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Abstract 
 
Circadian clocks regulate biological behaviours, such as sleeping and waking times, that recur naturally on an 

approximately 24-hour cycle. These clocks tend to be influenced by a variety of external factors, sometimes to the extent that it 

can have an impact on health. As an example in pharmacology, the effects of chemicals on the circadian rhythm in patients can 

be key to clarifying the relationship of drug efficacy and toxicity with dosing times. While pre-clinical experiments conducted to 

elucidate these effects may produce correlated data measured over time, such as gene expression profiles, existing methods for 

fitting parametric nonlinear regression models are, however, inadequate and can lead to unreliable, inconsistent parameter 

estimates and invalid inference. De-trending is widely used as a pre-processing step to address non-stationarity in the data, before 

fitting models based on the assumption of independence. However, as it is unclear that this approach properly accounts for the 

correlation structure, alternative methods that specifically model the correlation in the data based on conditional least squares and 

a two-stage estimation procedure are proposed and evaluated. A simulation study covering a wide range of scenarios and models 

shows that the proposed methods are more efficient and robust against model mis-specification than de-trending and, 

furthermore, they reduced estimation bias in the circadian period and provide more reliable confidence intervals. 

 

Keywords: correlated gene expression data, de-trending method, nonlinear regression 

 

 

1. Introduction 
 

Most biological organisms, including humans, dis-

play an internal process (Erzberger et al., 2013) that regulates 

their behaviour according to the time of day. The internal 

clocks that determine the natural recurrence of biological 

processes, such as sleep and wake times, on a twenty-four-

hour cycle are called circadian clocks (Cammack et al., 2006). 

In the study and development of drugs, circadian rhythms  

play a key role in understanding the relationship of efficacy 

and toxicity with dosing times (Paschos et al., 2010). 

Experimental adjustments of administration times of drugs  

 

can minimize the toxicity and maximize the efficacy of drugs. 

In addition, the cited reference provides examples of how 

circadian rhythms may affect the treatment of hypertension 

and cancer. 

A gene is said to be expressed when it produces a 

functional product, such as protein molecules, used in an 

organism's cells. Bioluminescence is used in quantifying the 

gene expression of a cell. To generate bioluminescence an 

oxidative enzyme, in the case of circadian rhythms luciferase 

(Allard & Kopish, 2008), is implanted in the membrane of a 

living cell to produce light. The light emission is based on the 

conversion of chemical energy to radiation and is very 

efficient in terms of the released heat, i.e., most of the 

chemical energy is converted to radiation. Produced light 

intensity from the cells is then measured, and is used as a 

response variable in relevant experiments (Albert et al., 2008). 
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These technologies allow scientists to detect changes in the 

expression of genes over time. Responses arising from the 

study of circadian gene expression are measurements of 

intensity, in relative units, over a course of time.  

The data used in this paper were produced in the 

pre-clinical investigation phase of drug development by a 

pharmaceutical company. Human cells in a well-plate were 

treated with a chemical compound and the gene expression 

profiles were recorded. The experiment was replicated four 

times and the gene expression level in each well was mea-

sured every 1.5 hours for 78 hours. The cells within each well 

were synchronized because the measured expression is 

population average for a well, and our goal was to inspect 

circadian rhythms. This experimental design gives serially 

correlated observations for each well. Of interest in this paper 

is the development of models that efficiently capture the 

oscillatory time-pattern of gene expression while accounting 

for the correlation. Of particular interest is estimation of the 

period, as this provides information about the effects of the 

chemical compound on the circadian rhythm.  

Usually the response level in a circadian gene 

expression experiment decreases with time. To adjust the 

observations for this trend, a pre-processing step is proposed 

by Yang and Su (2010) to remove the linear trend by using 

simple regression, and then the de-trended data are modelled 

by ordinary least squares (OLS). De-trending is widely used to 

fit models for correlated gene expression data, and it is 

assumed to produce independent errors based on stationarity 

assumptions. In order to address non-stationary correlated 

responses, the de-trended responses are fit with sinusoidal 

models (Izumo et al., 2003, 2006; Kyriacou & Hall, 1980; 

Maier et al., 2009) assuming independent errors. However, it 

is unclear that this de-trending (DET) method is adequate to 

account for the potential correlations in the responses, and 

further, de-trending produces correlated residuals. Properly 

accounting for correlated responses is important, as failure to 

do so can lead to biased parameter estimates and under-

estimation of their standard errors (Bender & Heinemann, 

1995). 

Conditional least squares (Bates & Watts, 1988) and 

two-stage estimation approach (Seber & Wild, 2003) are 

alternative strategies for fitting regression models to corre-

lated data. These two methods are not based on time series 

assumptions, but rather they intend to address the correlation 

problem by explicitly modelling the correlation structure. 

Both conditional least squares and two-stage estimation 

methods utilize least squares procedures, and therefore benefit 

from the standard distributional properties of least squares 

estimators. They also tend to be computationally tractable. 

Neither method has previously been proposed in the literature 

for modelling circadian rhythms in correlated gene expression 

data.  

This paper evaluates the conditional least squares 

and the two-stage estimation methods in nonlinear regression 

modelling of correlated gene expression data displaying an 

oscillatory pattern. The focus is on efficiency and reliability of 

these methods in estimating the oscillation period. The use of 

nonlinear models is novel to this application area. By directly 

modelling the trend and correlation pattern in the data, the 

limitations of the de-trending approach described above can 

be avoided. Comparisons of the proposed methods with the 

de-trending approach over a range of scenarios and models, 

including situations where the fitted model is incorrectly 

specified, are provided based on simulations. 

 

2. Methods 
 

Consider the nonlinear regression model of the 

relationship between an independent variable t and a depen-

dent response variable y measured at n time points for each of 

r individuals, 
 

( ; ) ; 1, , ,i i i i r  y f t                                    (1) 

 

where 
,1 ,( , , )i i i ny y y  is the observed response vector 

for the ith individual,
,1 ,( , , )i i i nt t t is a time vector, 

,1 ,( ) ( ( ; ), , ( ; ))i i nf t f t f     for some nonlinear function  

f of t with an unknown parameter vector   and 

,1 ,( , , )i i i n   is an error vector. Assuming the repeated 

measures on each individual follow a stationary autoregres-

sive process of order 1, AR(1), the error components then are 
linearly related between time points j and j-1  

, , 1 , ; 1, , ,i j i j i j j n                      (2) 

 

where 1   is the correlation between , 1i j   and ,i j , and 

,i j  are assumed to be normal, independent and identically 

distributed with zero mean and common variance 2 . 

Two possible ways to fit an AR(1) model when no 

assumptions are made on the joint distribution of the error 

terms are conditional least squares and the two-stage 

estimation method. Both methods, which are described below, 

fit the nonlinear regression model by least squares. 

 
2.1 Conditional least squares estimation 
 

The least squares estimation method is adapted to 

correlated responses by replacing the expected response from 

the model by a conditional expectation in the sum of squared 

deviations (Klimko & Nelson, 1978). In the case of correlated 

errors coming from a stationary AR(1) process in Equation (2) 

the conditional least squares (CLS) model can be shown to 

obey 
 

, , , 1 , 1 ,( ; ) ( ( ; )) ; 2, , ,i j i j i j i j i jy f t y f t j n         (3) 

, , 1 , , 1( ; ) ( ; ).i j i j i j i jy y f t f t       

 

As normally distributed errors in an autoregressive 

model makes maximum likelihood equivalent to least squares 

estimation, the CLS method produces parameter estimates 

with similar properties as maximum likelihood estimators. In 

particular, the estimates obtained are consistent and asymp-

totically normal under mild regularity conditions (Klimko & 

Nelson, 1978). Note that the degrees of freedom for this 

model (3) are reduced by the first order autoregressive pro-

cess, which impacts precision of the estimates. In addition, the 

increased number of model parameters increases the risk of 

convergence problems in iterative fitting. 
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2.2 Two-stage estimation 
 

A two-stage (TS) approach that consists of two 

ordinary least squares (OLS) procedures, for estimating the 

parameters in nonlinear time series regression with autore-

gressive errors, has been proposed (Gallant & Goebel, 1976). 

Applied to the problem considered here, first the correlation 

structure is ignored and the model (1) is fitted by OLS to 

produce estimates 
OLS̂ of   and fitted values

, OLS
ˆ( ; )i jf t  . 

The residual vector for the ith individual, 

OLS
ˆˆ - f ( ; ),i i i y t       

 

is used to produce an estimate of   (Park & Mitchell, 1980) 

given by 
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In the second stage, by using the mean of 
1

ˆ ˆ, , r  , 

denoted ̂ , to estimate the common correlation  , a modi-

fied model (4) 
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is constructed and fitted using OLS. 

 

The TS procedure produces estimators with asymp-

totic properties similar to OLS estimators (Gallant & Goebel, 

1976) and, unlike in CLS, no observations are excluded from 

the analysis. 

 

2.3 Nonlinear functions 
 

Although several functions can be found in the 

literature to model data displaying a sinusoidal pattern with a 

decreasing trend over time, in this paper the following three 

functions are considered as they display patterns consistent 

with real gene expression data. The one-sine function is a 

modified version of Izumo et al. (2003) with added decreasing 

trend 

,

, , ,

2
( ; ) exp( )sin( ),

i j

i j i j i j

t
f t t a dt


 


      

where is the period, a is the amplitude,   represents the 

phase of the sine wave, d is a damping parameter,  is an 

intercept and   is a slope of the linear trend. The song-sine 

function modified from Kyriacou and Hall (1980) extends the 

one-sine function to allow a linear constant displacement sa  

in the amplitude, and is given by 

,

, , ,

2
( ; ) ( exp( ))sin( ).

i j

i j i j s i j

t
f t t a a dt


 


       

 

Finally, in order to deal with the potential of more than one 

sinusoidal pattern, the two-sine with damping function 
 

,

, , ,

,

2
( ; ) exp( )sin( )

2
sin( ),

i j

i j i j i j

i j

t
f t t a dt

t
b


 







      

 


 

 

where b  and   are the amplitude and the period of the 

second sine term, respectively, is proposed as a novel 

function. Note that the possibility of more than one sine 

pattern has arisen in discussions with subject matter spe-

cialists. 

 

3. Simulation Study 
 

A simulation study was carried out to assess the 

methods in a variety of scenarios, including cases where the 

fitted model is incorrectly specified. In order to mimic the 

correlations in circadian gene expression over time, datasets 

were simulated with various levels of correlation    in the 

AR(1) process. In particular, the ith dataset ( 1, ,i r ) of size-

n sample is generated from 

 

, ,

,

, 1 , , 1 ,

( ; ) ; 1

( ; ) ( ; ) ; 2, , ,

i j i j

i j

i j i j i j i j

f t j
y

y f t f t j n



   

 
 

   



 
 

 

where ,i j  are independent and identically distributed 

2(0, )N  . 

Results presented in this paper are for simulated 

datasets generated under the parameter values   shown in 

Table 1. In addition, the AR (1) parameters are 

(0,0.25,0.75)   and 2 25  . For each study, repeated 

measures are simulated for 4r   independent individuals at 

times 
, 0,1.5, ,78,i jt   so that 53n  . The parameter va-

lues were selected so that the simulated datasets resemble 

observed circadian expression data. 

 For instance, the value 24   is in the range of 

circadian period length (20-28h) determined by Yang and Su 

(2010). Shown in Figure 1 are examples of synthetic datasets 

generated by the three models in the previous section. 

 For each simulation run, a total of 10,000 replicate 

studies are generated and analysed using R (R Core Team, 

2013) with the nls function based on Gauss-Newton algo-

rithm; see Ritz and Streibig (2008) and Crawley (2013) for 
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                                     Table 1.   The three sets of parameter values used in the simulations. 

 

Model 

          

    
s

a
 

a  b    d      

 

one-sine 
 

24 
 

- 
 

- 
 

180 
 

- 
 

0.31 
 

0.07 
 

330 
 

-3 

song-sine 24 - 0.5 180 - 0.31 0.07 330 -3 
two-sine with damping 

 

24 
 

35 
 

- 
 

180 
 

0.5 
 

0.31 
 

0.07 
 

330 
 

-3 
 

 

 

 
Figure 1. Example of the synthetic time-series datasets generated by the following functions: (a) one-sine, (b) song-sine and (c) two-sine with 

damping with AR(1) errors at 0.75   and 2 25  . 

 

 

details. In order to assess the efficacy of each method, 

parameter estimates were investigated and compared in terms 

of bias, relative difference between the standard deviation of 

estimates from replicate studies and the mean of standard 

errors produced by non-linear least squares fitting, root mean 

square errors, and coverage probability. 

The main parameter of interest to identify from 

circadian rhythm data is the period  , since it is used to 

predict the body's response to treatment and in the design of 

proper protocols for drug administration. Let ˆ
m  denote the 

period estimate from the mth simulation run, and let ̂  be the 

average of ˆ ; 1,2 ,m m M  . The bias of the estimator is 

defined as 
 

ˆmean( ) -
%Bias = 100

ˆBias( )
100 .

 







 
 
 

 
  

 

 

 

Similarly, to assess the bias in variance estimates, 

the relative difference between the standard deviation and the 

standard error for the estimate is given by 

 

ˆ ˆSD( ) -SE( )
%Diff =100 ,

ˆSE( )

 



 
 
 

 

 

where   2

1

1
ˆ ˆ ˆSD( ) = ( mean( ))

1

M

m

mM
  







    and  

1

1
ˆ ˆSE( ) = SE( )

M

m

mM
 



 , with ˆSE( )m  the standard error of  

the period estimate for the mth simulated dataset. 
 

 

Efficiency of the method is measured by the root 

mean square error  
 

   
2 2

ˆ ˆRMSE = SD( ) Bias( ) .   

 
Finally, the estimate and the standard error are 

combined to construct the 100(1 )%  confidence interval 

(CI) for   given by 

 

, ,
2 2

ˆ ˆ ˆ ˆSE( ) SE( ),m m m m
v v

t t          

where 
,

2
v

t  is the upper 
2


 quantile of student t distribution 

with v  degrees of freedom. How often the confidence interval 

covers the true value of   provides an estimate of the co-

verage probability for   and hence a measure of statistical 

inference validity. 

Note that the Gauss-Newton algorithm does not 

necessarily convergence in all instances, so M is the total 

number of successful fits with converged parameters, and this 

differs between the different methods. 
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4. Results 
 

This section presents simulation results from 

conditional least squares and two-stage methods in fitting the 

models described in Section 2.3. Also presented for com-

parison are the results from de-trending. Evaluations are pre-

sented both with the same type of model generating the data 

and fit to the data, as well as for cases with incorrectly 

specified fitted model. The latter cases reflect real-life 

conditions, where the data generating model is unknown, and 

help critically evaluate the robustness of the methods against 

model mis-specification. 

Table 2 summarizes the performance in terms of 

bias (%Bias), relative difference (%Diff) and root mean 

square error (RMSE) for the methods, with the data generated 

by the one-sine model. The results show that for the correct 

model type at all   (0.00, 0.25 and 0.75), estimates from 

DET are negatively biased. Moreover, DET overestimates the 

variance of ̂  and is consequently less efficient in terms of 

the RMSE. This leads to poor coverage probability, as shown 

in Figure 2 (a). On the other hand, CLS and TS produce 

unbiased estimates and good variance estimates. Consequent-

ly, their coverage probabilities are close to the expected value. 

 

 

    Table 2. Percentage bias, percentage relative difference and  root mean square error of the period estimate ̂  for DET, CLS and TS 

procedures when the true model is one-sine with 24.   

 

Fitted model   
 DET   CLS   TS  

%Bias %Diff RMSE %Bias %Diff RMSE %Bias %Diff RMSE 

one-sine 

 
 

0.00 
 

-1.3481 
 

-57.8739 
 

0.3460 
 

0.0001 
 

1.3136 
 

0.1352 
 

-0.0010 
 

2.8511 
 

0.1107 

  0.25 -1.3402 -47.9025 0.3558 0.0057 2.1349 0.1857 0.0034 4.3817 0.1354 

 0.75 -1.3114 -14.6151 0.4097 0.0239 4.9797 0.4021 0.0242 8.1855 0.2287 

song-sine 

 
 

0.00 
 

-0.7153 
 

-43.1825 
 

0.2461 
 

0.0006 
 

1.9455 
 

0.1366 
 

0.0001 
 

3.5042 
 

0.1116 

  0.25 -0.6866 -24.5922 0.2866 0.0037 3.5934 0.1888 0.0027 5.5995 0.1367 

 0.75 -0.2137 104.4706 0.6605 0.0341 10.9491 0.4228 0.0266 11.2017 0.2332 

two-sine with 

damping 

 
 

0.00 
 

-1.0407 
 

39.7004 
 

0.4935 
 

-0.0189 
 

4.4714 
 

0.1463 
 

-0.0398 
 

6.8993 
 

0.1229 

  0.25 -0.9155 74.0320 0.5802 -0.0037 5.5841 0.2015 -0.0537 9.1860 0.1516 

 0.75 -0.8384 96.0890 0.6624 0.1654 8.6487 0.4588 -0.0250 15.0083 0.2635 
 

 

0.00 
 

-163.4983 
 

8013.8058 
 

67.9124 
 

34.7031 
 

233.4452 
 

24.0473 
 

36.4217 
 

279.8772 
 

23.5832 

  0.25 -159.3910 8328.1164 67.4969 33.7229 360.1641 31.1765 35.3224 290.9461 24.7837 

 0.75 
 

-142.6832 
 

8043.6805 
 

60.0745 
 

34.2731 
 

262.5797 
 

30.4309 
 

31.1163 
 

383.1758 
 

33.7434 
 

        
    Note: The period estimates for  and   when the fitted model is two-sine with damping. 

 

 
 

Figure 2. Plots of coverage probability of 95% confidence interval for the period  using DET (solid line), CLS (dashed line) and TS 

(dotted line) when the true model is one-sine and the fitted model is (a) one-sine, (b) song-sine and (c) two-sine with damping. 

Coverage probability plots for   in the two-sine with damping model are shown in (d). 
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For cases where the fitted model was mis-speci-

fied, when the simple song-sine function was used to fit 

the data, DET produced estimates that are less biased than 

when the correct model is fitted. However, the results also 

suggest that standard errors of parameter estimates are 

overestimated for low and moderate correlations and un-

derestimated for strong correlations. This leads to overall 

poor coverage of the confidence intervals, as shown in Fi-

gure 2 (b). When the fitted model is two-sine with dam-

ping, both ̂  and the standard error of ̂ are underesti-

mated by the DET method. On the other hand, both CLS 

and TS produced unbiased estimates in all cases but they 

tend to slightly underestimate the variances, especially 

when the data are strongly correlated, see Table 2. Also, as 

Figures 2 (a, b and c) show, CLS and TS procedures pro-

duce confidence intervals that are reasonably consistent 

with the theoretical expectations, albeit with slightly de-

creasing coverage as correlation increases. 

 All the methods perform poorly in estimation of 

the second period term   when the fitted model is two-

sine with damping. DET severely underestimates, whereas 

CLS and TS consistently overestimate , and all these me-

thods underestimate the standard error. Not surprisingly, 

this estimation bias leads to the poor coverage probabilities 

shown in Figure 2 (d).  

 Following conclusions when the true models are 

song-sine and two-sine with damping can be drawn from 

Figures 3-4 and Tables 3-4. In the simulations with data 

generated under the song-sine model, results in Figure 3 

and Table 3 show that DET again performs quite poorly, 

whether or not the fitted model is correctly specified. On 

the other hand, the findings for CLS and TS are consistent 

with the earlier results in Figure 2 and Table 2.  

 Table 4 shows simulation the results when the 

true model has an extra sine term with as second period      

( 24  and 35  ). The results again show that even 

though the fitted model was correctly specified, DET con-

sistently underestimated both periods and produced va-

riance estimates that are too small. In contrast, by expli-

citly modelling correlation in the data, the proposed CLS 

and TS methods perform far better in all cases. Moreover 

the coverage probabilities under CLS are close to 0.95 but, 

as TS produces slight underestimates of variances (as 

given by %Diff), its coverage probability shown in Figure 

4 is slightly less than expected.  

In summary, CLS and TS give more efficient 

estimates and are comparatively robust against model mis-

specification. This reduces bias in estimates of the circa-

dian period and gives better coverage probabilities. On the 

other hand, by not properly accounting for the correlation, 

DET has biases in estimates of period and standard error. 

 

5. Example 
 

To compare the DET method with the proposed 

CLS and TS methods in real-life situations, all three methods, 

were applied to data that, as explained in the introduction, 

comes from experiments run over 78 hours with a drug treat- 

 
 

Figure 3. Plots of coverage probability of 95% confidence interval 

for the period   using DET (solid line), CLS (dashed 

line) and TS (dotted line) when the true model is song-

sine and the fitted model is (a) one-sine, (b) song-sine 
and (c) two-sine with damping. Coverage probability 

plots for   in the two-sine with damping model are 

shown in (d). 
 

 

 
 

Figure 4. Plots of coverage probability of 95% confidence interval 

for the period  using DET (solid line), CLS (dashed 

line) and TS (dotted line) when the true model is two-
sine with damping and the fitted model is (a) one-sine, 

(b) song-sine and (c) two-sine with damping. Coverage 

probability plots for   in the two-sine with damping 

model are shown in (d). 
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    Table 3. Percentage bias, percentage relative difference and root mean square error of the period estimate ̂  for DET, CLS and TS 

procedures when the true model is song-sine with 24.   

 

Fitted model   
 DET   CLS   TS  

%Bias %Diff RMSE %Bias %Diff RMSE %Bias %Diff RMSE 

one-sine 

 
 

0.00 
 

-1.2403 
 

-58.5760 
 

0.3205 
 

0.0564 
 

0.4097 
 

0.1325 
 

0.0364 
 

2.4322 
 

0.1089 

  0.25 -1.2461 -48.5675 0.3336 0.0545 1.2011 0.1812 0.0299 4.5569 0.1337 

 0.75 -1.2326 -14.8026 0.3923 0.0738 3.6574 0.3897 0.0291 8.7886 0.2266 
 

song-sine 

 0.00 -0.7335 -46.3534 0.2399 -0.0007 1.8875 0.1328 -0.0009 3.5155 0.1091 

  0.25 -0.7045 -30.2979 0.2714 0.0034 3.6546 0.1833 0.0019 5.6232 0.1338 

 0.75 -0.3208 87.5651 0.5989 0.0270 10.3293 0.4068 0.0259 11.1047 0.2282 
 

two-sine with 

damping 

 0.00 -1.1211 5.3314 0.4112 0.0470 2.4027 0.1397 -0.0049 4.3776 0.1163 

  0.25 -0.9925 47.9338 0.5033 0.0857 3.6965 0.1940 -0.0143 7.0522 0.1449 

 0.75 -0.8836 84.2489 0.6193 0.2289 7.4677 0.4459 0.0087 14.0669 0.2570 
 

 0.00 -153.3599 7803.6494 62.4126 39.6778 262.1625 26.2878 38.5423 239.0626 24.4712 

  0.25 -146.9491 7327.3300 55.6965 33.7229 360.1641 31.1765 35.3224 269.1014 27.2147 

 0.75 -133.8591 7826.7206 55.8487 38.7591 269.6656 31.7897 36.5362 337.7400 36.2693 
 

 

    Note: The period estimates for  and   when the fitted model is two-sine with damping. 

 

    Table 4. Percentage bias, percentage relative difference and  root mean square error of the period estimate ̂  for DET, CLS and TS 

procedures when the true model is two-sine with damping with 24  and 35.   

 

Fitted model   
 DET   CLS   TS  

%Bias %Diff RMSE %Bias %Diff RMSE %Bias %Diff RMSE 

one-sine 

 
 

0.00 
 

-1.2168 
 

-57.5719 
 

0.3177 
 

0.2142 
 

2.1370 
3 

0.1468 
 

0.2055 
 

3.3333 
 

0.1224 

  0.25 -1.2087 -47.5178 0.3290 0.2221 3.2454 0.1969 0.2073 4.8921 0.1457 

 0.75 -1.1777 -13.8429 0.3895 0.2546 6.6532 0.4170 0.2190 8.7644 0.2371 
 

song-sine 

 0.00 -0.8361 -43.8445 0.2661 -0.0169 2.3665 0.1381 0.0535 3.7040 0.1133 

  0.25 -0.7988 -21.9388 0.3098 -0.0404 4.4336 0.1914 0.0698 6.0290 0.1391 

 0.75 -0.2610 116.3003 0.7000 -0.0677 12.716 0.4310 0.1225 12.5079 
 

0.2389 
 

two-sine with 

damping 

 0.00 -1.2081 30.1877 0.4925 -0.0282 2.3439 0.1410 -0.0467 4.1905 0.1185 

  0.25 -1.0585 64.8227 0.5701 0.0016 5.1759 0.1979 -0.0395 7.8307 0.1483 

 0.75 -1.0024 83.7758 0.6399 0.1259 9.1935 0.4581 0.0296 15.9557 0.2655 
 

 0.00 -135.2289 8163.4433 74.4227 -3.1040 245.8983 17.2457 -2.5064 188.3904 15.7257 

  0.25 -132.2588 8097.1445 70.3876 -5.3984 255.0431 23.2962 -4.0577 245.8808 20.4272 

 0.75 -123.5109 8008.4038 65.1504 -6.7022 258.6963 29.4377 -10.5172 422.4302 36.1448 
 

 

   Note: The period estimates for  and   when the fitted model is two-sine with damping. 

 
 

ment. As mentioned before, the same treatment was applied to 

four sets of cells, each measured every 1.5 hours. The 

intensity of bioluminescence was measured as indicator of a 

gene’s expression level. In the data analysis, only those 

responses that showed an effect at 0h were included. A scatter 

plot of the data displays cyclic patterns with a linear de-

creasing trend over time, as seen in Figure 5. The sinusoidal 

functions described in Section 2 with autoregressive errors of 

order 1, AR (1), were tested for modelling these data. 

In order to compare the performances of DET with 

the proposed methods, CLS and TS, Table 5 summarizes the 

analyses in terms of the 95% confidence interval (CI) for , 

and the residual standard errors̂ from DET, CLS and TS 

approaches. Table 6 shows the lack of fit tests comparing 

residuals from the nonlinear models to residuals for one-way 

ANOVA models of the replicate observations at each time 

point that account for the correlation structure. Plots of the 

fitted models are given in Figure 6. 

 

 
 

Figure 5. Circadian gene expression over time as measured by 

intensity of light, in relative units. The four replicates at 

each time point are shown with different symbols.  
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Table 5.     Estimates and CI's of the circadian period in a real gene expression dataset obtained using three different models fitted 

by DET, CLS and TS procedures. 
 

Fitted model 

 
DET CLS TS 

 95% CI ̂  95% CI ̂  95% CI ̂  

one-sine   24.74 1.14 33.37 24.15 1.89 26.39 26.50 1.63 27.74 

song-sine   25.88 1.10 32.99 23.97 1.45 26.35 26.89 1.73 27.73 

two-sine with 
damping 

 

  24.75 1.15 33.43 24.89 2.48 26.45 26.45 1.46 27.44 

  -6.15 0.23 
 

 29.38 3.76 
 

 55.16 8.54 
 

 

 
 

                                Table 6.    Lack of fit test for one-sine, song-sine and two-sine with damping models fitted by DET, CLS  
and TS. 

 

Fitted model 
DET CLS TS 

F p-value F p-value F p-value 
 

one-sine 
 

2.561 
 

8.703E-06 
 

1.425 
 

0.062 
 

1.334 
 

0.099 
song-sine 2.451 2.467E-05 1.416 0.067 1.353 0.090 

two-sine with 

damping 
 

2.638 6.011E-06 1.464 0.052 1.141 0.274 

 
 

 
 

Figure 6. Fitted models (a) one-sine, (b) song-sine and (c) two-sine with damping to gene expression observations using DET (solid line), 
CLS (dashed line) and TS (dotted line) procedures. 

 

 

The results show that for all the fitted models, the 

CLS estimates of the circadian periods are approximately 24 h 

with standard errors that are smaller than those obtained using 

DET and TS. The TS approach produces period estimates that 

are approximately 26 h with moderate residual errors. In 

contrast, the DET method produces period estimates around 

25 h with the largest residual standard errors.  

The lack of fit tests show that the CLS and TS methods 

provide good fits to the data, since there is no evidence of lack 

of fit. However DET fit the data poorly, as presented in Table 

6. This is substantiated by plots of the fitted models, showing 

that the proposed methods produced the best fit to the 

observed cyclic pattern, as shown in Figure 6. 
 

6. Conclusions 
 

In this paper, we compared de-trending (DET) as 

the current baseline method for analyzing circadian rhythms in 

gene expression profiles to conditional least squares (CLS) 

and two-stage (TS) estimation as alternative methods. Simu-

lation results clearly suggest that DET produced biased 

estimates of the circadian period and poor variance estimates, 

leading to invalid statistical inference. On the other hand, the 

proposed methods are not only much more efficient and 

robust against model mis-specification, but also had reduced 

bias in estimates of the circadian period and more reliable 

confidence intervals. The TS method produced slightly poorer 

confidence intervals than CLS in cases with high correlation, 

due to underestimated standard errors of parameter estimates. 

Although both proposed alternative methods provided good 

fits to real data, CLS produced more valid confidence 

intervals. In further work, we will propose methods for com-

paratively accurate variance estimation by maximum likely-

hood, and will explore more sophisticated models capable of 

capturing complex data patterns. 

The work here clearly illustrates de-trending to 

address non-stationarity of correlated data, although com-

monly used, should be undertaken with caution. In contrast, 

methods that explicitly account for the correlation, such as 

conditional least squares and two-stage estimation of non-
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linear regression models, are viable and potentially more 

reliable and robust against model mis-specification. Finally, 

approaches such as CLS and TS are relatively straightforward 

to implement using standard statistical software packages, and 

their usage, for example in human drug development studies 

to understand circadian rhythms interfering with drug 

metabolism, should be encouraged. 
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