5
CSIRO-Mk3-6- CSIRO-
0 Mk3-6-0
EC-EARTH EC-EARTH*
FGOALS-g2 FGOALS-g2
GFDL-CM3 GFDL-CM3
GFDL-
GFDL-ESM2G ESM2G
GFDL-
GFDL-ESM2M ESM2M
HadGEM2-CC HadGEM2-
CcC
HadGEM2-ES HadGEM2-
ES
inmemé4 inmemé4
IPSL-CM5A- IPSL-
LR CMSA-LR
IPSL-CM5A- IPSL-
MR CM5A-MR
IPSL-CM5B- IPSL-CM5B-
LR LR
MIROCS MIROCS5
MIROC-
MIROC-ESM ESM
MIROC-ESM- MIROC-
CHEM ESM-CHEM
Colours signify aspects of MPI-ESM-
performance identified as LAUHBEIHES LR
‘Satisfactory’ (green), ‘Biases’ MPI-ESM-
(Yellow), ‘Significant Biases’ MIBES LIS MR
(Orange) and ‘Implausible’ MRI-CGCM3 MRI-
(Pink). Grey shading indicates CGCM3
that the? data were nqt available Nor-ESM1-M Nor-ESM1-
at the time of analysis M

Typically, the FRC values that we expect to find for a
regional-optimum sample of 8-10 models is 0.9-0.95 in
precipitation, dropping to 0.8-0.9 in a pan-regional or
global-optimal sample (FRC values are consistently a little
lower than these for Africa). For temperature, the regional,
pan-regional and global optima are all above or close to
0.95.

@ Springer

At the other end of the range of sample FRC values, we
can see that, conversely, if we were to choose our sample
randomly rather than optimising our selection, the range of
values we can expect to capture in our random sample var-
ies widely. Particularly at small sample sizes (e.g. 5), we
have a high probability of capturing a very reduced range
of outcomes—the median FRC value across all randomly
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Fig. 11 Scatter plots indicating regional average change in mean
temperature and precipitation for all 3 major regions. Models shown
are those for which monthly temperature and precipitation data were
available for historical and RCP8.5 simulations up to 2100. Colours

Table 7 Decision-making matrix for model selection

indicate the overall outcome from model validation, whereby pink
‘implausible’, orange ‘significant biases’ and yellow ‘biases’. Grey
models are not LBC-avail, remaining models are shown in black

Outlier Other models predict similar outcomes
Model suffers sufficient shortcoming that it significantly reduce MIROC-ESM IPSL-CM5B-LR
our confidence in its projections (‘Implausible’) MIROC ESM-CHEM
Model suffers significant shortcomings which we cannot clearly inmcm4 ACCESSI-3
link to confidence in its projections (‘Biases/Significant Biases’) BNU-ESM bce-csmli-1
CSIRO-Mk3-6-0 CanESM?2
IPSL-CM5A-MR EC-EARTH
FGOALS-g2
IPSL-CM5A-LR
MIROCS
MRI-CGCM3
NorESM1-M
Model performance is satisfactory (*‘Satisfactory’) HadGEM2-ES GFDL-CM3
ACCESSI1-0 GFDL-ESM2G
bee-csml-1-m GFDL-ESM2M
CMCC-CM HadGEM2-CC
CCSM4 MPI-ESM-MR
CNRM-CM5 MPI-ESM-LR

Rejected models are highlighted in italics
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Fig. 12 Boxplots indicating the fraction of the range of outcomes
(FRC) by the 2080s under RCP8.5 spanned by 500 samples of n
models, where n is 3—-13 (out of an available 16 models which are
both LBC-avail and have not been excluded for poor realism). Box-
plots depict the median, and inter-quartile range of the 500 samples,

selected samples is around 0.6-0.7 indicating that approxi-
mately 50 % of samples we might choose would yield FRC
values lower than this.

We note that in this stage scores might be weighted
similarly in order to prioritise other aspects of change—for
example, to prioritise one season if it is more relevant to
impacts studies. In this case, however, our remit is broad so
all seasons are weighted evenly.

For our preferred sample size (n = 8), we show the geo-
graphical coverage of the pan-regional optimal sample in
Figs. 13 and 14, and a summary of the regional-average
change in Fig. 15. Figure 13 demonstrates near-complete
coverage of the range of projections in temperature (>0.9)
quite consistently throughout the region, exceptions are
small and scattered, with no large coherent regions of
poorer coverage. For precipitation (Fig. 14) the gaps in cov-
erage are larger and some are coherent, but this is expected
due to lower average coverage and higher spatial variability
of changes in rainfall. A region of lower FRC is evident in
the south-east corner of the SEA region in SON.

Figure 15 shows the coverage of regional-average
changes by the pan-regional optimal set of 8§ models. We
can see that although the range of outcomes is almost fully
covered by the set in most regions and seasons, the selected
set notably excludes the only available and not excluded
model (CNRM-CM5) that indicates increases in European
rainfall in JJA. We might therefore recommend the addition
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with whiskers indicating the full range. Filled circles indicate the
sample identified as ‘optimal’ across all 3 regions and 4 seasons,
square optimal sample for each region across all seasons and cross
indicates the globally optimal sample. Pink temperature, blue precipi-
tation. Examples shown for seasons DJF and JJA

of this model in order to capture this range more fully, thus
recommending the use of a set of 9 models for studies in
these regions.

7 Discussion and conclusions

We have demonstrated a methodology for selecting a set of
available GCMs which (a) avoids including models which
are least realistic and (b) simultaneously captures the maxi-
mum possible range of changes in mean temperature and
precipitation for three continental-scale regions. Such a
subset should represent the full range of GCM-simulated
future climate outcomes sufficiently well to provide a set
of projections for any of the three regions that, while based
on a smaller number of models, still provides sufficiently
representative ranges of future climate outcomes to remain
policy-relevant.

Using a set of GCMs rather than the full ensemble might
be considered a compromise required due to resource limi-
tations for downscaling. However, we demonstrate that a
strategically selected set of models can capture a representa-
tive range of changes in mean temperature and precipitation.
We also identify models which are less realistic and we can
avoid including in our subset without affecting the range of
outcome significantly. In only a few cases do we eliminate
models which are outliers affecting the range of outcomes.
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EUROPE DJF , Temp SEA DJF , Temp AFRICA DJF , Temp

AFRICA JJA , Temp

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fraction of range of available ensemble covered

Fig. 13 Fraction of the range of projections in temperature spanned by the selected 8-member subset across each of the 3 regions and seasons
DJF and JJA

EUROPE DJF , Precip SEA DJF , Precip AFRICA DJF , Precip

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fraction of range of available ensemble covered

Fig. 14 Fraction of the range of projections in precipitation spanned by the selected 8-member subset across each of the 3 regions and seasons
DJF and JJA

The criteria we have applied in selection has necessar-  source of assessing models, and help to reduce the volume
ily included a number of subjective (judgement-based)  of information that we assess by summarising important
decisions. The use of metrics can provide an objective  aspects of model behaviour in one or two indices. However,
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difficulties in identifying meaningful indices mean that
these metric-based approaches may not provide all of the
information that might be useful and in data-sparse regions
may not give a good guide to model performance. Further
subjectivity is introduced in such approaches by the defi-
nition of thresholds for ‘good/bad’ models, or appropriate
weighting schemes, as well as the choice of metric used.
Here a combination of metrics and assessment by visual
inspection of mapped fields has been used. Assessing by
visual inspection allows us potentially to identify a wide
range of characteristics of error, but introduces a high level
of subjectivity. We manage this subjectivity by clearly jus-
tifying decisions with clear lines of evidence in order to
make these decisions transparent.

Our assessment has also necessarily been limited to a
restricted number of criteria as it is not feasible to under-
take full assessments of all CMIP5 models. As an increas-
ing body of literature on both the performance and pro-
jections of CMIP5 models emerges, others will be able to
draw on a wider range of well documented evidence for
selection. Efforts to gather and share well-documented
metrics from CMIP5 models, such as those currently being
undertaken by the WCRP Climate Model metrics Panel,
could provide a valuable basis for the informed selections
which are likely to become an increasingly important stage
in the development of regional climate change projections.

Linking the baseline behaviour of a model to the cred-
ibility of its projections remains a key difficulty in consid-
ering elimination or downweighting of ensemble members.
It is notable that those models which have a tendency to
show less realistic behaviour are often those for which
projections lie on the margins of, or outside the, range of
the majority of the ensemble (for example, MIROC-ESM,
MIROC-ESM-CHEM, inmcm4, IPSL-CM5A-LR and BNU-
ESM are all models which were flagged with ‘implausible’
or ‘significant biases’ ratings). This methodology provides
a useful mechanism for flagging these cases for further
investigation, but there is clearly potential for deeper scien-
tific investigation into the plausibility of these projections.

The process of systematically assessing models’ base-
line behaviour before downscaling has the further benefit of
providing very useful contextual information for interpre-
tation and appropriate application of the projected changes
for the region(s) of interest. We know that some aspects of
climate are poorly represented in all models due to com-
mon errors—for example, Hung et al. (2013), find spatial
characteristics of the Madden Julian Oscillation are poorly
represented in all but one CMIP5 model, which mean that
we can have only limited confidence in their representation
of intra-seasonal variability for tropical regions affected by
this feature. While common deficiencies such as this may
not provide information that is useful for differentiating
between models for selection, their identification as a part
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Fig. 15 The range of regionally-averaged projections in precipita- p
tion and temperature spanned by the selected 8-member subset across
each of the 3 regions and all seasons. Blue selected models, Black
available models not selected, Grey models which were not consid-
ered for inclusion because they were either eliminated on grounds of
performance or were not LBC-avail

of the selection process may lead to improved understand-
ing of the limitations of all of the available climate projec-
tions in realistically representing changes in some of the
more complex aspects of a region’s climate.

We have demonstrated how a selection approach might
be applied to the identification of a set of GCMs which is
suitable for use across multiple regions. We have shown
that the identifying an ‘optimal’ subset to span changes
in mean temperature and precipitation across three large
continental-scale regions does not reduce substantially the
proportion of the full range that we would hope to capture
compared with selecting ‘optimal’ subsets for each region.
However, the potential exclusion of some models based
on very poor performance presents a more difficult prob-
lem for multi-region selection. The models MIROC-ESM-
CHEM and MIROC-ESM were found to perform poorly
enough in Europe and southeast Asia that we considered
their projections for those regions as ‘implausible’. How-
ever, no such performance issues were found in Africa,
and the exclusion of those models based on performance
in other regions leads us exclude the projections with larg-
est JJA rainfall increases in Africa from the subset. While
there are clearly differences in the relative skill of models
from one region to another, there are direct and indirect
dependencies between phenomena from one region to the
next which could justify a multi-region approach. A sin-
gle region approach might overlook remote processes with
indirect relevance. At the other end of the spatial scale
spectrum, there may users of climate information who
are interested in climate data at the single-grid-cell level.
FRC is calculated and shown at the grid-box level in order
to show the geographical variations within sub-regions.
However, grid-scale information from either the GCM or
downscaled GCM is of very limited value in isolation due
to known errors in climate models in resolving processes
at the model’s highest spatial resolutions (e.g. Masson and
Knutti 2011).

The method described in this paper uses selection to
address the problem of capturing GCM uncertainty which
is known to be large, and in the case of precipitation, some-
times contradictory between models for some regions
(Knutti and Sedlacek 2012), while downscaling with only a
single RCM. Our approach does not account for all sources
of uncertainty involved in projecting future climate. The
choice of RCM of course represents a further important con-
tribution to the range of climate outcomes in a region—for
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example, for Africa the contribution of uncertainty by using
multiple RCMs has been shown in some studies to be larger
than that of multiple GCMs (Patricola and Cook 2010; Paeth
et al. 2011). The development of approaches to the strategic
selection of RCMs, the design of GCM-RCM combination
matrices and the interpretation of projections generated via
‘ad-hoc’ combinations of different GCM-RCM pairs and
statistical downscaling models are all issues in the design
and interpretation of modelling experiments designed to
generate regional climate information that require further
development. Further exploration of these issues will be of
great interest to those involved in generating regional cli-
mate projections for impacts and vulnerability applications,
particularly those involved in the CORDEX (Giorgi et al.
2009) and ISIMIP (Warszawski et al. 2013) experiments.
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