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ABSTRACT
Data assimilation methods that work in high-dimensional systems are crucial to many areas of the geosciences:
meteorology, oceanography, climate science and so on. The equivalent weights particle filter (EWPF) has been
designed for, and recently shown to scale to, problems that are of use to these communities. This article
performs a systematic comparison of the EWPF with the established and widely used local ensemble transform
Kalman filter (LETKF). Both methods are applied to the barotropic vorticity equation for different networks
of observations. In all cases, it was found that the LETKF produced lower root mean—squared errors than the
EWPF. The performance of the EWPF is shown to depend strongly on the form of nudging used, and a
nudging term based on the local ensemble transform Kalman smoother is shown to improve the performance
of the filter. This indicates that the EWPF must be considered as a truly two-stage filter and not only by its

final step which avoids weight collapse.

Keywords: equivalent weights particle filter, non-linear data assimilation, EMPIRE, LETKF, nudging,

LETKS relaxation

1. Introduction

1.1. Data assimilation and Bayes’ theorem

When making a prediction based on a dynamical model of
a system, it is necessary to initialise that model. This could
be done simply by guessing the initial conditions of such a
model or, as is more common, confronting the model with
observations of the system.

Such observations necessarily have errors associated with
them and also tend to be incomplete. That is, they are not
direct observations of every component of the model. The
mathematical formulation of how to rigorously incorporate
such observations into the model is Bayes’ theorem (Bayes
and Price, 1763; Jazwinski, 1970):

p(x)p(y | x) . M

p(x|y) = 20)

In this equation, x represents the model state and y the
observations. Hence, the posterior probability density func-
tion (pdf) p(x|y) is given as the product of the likelihood
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p(y|x) with the prior p(x) and normalised by the pdf of
the observations p(y). Different approximations of Bayes’
theorem lead to different methods of data assimilation. For
instance, if one reduces the problem to finding a local mode
of the posterior pdf, this becomes an inverse problem which
can be solved by variational techniques: the famous 3DVar
and 4DVar methods (see e.g. Le Dimet and Talagrand 1986;
Dashti et al. 2013).

1.2. Particle filters

A particle filter is a Monte Carlo approach to computing
the posterior via Bayes’ theorem [see e.g. Doucet et al. (2001)
or van Leeuwen (2009)] in the context of a dynamically
evolving system.

Without loss of generality, suppose that we have the prior
pdf, p(x*), at timestep k written as a finite sum of delta
functions (formally distributions),

p) = S who(xk — xb) )
i=1

where d(x) is the standard Dirac delta function. The set of
state vectors x*,i = 1,..., N, is known as the ensemble, and
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each state vector is referred to interchangeably as a particle
or ensemble member. Note that in this notation the prior is
arbitrary: it may depend on any data that have previously
been assimilated and may have been evolved from a known
probability density at a previous time. This information
will be encoded into the weightv wh. As p(x¥) is a pdf,
J p(x*) dx*F = 1, which implies Zl wh =1, and p(x*) =0
1mp11es wh > 0.
We have a model for the dynamics of the state which is
Markovian:
W= )+ B 3)

where f is a deterministic model and B* is a stochastic

model error term. To evolve the prior in time, we note that
from the definition of conditional probability,

PO = [t () d @)
Now following Gordon et al. (1993), p(x**!|x") is a

Markov model defined by the statistics of B* that are
assumed known:

PO ) = [ 0T BB ) aB 9)

As B* is independent of the state x*, p(B* | x*) =p(B¥) and
we have

P ) :/p(Bk)a(xk“ — 6N+ A (©)

Substituting eq. (2) and eq. (6) into eq. (4), we obtain

k+1 // /c+1 _
X Z WS (xF — Xk
Integrating over x*

N,
k+l § : / k+1

Now for each ensemble member i, we make a single draw

from p(B), B; (i.e. p(B*) = 6(B" — B;)) so that

[£(x*) + B*]) dB*
™

, this reduces to

—[f(5) + ) dBe. (®)

Mz

POSH) = S whs (! — (1) + B

1

wio (= x), )

i

I
-

1

1 k

that is, wi™ = w}.
Now, we suppose some observations of the system, y,
at timestep n. What we desire is a representation of the

posterior pdf at timestep #, p(x"|y). To do this, we can use

jel, ...,

the weighted delta function representation of the prior in
combination with Bayes’ theorem (1):

N,

X'y) = Z y"‘ XX, (10)

Hence, the weights in the posterior pdf are the normalised
product of the prior weights and the pointwise evaluation of
the likelihood. For any subsequent timesteps, the posterior
is used as the prior in a recursive manner.

Filter degeneracy, or weight collapse, is the scenario in
which wj’.c ~ 1 for some j € 1,...,N,. Hence, wk ~ 0 Vi # j.
In this case, the first-order moment of the posterior pdf,
x*, will be simply x;. All higher order moments will be
computed to be approximately 0.

Snyder et al. (2008) showed that, in the case of using
a naive particle filter such as the sequential importance
resampling (SIR) filter (Gordon et al., 1993), to avoid filter
degeneracy the number of ensemble members must be
chosen such that N, oc exp(N?) where N, is a measure of
the dimension of the system. Ades and van Leeuwen (2013)
showed that this dimension of the system is actually the
number of independent observations.

Simply increasing the number of ensemble members is,
for most geophysical applications, infeasible. N, will be
determined by the size of the supercomputer available. For
operational numerical weather prediction (NWP) methods,
N, may typically be around 50. For instance, simply for
forecasting, the Canadian NWP ensemble forecast uses
N, =20, the European Centre for Medium-Range Weather
Forecasts has N, =51 and the UK Met Office has N, =46.

Therefore, it is clear that for a particle filter to represent
the posterior pdf successfully, the case that w]’." ~ 1 for some
N, should be avoided. The equivalent weights par-
ticle filter (EWPF) (van Leeuwen, 2010) that we shall discuss
in Section 2 is designed specifically so that w* ~ 1/N, for all
iel,..., N, Itdoes this in a two-stage process. Firstly, the
particles are nudged towards the observations. Secondly, an
‘equivalent weights step’ is made to avoid filter degeneracy.

1.3. Ensemble Kalman filters

The Ensemble Kalman filter (EnKF) is a method of data
assimilation that attempts to solve Bayes’ theorem when
assuming that the posterior pdf is Gaussian [see e.g.
(Evensen 1994; Burgers et al. 1998; Evensen 2007)]. In that
case, the posterior can be characterised by its first two
moments: mean and covariance. The prior pdf, or more
precisely the covariance of the prior, is represented by an
ensemble of model states. Instead of propagating the full
covariance matrix of the prior by a numerical model [as
in the Kalman filter (Kalman, 1960)], only the ensemble
members are propagated by the model.
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If the dimension of the model state, N,, is much greater
than the number of ensemble members used, N,, then the
EnKF is much more computationally efficient than the
Kalman filter.

Defining X}, to be the scaled matrix of perturbations of
each ensemble member from the ensemble mean at time k,
then the update equation of the EnKF can be written as

X =+ XX HT(HXXTHT + R (v — H). (1)

Here, /\i refers to the forecast of the ensemble member at time k&
and x{ the resulting analysis ensemble member at time k which
has been influenced by the observations. H is the observation
operator that maps the model state into observation space,
and R is the observation error covariance matrix.

There are many different flavours of ensemble Kalman
filter, each of which is a different way to numerically com-
pute the update equation. For a discussion on the different
kinds see, for example, Tippett et al. (2003) and Lei et al.
(2010). In this article, we shall consider implementing the
EnKF by means of the local ensemble transform Kalman
filter (LETKF) and shall discuss this in detail in Section 3.

1.4. Motivation for this investigation

We have seen that if we are trying to use a particle filter
to recover the posterior pdf via a numerical implementation
of Bayes’ theorem, then it makes sense to ensure that the
weights of each particle are approximately equal. Or at
least, it pays to ensure that each particle has non-negligible
weight, specifically when higher order moments of the
posterior pdf are required.

Until now, there has been no systematic comparison of
the EWPF and an ensemble Kalman filter using a non-
trivial model of fluid dynamics. This is a necessary study to
see if anything is gained by not making the assumptions of
Gaussianity that are made by the EnKF method. Previous
investigations of the EWPF have focused on tuning the free
parameters in the system to give appropriate rank histograms.
In this study, we shall investigate the method’s ability to appro-
priately constrain the system in idealised twin experiments.

To this end, the system we shall consider is the equations
of fluid dynamics under the barotropic vorticity (BV)
assumptions. This is perhaps the model most well studied
for the EWPF. As a system of one prognostic variable on a
two-dimensional grid, it is easily understood and affordable
to experiment with. We also know the parameter regimes in
which the EWPF will perform well.

The remainder of this article is organised as follows. In
Section 2, we discuss the use of proposal densities within
particle filters before introducing the EWPF. In Section 3, we
discuss the LETKF. In Section 4, we discuss the BV model
which we consider. In Section 5, we define the experimental

setup which we use and performance measures. In Section 6,
we show the numerical results that are discussed in detail in
Section 7. Finally in Section 8, we finish with some con-
clusions and discuss the implications for full-scale NWP.

2. Particle filters using proposal densities

In this section, we briefly summarise the use of a proposal
density within a particle filter, before going on to discuss the
specific choices of these made in the EWPF.

2.1. Proposal densities

A key observation that has advanced the field of particle
filters is the freedom to rewrite the transition density as

PO X )g(x x5, y)
g(xk Xk, y)

k+1 |xk) —

plx ; (12)

which holds so long as the support of g(x**! | x¥,y) is larger
than that of p(x**! |xk). Now, we are also free to change

the dynamics of the system such that

= £ () + g, y) + B¢ (13)

as in the study by van Leeuwen (2010). As in Section 1.2,
we assume that, without loss of generality, we have a delta
function representation for the prior at timestep k given by
eq. (2). Then, in a manner similar to the marginal particle
filter (Klaas et al., 2005),

p xk+1 x"')q xk+1 xk’y)
p(x) :/ ( ql(xk+1 |(xk y|) p(x") dx* (14

_ /p(xk+1 ‘xk)q(xk+l |X/(,y) ﬁ: w’.‘é(xk _ Xk) dxk (15)

g(xF1 | Xk, y) P

ﬁ: k1 |/\k) ( Poan |xf.",y) . (16)

g xf, )

We can write the transition density p(x**!'|xf) and
proposal density g(x**! |xf, ) in terms of B*:

k+1
Z / (17)
(] ) g(xf) + B]) dp".

Now, similarly to before, drawing a single sample Bf‘
for each ensemble member, but now from the distribution

q(BY), gives

Z D5~ () + g() + BT (18)
N, k
_ Z n,,.kZEE;; SEH ) (19)
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N,
— Z ff ('x+l 5(xk+l _ xﬁ(ﬁ»l)‘ (20)
= a(xxp 7y)
That is,
N,
p(xk+l) — Z Wf_(Jrlé(xk+l _ xi_chl)’ 1)
=1
where
whtl — w w (22)
' LX)

To find the delta function representation of the posterior,
it is the case of combining this derivation with Bayes’
theorem to arrive at the same equation as in eq. (10).

The use of proposal densities is the basis of particle filters
such as the implicit particle filter (Chorin and Tu, 2009)
and the EWPF, and more recently the implicit equal
weights filter (Zhu et al., 2016). The goal is to choose the
proposal density in such a way that the weights w* do not
degenerate.

2.2. The equivalent weights particle filter

The EWPF is a fully non-linear data assimilation method
that is non-degenerate by construction. For a comprehen-
sive overview of the EWPF see van Leeuwen (2010) and
Ades and van Leeuwen (2013).

A key feature of the EWPF is that it chooses the
proposal density q(xk+l|xk,y) equal to p(B¥) but with new
mean g(x*,p). It proceeds in a two-stage process with one
form of g(x*,y) for the timesteps that have no observations
and a different form of g(x/",y) when there are observations
to be assimilated.

For each model timestep k+1 before an observation
time n, the model state of each ensemble member, x¥, is
updated via the equation

=A(y" — H(x})), (23)

g(xf,y)

where " is the next observation in time, H is the observation
operator that maps the model state onto observation space
and A is a relaxation term. In this work, we consider

A=0a(k)QH"R™', (24)

where the matrices Q and R correspond to the model evo-
lution error covariance and observation error covariance
matrices, respectively. o(k) is a function of time between
observations; in this article, o(k) increases linearly from
0 to a maximum (o) at observation time. Equations (23)
and (24) together make up what we will refer to as the
nudging stage of the EWPF. This process is iterated until
k+1=n-—1.

In this work, we consider only unbiased Gaussian model
error [i.e. Bff ~N(0,Q)]. To obtain a formula for the un-
normalised weights at timestep k+1, we can use this
Gaussian form in eq. (22). Taking logarithms leads to a
formula for the weights of the particles (van Leeuwen, 2010;
Ades and van Leecuwen, 2015) as

~log(w1) = ~ log()
F OGO ) s,
B )

The second stage of the equivalent weights filter involves
updating each ensemble member at the observation time »
using the term

g y) =, QH T (HQH" + R) ' (v — H(f(x!""))), (26)

where o; are scalars computed so as to make the weights
of the particles equal. This is done for a given proportion
(0 <x <1) of the ensemble which can make the desired
weight. The remaining ensemble members are resampled
using stochastic universal sampling (Baker, 1987; van
Leeuwen, 2010).

It is important to realise that the covariance of the prior
ensemble is never explicitly computed in the EWPF but
implicitly, via the EWPF approximation to Bayes’ theorem:
increasing the spread in the prior will increase the spread in
the posterior. Instead, the covariance of the error in the
model evolution Q is crucial.

3. Local ensemble transform Kalman filter

The LETKF is an implementation of the ensemble Kalman
filter which computes in observation space (Bishop et al.,
2001; Wang et al., 2004; Hunt et al., 2007). As with all
ensemble Kalman filters, the pdfs are assumed Gaussian.
Formally, the LETKF update equation for ensemble
member i at the observation timestep n can be written as

X=X XW 27)

where X} is the mean of the forecast ensemble at timestep
n, X' is the ensemble of forecast perturbations and W}
is the column of a weighting matrix corresponding to
ensemble member i. Full details of this is given in Hunt
et al. (2007). This can be extended through time (Posselt and
Bishop, 2012) such that for k <n, we get the local ensemble
transform Kalman smoother (LETKS) update equation

xf = Xf + Xf W) (28)

As typically the number of ensemble members will be
much fewer than the dimension of the model state, spurious
correlations will occur within the ensemble. These spurious
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correlations lead to information from an observation
inappropriately affecting the analysis at points far away
from the observation. To counteract this, the LETKF
effectively considers each point in the state vector sepa-
rately and weights the observation error covariance by a
factor depending on the distance of the observation from
the point in the state vector.

For each point in the state vector, the inverse of the
observation error covariance matrix, R ! (also known as
the precision matrix), is weighted by a function w so that

R = R w(d(i)) ' w(d())™".

q 7

The weighting of the observation error covariance matrix
R is given by the function

(-l Jexp(—£), if4<4 )
wid) { 0, otherwise 9

where d is the distance between the point in the state vector
and the observation and /is a predefined localisation length
scale.

In the case of a diagonal R matrix, then

A— — N\ —2
Ry = Ry'w(d(7)

The weighting w(d) is a smoothly decaying function
which cuts off when %z 4, that is, w(a?f2 =e % ~0.0003.
This means that the computations are speeded up by
ignoring all the observations which have a precision less
than 0.0003 of what they were originally.

Inflation is typically also required for the LETKF in
large systems (Anderson and Anderson, 1999). That is, the
ensemble perturbation matrices are multiplied by a factor
of (14 p) in order to increase the spread in the ensemble
that is too small because of undersampling, that is, X, —
(I4+p) Xrin eq. (27).

4. Barotropic vorticity model

In this section, we consider the model which we investigate.
We start with the Navier—Stokes equations and assume
incompressible flow, no viscosity, no vertical flow and that
flow is barotropic [i.e. p = p(p)]. We define vorticity ¢ to be
the curl of the velocity field. This results in the following
partial differential equation in ¢ [see e.g. Krishnamurti
et al. (2006)], known as the BV model,

o4, 04 04 _

0,
ot ox dy

where u is the component of velocity in the x direction and
vis the component of velocity in the y direction. The domain
we consider is periodic in both x and y and so the compu-
tation of this can be made highly efficient by the use of a fast
Fourier transform (FFT). In order to solve this equation, it is

sufficient to treat vorticity ¢ as the only prognostic variable.
The curl operator can be inverted in order to derive the
velocity field u from the vorticity. We use a 512 x 512 grid,
making N, =2'%, a 262,144 dimensional problem. Timestep-
ping is achieved by a leapfrog scheme with dz =0.04 (roughly
equivalent to a 15-minute timestep of a 22-km resolution
atmospheric model). The decorrelation timescale of this system
is approximately 42 timesteps or 1.68 time units.

There are a number of good reasons for investigating
this model. For example, it exhibits strong non-linear
behaviour, develops cyclonic activity and generates fronts.
All of which are typical of the highly chaotic regimes
occurring in many meteorological examples. Turbulence in
the model is prototypical: energy is transferred downscale
due to the presence of non-linear advection (see Fig. 2a for
a plot of a typical vorticity field from the model). Note that
it was the BV model that was used for some of the earliest
numerical weather predictions (Charney et al., 1950).

Note that this model has no balances that can be destroyed
by data assimilation, something which should be considered
in other studies of this kind. A further advantage for this first
study is that we do not have to worry about bounded
variables when applying the LETKF.

Also for this model we know the parameter regimes and
model error covariance structure for which the EWPF per-
forms well. Ades and van Leeuwen (2015) first applied the
EWPF to the BV model, albeit at a lower resolution, and in this
article, we employ similar parameters in the EWPF such as the
nudging strength (k) and use the same model error covariance
matrix Q. The Ades and van Leeuwen (2015) study concen-
trated on using rank histograms as the performance diagnostic
of the EWPF, whereas in this article we consider performance
in terms of root meansquared errors (RMSE).

5. Experimental setup

In this section, we discuss the two experiments we shall run.
All of the experiments were carried out using the EMPIRE
data assimilation codes (Browne and Wilson, 2015) on
ARCHER, the UK national supercomputer.

5.1. Model error covariance matrix

For ensemble methods in the NWP setting, obtaining spread
in the ensemble is a key feature in the performance of
both the analysis and the forecast. In NWP applications,
this is typically achieved by employing a stochastic physics
approach (Baker et al., 2014) or using a stochastic kinetic
energy backscattering (Tennant et al., 2011) to add random-
ness at a scale which allows the model to remain stable. For
the EWPF (or indeed any particle filter that uses a proposal
density), we must specify (possibly implicitly) the model
error covariance matrix. Understanding and specifying the
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(a) Observing network 1 (ON1) { (b)

Observing network 2 (ON2) | ()

Observing network 3 (ON3)

Vv

Fig. 1.  Observing network diagrams.
covariances of model error in a practical model is a challenge
to which much more research must be dedicated.

The model error covariance matrix used in this article is
the same as that used in Ades and van Leeuwen (2015).
That is, Q is a second-order autoregressive matrix based
on the distance between two grid points, scaled so that the
model error has a reasonable magnitude in comparison
with the deterministic model step.

5.2. Initial ensemble

The initial ensemble is created by perturbing around a
reference state. Thus, for each ensemble member x; and the
true state x,,

{xhx ~N(x,B)  Vie{l,....N}. (30)

The background error covariance matrix B is chosen pro-
portional to Q such that B =20Q. The reference state x, is a
random state which is different for each experiment.

5.3. Truth run for twin experiments

The instance of the model that is considered the truth is
propagated forward using a stochastic version of the model
where

By ~N(0,0).

X = (XY + BY where

5.4. Observing networks

We shall show results from experiments with three different
observing networks that make direct observations of vorti-
city. The first is regular observations throughout the domain
as considered by Ades and van Leeuwen (2015), the second is
a block of dense observations and the third is a set of strips
that could be thought of as analogous to satellite tracks.

The details of the observing networks are shown below and
visualised in Fig. 1.

ONI1: Every other point in the x and y directions observed

ON2: Only those points such that (x,y) € [0,0.5] x[0,0.5]
are observed

ON3: Only those points such that (x,y) € [0,1] x
(0,0.0675] v [0.25,0.3175] v [0.5,0.5675] v
[0.75,0.8175]) are observed

In each case, we have N, =N,/4 =65536. The observa-
tion errors are uncorrelated, with a homogeneous variance
such that R =0.05%/. Observations occur every 50 model
timesteps. These observations are quite accurate when
you consider that the vorticity typically lies in the interval
(—4, 4) (see Fig. 2a).

5.5. Comparison runs

For comparison and analysis purposes, we will run a
number of different ensembles as well as the LETKF and
the EWPF. We detail these subsequently.

5.5.1. Stochastic ensemble. Each ensemble member is propa-
gated forward using a stochastic version of the model. That is,

= (oK) +BE where  BF~AN(0,0).

5.5.2. Simple nudging. For each timestep, the nudging
terms of the EWPF are used to propagate the model forward.
That is, eqs. (13), (23) and (24) are used to update the model
state. The weights of the particles are disregarded, and the

ensemble is treated as if it was equally weighted.

5.5.3. Nudging with an LETKS relaxation. The model is
propagated forward in time stochastically until the timestep
before the observations. During this stage, no relaxation
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(a) True model state | (b) Observations from ON1 {
]
-\
— ‘
)
-
() Observations from ON2 | (d) Observations from ON3

o
-

Fig. 2.

term is used (i.e. g(x*,y) =0). At the timestep before the

4 -3 -2

0 1 2 3 4

Plots of vorticity for the true state and the resulting observations using the different networks at the 6th analysis time, for a particular
random seed.

This can be written in equation form, so that at each

observations, the relaxation term that is used comes from the iteration k before the observation time 7, the update for
LETKS. That is, term in eq. (23) is the increment that would each ensemble member i is given by

be applied by the LETKS. At the observation timestep,
the ensemble is propagated using the stochastic model. i
The weights of the particles are disregarded, and the
ensemble is treated as if it was equally weighted.

e [/ B fork€{0,....n—=3}U{n—1}
)+ g+ B fork=n-2 ’

(3D
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where g; is the increment arising from the LETKS for
ensemble member i.

5.5.4. The EWPF with an LETKS relaxation. Similarly
to nudging with the LETKS relaxation, the model is
propagated forward in time stochastically until the timestep
before the observations. At the timestep before the observa-
tions, the relaxation that is used comes from the LETKS. At
the observation timestep, the equivalent weights step (26) of
the EWPF is used. The weights are calculated using eq. (22)
which in this case with Gaussian model error remains, given
explicitly by eq. (25). We employ x =0.75, 0.25 and 0.5
for observation networks 1, 2 and 3, respectively. This is
discussed in Section 7.3.

5.6. Assimilation experiments

Observations occur every 50 timesteps for the first 500
model timesteps. After that, a forecast is made from each
ensemble member for a further 500 timesteps.

For each observing network, we run five different
experiments:

e The EWPF

e The LETKF

¢ Simple nudging

e Nudging with an LETKS relaxation

e The EWPF with an LETKS relaxation

Tables 1 and 2 list the parameter choices used for the
different methods for the different observational networks.
They were chosen by performing a parameter sweep across
the various free parameters and selecting those that gave
the lowest RMSEs (shown in Fig. Al).

All of these experiments are repeated 11 times. In each of
the 11 experiments, the initial reference state, x,, is different,
as is the random seed used. For reference, we also run a
stochastically forced ensemble from each of the different
reference states. As no data is assimilated here, these runs are
independent of the observing network.

Table 1. Parameter values used in the LETKF

Observation network 1 2 3
Localisation length scale, / 0.005 0.02 0.007
Inflation factor, p 0.01 0.01 0.01
Table 2. Parameter values used in the EWPF

Observation network 1 2 3
Keep proportion, x 1.0 1.0 1.0
Nudging factor, o 0.7 0.5 0.7

We choose to run 48 ensemble members for each method.
This is for two reasons: there are 24 processors per node
on ARCHER so this is computationally convenient, and
48 is of the order of the number of ensemble members that
operational NWP centres are currently using.

6. Results

6.1. Root mean—squared errors

Figures 3 to 5 show RMSE for the different assimilation
methods on the three separate observing networks. For-
mally, the RMSE we show is the square root of the spatial
average of the square of the difference from the ensemble
mean and the truth. Each line of the similar colour refers to a
distinct experiment with a different stochastic forcing and
initial reference state. Values are shown only for the initial
ensemble, 10 analysis times (recall that each analysis time is
separated by 50 model time steps) and 10 subsequent forecast
times that are again separated by 50 model timesteps.

In brown, for reference, is plotted the RMSE from the
stochastically forced ensemble; in black, the total RMSE;
in blue, the unobserved variables; and in red, the observed
variables.

The RMSE, as defined previously, is a measure of the
similarity of the ensemble mean to the truth. If the pos-
terior is a multimodal distribution, then the ensemble mean
may be far from a realistic, or accurate, state. EnKF
methods, by their Gaussian assumptions that they make,
naturally assume a unimodal posterior. Particle filters on
the contrary do not make such an assumption. In this
article, we do not investigate the effect of using a different
error measure.

Figure 3 is markedly different from Figs. 4 and 5 — in this
case, the unobserved variables behave as if they are also
observed. This is because each unobserved variable is either
directly adjacent to two observed variables or diagonally
adjacent to four observed variables. Contrast this with the
observing networks 2 and 3 where an unobserved variable
could be a maximum of 181 or 48 grid points, respectively,
away from an observed variable.

6.2. Trajectories of individual grid points

In Fig. 6, we show the evolution of the vorticity at a given
grid point for a single experiment. Every model timestep is
shown for each of the ensemble members for the different
methods.

7. Discussion

It is clear from the results presented that the EWPF with
simple nudging, as implemented by Ades and van Leeuwen
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Fig. 3. Observing network 1, every other gridpoint. The total and unobserved RMSEs are almost exactly underneath the observed
RMSE plots. This is due to the widespread information from the observations effectively constraining the whole system.

(2015), is not competitive with the LETKF in terms of
RMSEs. This is similar to the results noted in Browne and
van Leeuwen (2015) in that the EWPF gives RMSEs higher
than the error in the observations.

In this section, we shall discuss different aspects of the
results, in an attempt to give some intuition as to why they
occur.

7.1. RMSEs from the EWPF are controlled by the
nudging term

Consider the differences between RMSE plots for the simple
nudging and the EWPF. They are qualitatively similar
[Figs. 3-5, (a) vs. (c)]. Further, when we use a different type
of nudging [Figs. 3-5, (d) vs. ()], the results are again similar.
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This is due to the two-stage nature of the EWPF. The not choosing the values of o; to give a best estimate in
first stage is a relaxation towards the observations (23), some sense (e.g. compare with the best linear unbiased
followed by a stage at observation time which ensures estimator) but instead they are chosen so that the weights

against filter degeneracy (26). In the second stage, we are remain equal. Hence, most of the movement of the
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particles towards the observations happens in the first,

relaxation, stage.

This is shown strongly in Fig. 6; the simple nudging and
the EWPF are qualitatively similar. Also in Fig. 6, it can be

\ \
5 10 15 20

(b)

LETKF {

1.2

RMSE

|
15
Analysis/forecast time

LETKS nudging |

1.2 |

RMSE

|
10 15 20
Analysis/forecast time

—— Observed
—— Unobserved
—— Total

—— Stochastic

11

seen that the LETKS nudging and the EWPF-LETKS also
follow similar trajectories. This shows that the equivalent
weights step of the EWPF is not moving the particles very far

in state space in order to ensure the weights remain equal.
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Fig. 6.  Trajectories of two different points in the domain when using the different assimilation methods with observing network 3 for a

single experiment.

7.2. Simple nudging is insufficient to get close
to the observations

Figures 3c, 4c, and 5c show that, with simple nudging,
the RMSEs are much larger than the observation error
standard deviation. This is due to the choice of nudging
equation used (24).

The goal of nudging is to bring the particles closer to the
observations, or equivalently, to the area of high probability
in the posterior distribution. In this section, we shall discuss
the properties that this nudging term should have.

Let the nudging term be denoted as A(x,y) and written
as a product of operators

A(X,y) :AsoAm OAW OAI

where A; is the innovation, A4, 1is the innovation
weighting, A, is the mapping from observation space
to state space and A, is the operator to spread the
information from observation space throughout state
space.
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The innovation should have the form

AI =y- H(f(x))7

where ftakes the state at the current time and propagates it
forward to the corresponding observation time. With this,
the innovation is exactly the discrepancy in observation
space that we wish to reduce; however, it is valid only at the
observation time.

Consider now the innovation weighting 4,,. When the
observations are perfect, we wish to trust them completely,
and hence, we should nudge precisely to the observations.
When they are poor, we should distrust them and nudge
much less strongly to the observations. Hence,

R—0=4,6 -1 & R—o00o=4,—0.

Hence with

A, =T +R)",

the appropriate limits are obtained.

A,=H" is a way to map the scaled innovations into
state space.

The term A, should compute what increment at the
current time would lead to such an increment at observa-
tion time. Hence, A,=M7", the adjoint of the forward
model.

Thus to nudge consistently,

A(X,y) = As o Am o AW ° AI
=M"HT(I+R)'[y— H(f(x))] (32)

Now let us compare this to the simple nudging term in
eq. (23), working through the terms from right to left.

Ay =y-H({f(x) #y - H(x) (33)

In the simple nudging term, the innovations used compare
the observations with the model equivalent at the current
time. This ignores the model’s evolution in the intervening
time, and thus, the more the model evolves, the larger this
discrepancy. This discrepancy occurs even with linear model
evolution. In Fig. 6, this can be seen by considering the
evolution of the simple nudging ensemble between times
0 and 1. The model is forced to be close to the observation
too early due to this time discrepancy in the innovation.

A, =(I+ R AR

For the form of observation error covariance matrix R
used in this study, this is not an issue. To see this, we have
to consider 4,, =o R, and note that we have R =yI. Then,
I+R=I+yI=(1+)I, and hence, I+ R="""1R. Thus,
the coefficient @ can be subsumed into the nudging
coefficient .

With simple nudging A4,, is consistent.

Finally, the term 4, = M7 # Q. The model error covariance
matrix is clearly not a good approximation to the adjoint of
the model. Hence, the information from the observations is
not propagated backwards in time consistently.

All of these factors serve to make simple nudging in-
effective at bringing the ensemble close to the observations.

7.3. LETKS as a relaxation in the EWPF

Given the theory described in Section 7.2, it is reasonable
to believe that the ensemble Kalman smoother (EnKS) may
provide better information with which to nudge.

As with the EnKF, there are many flavours of EnKS.
Here we have used the LETKS simply because of its
availability within EMPIRE.

Using the notation of the EnKF introduced in Section
1.3, we can write the EnKS analysis equation as

xX{ = x; + X[ X["H"(HX[XH" + R)"'(v - Hx}). (34)
Hence, the nudging term that comes from the EnKS is
(. y) = X/ X" HT (HX{ X" H + R)"(y — Hx)).

Comparing with eq. (32), we can see that the innovations
are correct. The observation error covariance matrix is
regularised with HX? X/" H” instead of the identity, but the
same limits are reached as R — 0 and R —oo. The main
difference is that now the information is brought back-
wards in time via the temporal cross-covariances of the
state at the current time and the forecasted state at the
observation time. Hence using this method there is no need
for the model adjoint.

Comparing Figs. 3-5, (c) versus (d) it can be seen that
LETKS nudging provides a decrease in RMSE when
compared with the simple nudging. Moreover, comparing
the trajectories shown in Fig. 6¢c and d, it can be seen that
the LETKS nudging follows the evolution of the truth much
more closely than the simple nudging. This is especially
noticeable at the timesteps between observations, likely due
to the time discrepancy of the innovations that simple
nudging makes [see eq. (33)].

There are immediate extra computational expenses in-
volved with using the LETKS as a nudging term. Firstly,
the model has to be propagated forward to the observation
time in order to find the appropriate innovations. Secondly,
the LETKF has to be used to calculate the nudging terms,
thus adding a large amount to the computational cost.

Moreover, consider the difference in the weight calcula-
tions caused by using the LETKS and not the simple
nudging given in eqgs. (23) and (24). Writing the update
equation in the form

X?H :f(xfc) +g+B (35)
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where g; is the nudging increment and £, is a random term.
The weight update has the form (van Leeuwen, 2010; Ades
and van Leeuwen, 2015):

~tog(uf ) = —Tog(u) + (g, + )" (g, + B)
Lgron
> B O B (36)

When B, ~N(0,0), B, = Q%n,. where 1, ~N(0,7). Hence
the final term

Bl OB =0l 0* 07 O, = T, 37

can be calculated without a linear solve with Q. ISimilarly, if
the nudging term g; is pre-multiplied by Q (or Q2) then Q ~"
cancels in the calculation of the weights. This is the case for
the simple nudging used as given in eq. (23).

Hence, using the LETKS to compute a nudging term for
use in a particle filter, we cannot avoid computing with Q ~"
to find the appropriate weights for each ensemble member.
This may prove to be prohibitive for large models, or must
be a key consideration in the choice of Q matrix used. In
the application to the BV model shown in this article, Q is
computed in spectral space using the FFT, hence apply-
ing any power of Q to a vector is effectively the same
computational cost.

Furthermore, in order to compute the LETKS nudging
term, EnKF-like arguments are adopted. That is, when
computing the analysis update, the posterior pdf is assumed
Gaussian. Linear model evolution is assumed so that the
updates can be propagated backwards in time. Having
made this Gaussian assumption at the timestep before the
observations will limit the benefits of using the fully non-
linear particle filter which does not make any such assump-
tions on the distribution of the posterior. Indeed, considering
the evolution of the EWPF with the LETKS nudging and
comparing with that of the LETKF (Fig. 6a and b), they are
markedly similar. Hence, the extra expense of the EWPF
over the LETKF may not be justified.

The choice of x when we use the LETKS as a relaxation
within the EWPF is a complicated and not fully unders-
tood process. Figures B1-B4 in the Appendix show the
behaviour of the analysis as you vary « for each different
observation network. What is clear is that the optimal x
is problem dependent. Further, it can be seen that x =1
performs poorly in all cases. One conjecture for this is that
using the LETKS as a relaxation gives a large change to
some ensemble members. Making a large change to the
position of any ensemble member must be paid for in the
weights of that particle: its weight decreases. Keeping x =1
forces all ensemble members to degrade their positions in
order to achieve a weight equal to that of the worst particle.
This process could then move all the other ensemble mem-

bers away from the truth — thus increasing the RMSE.
Further investigations on this matter are warranted.

8. Conclusions

Both the LETKF and the EWPF were used in data assi-
milation experiments with the BV model. Typical values for
the parameters in the methods were used for three different
set of observations.

In all cases, the LETKF was found to give RMSEs
that were substantially smaller than those achieved by the
EWPF. Notably, the EWPF gives RMSEs much larger
than that of the observation error standard deviations.

The efficacy of the EWPF to minimise the RMSE was
shown to be controlled by the nudging stage of the method.
Experiments with both simple nudging and using the
LETKS as a relaxation showed that the resulting particle
filter followed those trajectories closely. An analysis of
the relaxation term used in the simple nudging procedure
showed why such a method does not bring the ensemble
mean close to the truth. This same analysis motivated the
use of the LETKS relaxation and this was numerically
shown to lead to improvements in RMSE.

The model investigated had a state dimension of
N, =262144 and assimilated N, =65536 observations at
each analysis. In such a high-dimensional system, it is a
challenge to ascertain if the posterior is non-Gaussian.
Without such knowledge it appears that the LETKF is a
better method of data assimilation in terms of efficiency
and accuracy.

Finally, note that all these experiments were conducted
with an ensemble size of N,=48. This ensemble size is
representative of what can typically be run operationally.
In the future, if much larger ensembles are affordable, then
the results presented here may be different when the data
assimilation methods are tuned to a significantly larger
ensemble size.
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Appendix A: EWPF parameter sensitivity
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Appendix B: EWPF with LETKS relaxation
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