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Abstract

Circadian clocks regulate biological behaviours, such as sleeping and waking times, that recur naturally on an
approximately 24-hour cycle. These clocks tend to be influenced by a variety of external factors, sometimes to the extent that it
can have an impact on health. As an example in pharmacology, the effects of chemicals on the circadian rhythm in patients can
be key to clarifying the relationship of drug efficacy and toxicity with dosing times. While pre-clinical experiments conducted to
elucidate these effects may produce correlated data measured over time, such as gene expression profiles, existing methods for
fitting parametric nonlinear regression models are, however, inadequate and can lead to unreliable, inconsistent parameter
estimates and invalid inference. De-trending is widely used as a pre-processing step to address non-stationarity in the data, before
fitting models based on the assumption of independence. However, as it is unclear that this approach properly accounts for the
correlation structure, alternative methods that specifically model the correlation in the data based on conditional least squares and
a two-stage estimation procedure are proposed and evaluated. A simulation study covering a wide range of scenarios and models
shows that the proposed methods are more efficient and robust against model mis-specification than de-trending and,

furthermore, they reduced estimation bias in the circadian period and provide more reliable confidence intervals.

Keywords: correlated gene expression data, de-trending method, nonlinear regression

1. Introduction

Most biological organisms, including humans, dis-
play an internal process (Erzberger et al., 2013) that regulates
their behaviour according to the time of day. The internal
clocks that determine the natural recurrence of biological
processes, such as sleep and wake times, on a twenty-four-
hour cycle are called circadian clocks (Cammack et al., 2006).
In the study and development of drugs, circadian rhythms
play a key role in understanding the relationship of efficacy
and toxicity with dosing times (Paschos et al., 2010).
Experimental adjustments of administration times of drugs

*Corresponding author
Email address: m.f.baksh@reading.ac.uk

can minimize the toxicity and maximize the efficacy of drugs.
In addition, the cited reference provides examples of how
circadian rhythms may affect the treatment of hypertension
and cancer.

A gene is said to be expressed when it produces a
functional product, such as protein molecules, used in an
organism's cells. Bioluminescence is used in quantifying the
gene expression of a cell. To generate bioluminescence an
oxidative enzyme, in the case of circadian rhythms luciferase
(Allard & Kopish, 2008), is implanted in the membrane of a
living cell to produce light. The light emission is based on the
conversion of chemical energy to radiation and is very
efficient in terms of the released heat, i.e., most of the
chemical energy is converted to radiation. Produced light
intensity from the cells is then measured, and is used as a
response variable in relevant experiments (Albert et al., 2008).
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These technologies allow scientists to detect changes in the
expression of genes over time. Responses arising from the
study of circadian gene expression are measurements of
intensity, in relative units, over a course of time.

The data used in this paper were produced in the
pre-clinical investigation phase of drug development by a
pharmaceutical company. Human cells in a well-plate were
treated with a chemical compound and the gene expression
profiles were recorded. The experiment was replicated four
times and the gene expression level in each well was mea-
sured every 1.5 hours for 78 hours. The cells within each well
were synchronized because the measured expression is
population average for a well, and our goal was to inspect
circadian rhythms. This experimental design gives serially
correlated observations for each well. Of interest in this paper
is the development of models that efficiently capture the
oscillatory time-pattern of gene expression while accounting
for the correlation. Of particular interest is estimation of the
period, as this provides information about the effects of the
chemical compound on the circadian rhythm.

Usually the response level in a circadian gene
expression experiment decreases with time. To adjust the
observations for this trend, a pre-processing step is proposed
by Yang and Su (2010) to remove the linear trend by using
simple regression, and then the de-trended data are modelled
by ordinary least squares (OLS). De-trending is widely used to
fit models for correlated gene expression data, and it is
assumed to produce independent errors based on stationarity
assumptions. In order to address non-stationary correlated
responses, the de-trended responses are fit with sinusoidal
models (Izumo et al., 2003, 2006; Kyriacou & Hall, 1980;
Maier et al., 2009) assuming independent errors. However, it
is unclear that this de-trending (DET) method is adequate to
account for the potential correlations in the responses, and
further, de-trending produces correlated residuals. Properly
accounting for correlated responses is important, as failure to
do so can lead to biased parameter estimates and under-
estimation of their standard errors (Bender & Heinemann,
1995).

Conditional least squares (Bates & Watts, 1988) and
two-stage estimation approach (Seber & Wild, 2003) are
alternative strategies for fitting regression models to corre-
lated data. These two methods are not based on time series
assumptions, but rather they intend to address the correlation
problem by explicitly modelling the correlation structure.
Both conditional least squares and two-stage estimation
methods utilize least squares procedures, and therefore benefit
from the standard distributional properties of least squares
estimators. They also tend to be computationally tractable.
Neither method has previously been proposed in the literature
for modelling circadian rhythms in correlated gene expression
data.

This paper evaluates the conditional least squares
and the two-stage estimation methods in nonlinear regression
modelling of correlated gene expression data displaying an
oscillatory pattern. The focus is on efficiency and reliability of
these methods in estimating the oscillation period. The use of
nonlinear models is novel to this application area. By directly
modelling the trend and correlation pattern in the data, the
limitations of the de-trending approach described above can
be avoided. Comparisons of the proposed methods with the
de-trending approach over a range of scenarios and models,

including situations where the fitted model is incorrectly
specified, are provided based on simulations.

2. Methods

Consider the nonlinear regression model of the
relationship between an independent variable t and a depen-
dent response variable y measured at n time points for each of
r individuals,

yi:f(ti;0)+8i; i:]"'"‘r’ (1)

where y. =(Y,,,..., ;) is the observed response vector

for the ith individual,ti :(t )’is a time vector,

i1 lin

£(8) = (f(t,;60),..., f(t, ;8)) for some nonlinear function
f of t with an unknown parameter vector @ and
g =(&,,...,&,) isan error vector. Assuming the repeated

measures on each individual follow a stationary autoregres-
sive process of order 1, AR(1), the error components then are
linearly related between time points j and j-1

& =P&4+0,,5 i=1...n, 2

where |p|<1 is the correlation between &; i1 and &; i , and

é‘ij are assumed to be normal, independent and identically

distributed with zero mean and common variance o2.

Two possible ways to fit an AR(1) model when no
assumptions are made on the joint distribution of the error
terms are conditional least squares and the two-stage
estimation method. Both methods, which are described below,
fit the nonlinear regression model by least squares.

2.1 Conditional least squares estimation

The least squares estimation method is adapted to
correlated responses by replacing the expected response from
the model by a conditional expectation in the sum of squared
deviations (Klimko & Nelson, 1978). In the case of correlated
errors coming from a stationary AR(1) process in Equation (2)
the conditional least squares (CLS) model can be shown to
obey

Vi~ (0 =p(y, .~ T, :0)+3,; j=2...n, ©)
yi,j :pyi'j,l + f (ti,j ,0)_pf (ti'j,l;a).

As normally distributed errors in an autoregressive
model makes maximum likelihood equivalent to least squares
estimation, the CLS method produces parameter estimates
with similar properties as maximum likelihood estimators. In
particular, the estimates obtained are consistent and asymp-
totically normal under mild regularity conditions (Klimko &
Nelson, 1978). Note that the degrees of freedom for this
model (3) are reduced by the first order autoregressive pro-
cess, which impacts precision of the estimates. In addition, the
increased number of model parameters increases the risk of
convergence problems in iterative fitting.



694 W. Pukdee et al. / Songklanakarin J. Sci. Technol. 40 (3), 692-700, 2018

2.2 Two-stage estimation

A two-stage (TS) approach that consists of two
ordinary least squares (OLS) procedures, for estimating the
parameters in nonlinear time series regression with autore-
gressive errors, has been proposed (Gallant & Goebel, 1976).
Applied to the problem considered here, first the correlation
structure is ignored and the model (1) is fitted by OLS to

produce estimates g,  of @ and fitted values f(ti,j;éo,_s)-

The residual vector for the ith individual,
éi =Y, 'f(ti ; ‘90|_s)’

is used to produce an estimate of O (Park & Mitchell, 1980)
given by

n
Z“’"i,jghi—l
J

_ =2
Pi= " :
A2
&
2

j=

In the second stage, by using the mean of 5,,..., 5 .
denoted p, to estimate the common correlation ,, a modi-
fied model (4)

2,=9(,:0)+3,; i=L...r, “)
where

1
;= @=p"2y; 5 J=1
yi,j_ﬁyi,j—l »J=2..0,

and

o0 = LAV 10 =l
f(ti,j;e)_ﬁf(ti,j,ﬁg) ;=20

is constructed and fitted using OLS.

The TS procedure produces estimators with asymp-
totic properties similar to OLS estimators (Gallant & Goebel,
1976) and, unlike in CLS, no observations are excluded from
the analysis.

2.3 Nonlinear functions

Although several functions can be found in the
literature to model data displaying a sinusoidal pattern with a
decreasing trend over time, in this paper the following three
functions are considered as they display patterns consistent
with real gene expression data. The one-sine function is a
modified version of I1zumo et al. (2003) with added decreasing
trend

x|
f(t;;0)=a+pt, +aexp(—dti‘j)sm(—”+cl)),
T

where 7 is the period, @ is the amplitude, @ represents the
phase of the sine wave, d is a damping parameter, ¢ is an
intercept and ,B is a slope of the linear trend. The song-sine
function modified from Kyriacou and Hall (1980) extends the
one-sine function to allow a linear constant displacement @,

in the amplitude, and is given by
27t ;

f(t;;0)=a+ Bt +(a, +aexp(-dt ;))sin( +®).

1
T
Finally, in order to deal with the potential of more than one
sinusoidal pattern, the two-sine with damping function

27t

f(t,;;0) = a+ Bt ; +aexp(-dt ;)sin( +®)+
T
. 2mt
bsin(— + @),
1%

where b and U are the amplitude and the period of the
second sine term, respectively, is proposed as a novel
function. Note that the possibility of more than one sine
pattern has arisen in discussions with subject matter spe-
cialists.

3. Simulation Study

A simulation study was carried out to assess the
methods in a variety of scenarios, including cases where the
fitted model is incorrectly specified. In order to mimic the
correlations in circadian gene expression over time, datasets
were simulated with various levels of correlation O in the

AR(1) process. In particular, the ith dataset (j =1,...,r) of size-
n sample is generated from

f(ti,j?0)+5i,j
- PYijat f(ti,j;o)_pf(ti,j—1;0)+§i,j

;=1
; j=2,...,n,

i

where é‘ij are independent and identically distributed

N(0,5?) -
Results presented in this paper are for simulated
datasets generated under the parameter values @ shown in

Table 1. In addition, the AR (1) parameters are
p=(0,0.250.75) and 42 =25. For each study, repeated

measures are simulated for r =4 independent individuals at
times tij =0,1.5,...,78, so that n=53. The parameter va-

lues were selected so that the simulated datasets resemble
observed circadian expression data.

For instance, the value =24 is in the range of
circadian period length (20-28h) determined by Yang and Su
(2010). Shown in Figure 1 are examples of synthetic datasets
generated by the three models in the previous section.

For each simulation run, a total of 10,000 replicate
studies are generated and analysed using R (R Core Team,
2013) with the nls function based on Gauss-Newton algo-
rithm; see Ritz and Streibig (2008) and Crawley (2013) for
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Table 1.  The three sets of parameter values used in the simulations.
o
Model
T v a a b @ d a B
one-sine 24 - - 180 - 031 0.07 330 -3
song-sine 24 - 0.5 180 - 031 007 330 -3
two-sine with damping 24 35 - 180 05 031 0.07 330 -3
2 8 g
i ik i
g : ! < i . 3 L |
88 i 281 g2 4
° 8 . - - 5 G - S ]
3°*1 * g I 3 TS e
g 1 & Sq| Lo g4 ] °
S S £ W
@ g CER * @ £
8 8 8
T T : r ] T T T T 4 - r y
0 20 40 60 80 0 20 40 60 80 0 20 40 ) 80
hours hours hours
(a) (b) (c)
Figure 1.  Example of the synthetic time-series datasets generated by the following functions: (a) one-sine, (b) song-sine and (c) two-sine with

damping with AR(1) errorsat p = 0.75 and 52 = 25.

details. In order to assess the efficacy of each method,
parameter estimates were investigated and compared in terms
of bias, relative difference between the standard deviation of
estimates from replicate studies and the mean of standard
errors produced by non-linear least squares fitting, root mean
square errors, and coverage probability.

The main parameter of interest to identify from
circadian rhythm data is the period 7 , since it is used to
predict the body's response to treatment and in the design of

proper protocols for drug administration. Let fm denote the
period estimate from the mth simulation run, and let 7 be the

average of 7 :m=12...,M . The bias of the estimator is
defined as

%Bias = 1oo[wj
T

=100 (MJ.
T

Similarly, to assess the bias in variance estimates,
the relative difference between the standard deviation and the
standard error for the estimate is given by

st =100 L
T

M
where gy - \/ﬁZ(fm_mean(f))z and
T4m=1

M
SE(?) = %ZSE(T}) , with SE(#,) the standard error of
m=1

the period estimate for the mth simulated dataset.

Efficiency of the method is measured by the root
mean square error

RMSE = (SD(?))’ +(Bias(?))’.

Finally, the estimate and the standard error are
combined to construct the 100(1-«)% confidence interval

(CI) for T given by

7,—t, SE(7,) <7t <7, +t, SE(7,),
E,v E,v
where t s the upper % quantile of student t distribution
E,V

with V degrees of freedom. How often the confidence interval
covers the true value of 7 provides an estimate of the co-
verage probability for 7 and hence a measure of statistical
inference validity.

Note that the Gauss-Newton algorithm does not
necessarily convergence in all instances, so M is the total

number of successful fits with converged parameters, and this
differs between the different methods.
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4. Results

This section presents simulation results from
conditional least squares and two-stage methods in fitting the
models described in Section 2.3. Also presented for com-
parison are the results from de-trending. Evaluations are pre-
sented both with the same type of model generating the data
and fit to the data, as well as for cases with incorrectly
specified fitted model. The latter cases reflect real-life
conditions, where the data generating model is unknown, and
help critically evaluate the robustness of the methods against
model mis-specification.

W. Pukdee et al. / Songklanakarin J. Sci. Technol. 40 (3), 692-700, 2018

Table 2 summarizes the performance in terms of
bias (%Bias), relative difference (%Diff) and root mean
square error (RMSE) for the methods, with the data generated
by the one-sine model. The results show that for the correct
model type at all © (0.00, 0.25 and 0.75), estimates from
DET are negatively biased. Moreover, DET overestimates the
variance of 7 and is consequently less efficient in terms of
the RMSE. This leads to poor coverage probability, as shown
in Figure 2 (a). On the other hand, CLS and TS produce
unbiased estimates and good variance estimates. Consequent-
ly, their coverage probabilities are close to the expected value.

Table 2. Percentage bias, percentage relative difference and root mean square error of the period estimate 7 for DET, CLS and TS
procedures when the true model is one-sine with 7 =24,
) DET CLS TS
Fitted model P - - - - - -
%Bias %Diff RMSE  %Bias  %Diff RMSE  %Bias  %Diff RMSE
) 0.00 -1.3481 -57.8739  0.3460 0.0001 1.3136 0.1352 -0.0010 2.8511 0.1107
one-sine 0.25 -1.3402 -47.9025  0.3558 0.0057 2.1349 0.1857  0.0034 4.3817 0.1354
0.75 -1.3114 -14.6151  0.4097 0.0239 49797 0.4021 0.0242 8.1855 0.2287
) 0.00 -0.7153 -43.1825  0.2461 0.0006 1.9455 0.1366  0.0001 3.5042 0.1116
song-sine 0.25 -0.6866 -24.5922  0.2866 0.0037 3.5934 0.1888  0.0027 5.5995 0.1367
0.75 -0.2137 104.4706  0.6605 0.0341 10.9491 0.4228 0.0266 11.2017 0.2332
0.00 -1.0407 39.7004  0.4935 -0.0189 4.4714 0.1463 -0.0398 6.8993 0.1229
0.25 -0.9155 74.0320  0.5802 -0.0037 5.5841 0.2015 -0.0537 9.1860 0.1516
two-sine with 0.75 -0.8384 96.0890  0.6624 0.1654 8.6487 0.4588 -0.0250  15.0083  0.2635
damping 0.00 -163.4983 8013.8058 67.9124 34.7031 233.4452 24.0473 36.4217 279.8772 23.5832
0.25 -159.3910 8328.1164 67.4969 33.7229 360.1641 31.1765 35.3224 290.9461 24.7837
0.75 -142.6832 8043.6805 60.0745 34.2731 2625797 30.4309 31.1163 383.1758 33.7434

Note: The period estimates for 7 and U when the fitted model is two-sine with damping.

1.00 4

0.95 -
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0.75

1.00
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0.85
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1.00
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0.85 -

0.75

0.75

0.50

0251 e

0.00

0.25
4

(©
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Figure 2. Plots of coverage probability of 95% confidence interval for the period 7 using DET (solid line), CLS (dashed line) and TS
(dotted line) when the true model is one-sine and the fitted model is (a) one-sine, (b) song-sine and (c) two-sine with damping.
Coverage probability plots for U in the two-sine with damping model are shown in (d).
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For cases where the fitted model was mis-speci-
fied, when the simple song-sine function was used to fit
the data, DET produced estimates that are less biased than
when the correct model is fitted. However, the results also
suggest that standard errors of parameter estimates are
overestimated for low and moderate correlations and un-
derestimated for strong correlations. This leads to overall
poor coverage of the confidence intervals, as shown in Fi-
gure 2 (b). When the fitted model is two-sine with dam-
ping, both 7 and the standard error of 7 are underesti-
mated by the DET method. On the other hand, both CLS
and TS produced unbiased estimates in all cases but they
tend to slightly underestimate the variances, especially
when the data are strongly correlated, see Table 2. Also, as
Figures 2 (a, b and c) show, CLS and TS procedures pro-
duce confidence intervals that are reasonably consistent
with the theoretical expectations, albeit with slightly de-
creasing coverage as correlation increases.

All the methods perform poorly in estimation of
the second period term o when the fitted model is two-
sine with damping. DET severely underestimates, whereas
CLS and TS consistently overestimate v , and all these me-
thods underestimate the standard error. Not surprisingly,
this estimation bias leads to the poor coverage probabilities
shown in Figure 2 (d).

Following conclusions when the true models are
song-sine and two-sine with damping can be drawn from
Figures 3-4 and Tables 3-4. In the simulations with data
generated under the song-sine model, results in Figure 3
and Table 3 show that DET again performs quite poorly,
whether or not the fitted model is correctly specified. On
the other hand, the findings for CLS and TS are consistent
with the earlier results in Figure 2 and Table 2.

Table 4 shows simulation the results when the
true model has an extra sine term with as second period
(r=24and p=35). The results again show that even
though the fitted model was correctly specified, DET con-
sistently underestimated both periods and produced va-
riance estimates that are too small. In contrast, by expli-
citly modelling correlation in the data, the proposed CLS
and TS methods perform far better in all cases. Moreover
the coverage probabilities under CLS are close to 0.95 but,
as TS produces slight underestimates of variances (as
given by %Diff), its coverage probability shown in Figure
4 is slightly less than expected.

In summary, CLS and TS give more efficient
estimates and are comparatively robust against model mis-
specification. This reduces bias in estimates of the circa-
dian period and gives better coverage probabilities. On the
other hand, by not properly accounting for the correlation,
DET has biases in estimates of period and standard error.

5. Example

To compare the DET method with the proposed
CLS and TS methods in real-life situations, all three methods,
were applied to data that, as explained in the introduction,
comes from experiments run over 78 hours with a drug treat-

1.00 1

0.95 1

0.85

0.75
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1.00

0.95 -
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0 025 0.75 0 0.25 0.75
[ p
(a) (b)
1.00 0.75
L
0.50
0.85 -
0254 .-
0.75 4
T T T 0.00 T T T
0 0.25 0.75 0 025 075
P p
(© (d)
Figure 3. Plots of coverage probability of 95% confidence interval

for the period 7 using DET (solid line), CLS (dashed
line) and TS (dotted line) when the true model is song-
sine and the fitted model is (a) one-sine, (b) song-sine
and (c) two-sine with damping. Coverage probability
plots for U in the two-sine with damping model are

shown in (d).
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Figure 4.  Plots of coverage probability of 95% confidence interval

for the period 7 using DET (solid line), CLS (dashed
line) and TS (dotted line) when the true model is two-
sine with damping and the fitted model is (a) one-sine,
(b) song-sine and (c) two-sine with damping. Coverage
probability plots for U in the two-sine with damping

model are shown in

(@).
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Table 3. Percentage bias, percentage relative difference and root mean square error of the period estimate 7 for DET, CLS and TS
procedures when the true model is song-sine with 7 =24,

DET CLS TS
Fitted model 1%

%Bias %Diff RMSE %Bias %Diff RMSE  %Bias %Diff RMSE

0.00 -1.2403 -58.5760 0.3205 0.0564 0.4097 0.1325 0.0364 2.4322 0.1089

one-sine 0.25 -1.2461 -48.5675 0.3336 0.0545 1.2011 0.1812 0.0299 4.5569 0.1337
0.75 -1.2326 -14.8026 0.3923 0.0738 3.6574 0.3897 0.0291 8.7886 0.2266

0.00 -0.7335 -46.3534  0.2399 -0.0007 1.8875 0.1328 -0.0009 3.5155 0.1091

song-sine 0.25 -0.7045 -30.2979 0.2714 0.0034 3.6546 0.1833 0.0019 5.6232 0.1338
0.75 -0.3208 87.5651 0.5989 0.0270 10.3293 0.4068 0.0259 11.1047 0.2282

000 -1.1211 53314 04112 00470 24027 01397 -0.0049 43776  0.1163

0.25 -0.9925 47.9338 0.5033 0.0857 3.6965 0.1940 -0.0143 7.0522 0.1449

two-sine with 0.75 -0.8836 842489 06193 02280  7.4677 04459 00087  14.0669  0.2570
damping 0.00 -153.3599 7803.6494 62.4126 39.6778 262.1625 26.2878 38.5423 239.0626 24.4712
0.25 -146.9491 7327.3300 55.6965 33.7229 360.1641 31.1765 35.3224 269.1014 27.2147

0.75 -133.8591 7826.7206 55.8487 38.7591 269.6656 31.7897 36.5362 337.7400 36.2693

Note: The period estimates for 7 and U when the fitted model is two-sine with damping.

Table 4. Percentage bias, percentage relative difference and root mean square error of the period estimate T
procedures when the true model is two-sine with damping with - =24 and v =35.

for DET, CLS and TS

DET CLS TS
Fitted model
%Bias %Diff RMSE  %Bias %Diff RMSE  %Bias %Diff RMSE
0.00 -1.2168 -57.5719  0.3177 0.2142 2.1370 0.1468 0.2055 3.3333 0.1224
one-sine 0.25 -1.2087 -47.5178  0.3290 0.2221 3.2454 0.1969 0.2073 4.8921 0.1457
0.75 -1.1777 -13.8429  0.3895 0.2546 6.6532 0.4170 0.2190 8.7644 0.2371
0.00 -0.8361 -43.8445 0.2661  -0.0169 2.3665 0.1381 0.0535 3.7040 0.1133
song-sine 025 -0.7988  -21.9388 0.3098 -0.0404 44336  0.1914  0.0698  6.0290  0.1391
0.75 -0.2610 116.3003 0.7000  -0.0677 12.716 0.4310 0.1225 125079  0.2389
0.00 -1.2081 30.1877  0.4925 -0.0282 2.3439 0.1410 -0.0467 4.1905 0.1185
0.25 -1.0585 64.8227  0.5701 0.0016 5.1759 0.1979 -0.0395 7.8307 0.1483
two-sine with 075  -1.0024 837758 06399 01259 91935 04581 00296 15.9557  0.2655
damping 0.00 -135.2289 8163.4433 74.4227 -3.1040 2458983 17.2457 -2.5064 188.3904 15.7257
0.25 -132.2588 8097.1445 70.3876 -5.3984 255.0431 23.2962 -4.0577 245.8808 20.4272
075 -1235109 8008.4038 65.1504 -6.7022 258.6963 29.4377 -10.5172 422.4302 36.1448
Note: The period estimates for 7 and U when the fitted model is two-sine with damping.
ment. As mentioned before, the same treatment was applied to x
four sets of cells, each measured every 1.5 hours. The g | x
intensity of bioluminescence was measured as indicator of a e K
gene’s expression level. In the data analysis, only those .‘g o L2 N
responses that showed an effect at Oh were included. A scatter < gL .°
plot of the data displays cyclic patterns with a linear de- £ oo
creasing trend over time, as seen in Figure 5. The sinusoidal B gl ©
functions described in Section 2 with autoregressive errors of %‘ v &32 X2
order 1, AR (1), were tested for modelling these data. 5 o %Z;éx ﬁaﬁéioioooo °
In order to compare the performances of DET with E & ae® o7 %o 20 o0
the proposed methods, CLS and TS, Table 5 summarizes the &&*ﬁ%@ﬁ?ﬁo o A
analyses in terms of the 95% confidence interval (CI) for 7 , 8 - s

and the residual standard errors & from DET, CLS and TS 2‘0 4‘0 6‘0 8‘0

approaches. Table 6 shows the lack of fit tests comparing
residuals from the nonlinear models to residuals for one-way
ANOVA models of the replicate observations at each time
point that account for the correlation structure. Plots of the
fitted models are given in Figure 6.

hours

Figure5.  Circadian gene expression over time as measured by

intensity of light, in relative units. The four replicates at
each time point are shown with different symbols.
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Table 5. Estimates and Cl's of the circadian period in a real gene expression dataset obtained using three different models fitted
by DET, CLS and TS procedures.
DET CLS TS
Fitted model
95% ClI o 95% ClI o 95% ClI o

one-sine T 2474+ 1.14 33.37 24.15+ 1.89 26.39 26.50 = 1.63 27.74
song-sine 4 25881+ 1.10  32.99 23971145 2635 2689t 173 27.73

two-sine with 4 24751115 3343 24801248 2645 26451146  27.44
damping 1) -6.1510.23 29.38+3.76 55.16 & 8.54

Table 6. Lack of fit test for one-sine, song-sine and two-sine with damping models fitted by DET, CLS
and TS.
) DET CLS TS
Fitted model
F p-value F p-value F p-value
one-sine 2.561 8.703E-06 1.425 0.062 1.334 0.099
song-sine 2.451 2.467E-05 1.416 0.067 1.353 0.090
two-sine with 2.638 6.011E-06 1.464 0.052 1.141 0.274
damping
. g 1
E E E
2 2 2
5 5 5
2 2 2
8 L 2
£ = =
T T
20 40 60 80 20 40 80 80
hours hours hours
@ (b) ()
Figure 6. Fitted models (a) one-sine, (b) song-sine and (c) two-sine with damping to gene expression observations using DET (solid line),

CLS (dashed line) and TS (dotted line) procedures.

The results show that for all the fitted models, the
CLS estimates of the circadian periods are approximately 24 h
with standard errors that are smaller than those obtained using
DET and TS. The TS approach produces period estimates that
are approximately 26 h with moderate residual errors. In
contrast, the DET method produces period estimates around
25 h with the largest residual standard errors.
The lack of fit tests show that the CLS and TS methods
provide good fits to the data, since there is no evidence of lack
of fit. However DET fit the data poorly, as presented in Table
6. This is substantiated by plots of the fitted models, showing
that the proposed methods produced the best fit to the
observed cyclic pattern, as shown in Figure 6.

6. Conclusions

In this paper, we compared de-trending (DET) as
the current baseline method for analyzing circadian rhythms in
gene expression profiles to conditional least squares (CLS)
and two-stage (TS) estimation as alternative methods. Simu-

lation results clearly suggest that DET produced biased
estimates of the circadian period and poor variance estimates,
leading to invalid statistical inference. On the other hand, the
proposed methods are not only much more efficient and
robust against model mis-specification, but also had reduced
bias in estimates of the circadian period and more reliable
confidence intervals. The TS method produced slightly poorer
confidence intervals than CLS in cases with high correlation,
due to underestimated standard errors of parameter estimates.
Although both proposed alternative methods provided good
fits to real data, CLS produced more valid confidence
intervals. In further work, we will propose methods for com-
paratively accurate variance estimation by maximum likely-
hood, and will explore more sophisticated models capable of
capturing complex data patterns.

The work here clearly illustrates de-trending to
address non-stationarity of correlated data, although com-
monly used, should be undertaken with caution. In contrast,
methods that explicitly account for the correlation, such as
conditional least squares and two-stage estimation of non-
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linear regression models, are viable and potentially more
reliable and robust against model mis-specification. Finally,
approaches such as CLS and TS are relatively straightforward
to implement using standard statistical software packages, and
their usage, for example in human drug development studies
to understand circadian rhythms interfering with drug
metabolism, should be encouraged.
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