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Abstract

We present hybrid molecular dynamics/Monte Carlo simulations of supramolecu-
lar networks formed by unentangled telechelic chains with sticky end monomers (or
stickers) of finite functionality. The reversible bonding between sticky monomers
leads to the formation of sticker clusters with well-defined size distribution, which
in turn work as cross-links for transient polymer networks. We study the kinetics of
sticky monomer association, the topological structure and the resulting dynamic and
rheological behavior of the supramolecular systems as a function of the sticker bond-
ing energy € and the parent polymer chain length. Percolated transient networks
are formed above a threshold bonding energy around 4.3kpT. At high bonding
energies € > 10kpT, the majority of the stickers are fully reacted and the fraction
of open stickers is less than 1%. The conventional picture of a single sticker hop-
ping from one cluster to another is energetically unfavorable. We find the dynamic
and rheological behavior of such strongly associated supramolecular networks are
dominated by a partner exchange mechanism in which the stickers exchange their
associated partners, and so release the imposed topological constraints, through the
association and disassociation of sticker clusters. The characteristic time of the
partner exchange events grows exponentially with the bonding energy and is up to

2 orders of magnitude longer than the average lifetime of the reversible bonds. As



a result, three relaxation regimes can be clearly identified in the stress and chain
end-to-end vector relaxation functions as well as the mean-squared displacements
of the stickers, which are the initial Rouse regime, the intermediate rubbery regime
and the terminal relaxation regime. A phantom chain hopping model based on the
microscopic understanding is proposed to describe the chain relaxation dynamics
in the supramolecular networks, which provides numerical predictions in reasonably

good agreement with our simulation results.



1 Introduction

Supramolecular polymer networks are formed by physical association of linear or branched

5-10

polymers via reversible non-covalent bonds, ™ such as hydrogen bonds, m — 7 stack-

1,12 metal-ligand 1315 and ionic interactions. 671 The reversibility of crosslinking

ing,
provides them unique abilities for working as self-healing, stimuli-sensitive and shape-
memory materials. They also have superior processing and recycling properties over
traditional polymers and chemical networks constructed from covalently crosslinked poly-
mers owing to the sharp decrease in viscosity upon increasing temperature or decreasing
concentration. The potential applications of supramolecular polymer networks have
inspired strong interests in understanding the physical mechanisms underlying their
structural, dynamic and mechanical properties. '™

The topological structures of supramolecular polymer networks are determined by
the molecular composition of the parent polymers and the nature of the non-covalent in-
teractions. The associating polymers which form supramolecular polymer networks can
be classified into two main groups according to the chemical distribution of associating
groups or stickers. In one group, the associating polymers have multiple stickers dis-
tributed along their backbones. Each polymer can thus be cross-linked with several other
polymers at well-separated bonding sites. 1%16:20:21 The simplest and most widely studied
supramolecular systems in this category are those formed by the pairwise association of
stickers. 721,22 As the sticker functionality increases above two, they begin to aggregate
into clusters which effectively work as cross-links in the transient network. Since each
sticker is chemically connected to two chain segments, these clusters are usually relatively
small due to steric hindrance and chain stretching. In the other group the associating
polymers have the stickers only at their extremities, such as telechelic and triblock poly-
mers. 2325 A sticker functionality no less than three is required for linear polymers in this
category to associate into three-dimensional (3D) networks. Supramolecular networks

formed by these polymers typically consist of large aggregates of stickers or flower-like

micelles bridged by flexible polymer chains. The complicated topological structures, to-



gether with the interplay between the dynamics of the parent polymer chains and the
breaking/reforming kinetics of the physical bonds, leads to the rich dynamic behavior
of supramolecular polymer networks. The intrinsic characteristic times include, but are
not limited to, the lifetime of the reversible sticky bonds 7, the entanglement time 7,
the Rouse time 7 and the reptation or terminal time 74 of the parent polymers. The
system behaves like a permanent polymer network at time scales smaller than the bond
lifetime, and as a standard polymer melt or solution when the bonding constraints are
fully released. The most fascinating properties of supramolecular polymer networks are
associated with the relaxation dynamics in between these two time limits.

Theoretical models have been developed for describing the dynamic and rheological
properties of supramolecular polymer networks in accordance with their structural clas-
sification. 212226733 For transient networks formed by unentangled polymers with many
pairwise associating stickers per chain, the sticky Rouse model developed by Rubinstein
and coworkers predicts that the Rouse relaxation time of the chains is proportional to
the renormalized bond lifetime 7¥ (> 7,) times the square of the number of interchain
sticky bonds per polymer.2? The renormalization arises from the fact that a sticker needs
to experience many breaking and reforming events with its old partner before finding
another open sticker to associate with. The sticky reptation model extends this idea
to entangled polymers with pairwise associating stickers by considering that the poly-
mer performs sticky Rouse motion along the contour of the confining tube.?? The sticky
reptation time is thus given by the sticky Rouse time multiplied by the number of entan-
glements per chain. A scaling theory based on the assumptions of pairwise association
and hopping diffusion of stickers has also been developed to describe the self-healing
process of unentangled supramolecular polymer networks.>*

If the stickers are able to aggregate into large clusters, leading to reversible networks

27,31 414

of interconnected micelles, two mechanisms, namely polymer chain diffusion
positional rearrangement of the micelles,?! have been proposed to relieve stress collec-
tively. In these systems, the hopping of stickers is assumed to proceed by dissociating

from one micellar core and then associating into another. Marrucci et al. predicted a



power-law dependence for the terminal relaxation time of unentangled telechelic chains
on the polymer concentration and molecular weight.?” For associating polymers with
many regularly spaced stickers, Semenov and Rubinstein predicted that the chain relax-
ation time has a power-law dependence on polymer concentration in the unentangled or
weakly entangled regime, but an exponential concentration dependence in the strongly
entangled regime.3! Unlike the pairwise association case,?? the bond lifetime renormal-
ization is considered negligible when the sticker dissociation energy is in the range of
MY? < e/kpT < M 4/3 with M the average aggregation number of sticker clusters.3?!
This is because the aggregates can accommodate a varying number of stickers and the es-
timated energy change before and after a sticker hopping event is lower than the thermal
energy kpT. The terminal stress relaxation time of these networks is determined by the
micellar positional rearrangements, which is exponentially longer than the single-chain
relaxation time due to high energy barriers. 3!

A number of experimental works have been carried out to test the predictions of the
above-mentioned theoretical models and qualitative agreements have been found on the
diffusion and rheological behavior of certain associating polymer networks.!727:35:36 For
example, Colby and coworkers have shown that the sticky Rouse model can well describe
the linear viscoelasticity of polyester ionomers when using the ionic association lifetime
measured in dielectric relaxation spectroscopic responses as model input parameters.”
But there is still a lack of microscopic evidence to validate the assumptions made in the
theoretical models, such as the microscopic description of the sticker hopping process
and positional rearrangement of micelles. Computer simulations at the atomistic or fine-
grained level can help to provide such microscopic insights which are generally difficult
to access in experiments.

Simulation studies on associating polymers have been mostly focused on static prop-
erties, in particular the sol-gel transition and the aggregation of associating groups.37 46
Much less attention has been paid to the dynamic and rheological properties and their

relation to the topological structures and parent chain dynamics.*"°% Hoy and Fredrick-

son applied hybrid molecular dynamics/Monte Carlo (MD/MC) simulations to study



supramolecular networks formed by unentangled associating polymers with equally spaced
sticky monomers along the chain.*® These stickers can only form binary bonds, similar
to those assumed in the sticky Rouse model. The mechanical properties of the system
were studied under nonequilibrium condition by using creep and constant volume tension
simulations. Simulation results on monomer diffusion, nonequilibrium chemical dynam-
ics and nonlinear mechanical properties were understood in terms of the crossover from
diffusion-limited to kinetically limited sticky bond recombination and chain connectiv-
ity. Bedrov et al. performed standard molecular dynamics simulations of short telechelic
polymer solutions where the attractive Lennard-Jones interactions among the end groups
lead to the formation of networks of interlinked micelles or end-group clusters.*® The
stress relaxation in the system was elucidated as a two-step process, a first decay due
to the translational motion of the end-groups inside their clusters and secondly by the
rapid hopping diffusion of end-groups between neighboring clusters, which is followed
by the terminal relaxation due to cluster disintegration. In the above-mentioned simu-
lations, the spacers in between the stickers are still relatively short (6 ~ 15 monomers),
which limits the capacity of clearly identifying the contributions from the parent poly-
mer dynamics and its interplay with the sticker hopping process, both of which play an
important role in theoretical models of associating polymer networks.

In this work, we study the dynamics and rheology of supramolecular polymer net-
works using a model system consisting of unentangled telechelic polymers. The flexi-
ble polymer chains are represented by the Kremer-Grest bead-spring model.?! The end
monomers of the chains or stickers can associate with each other to form reversible sticky
bonds with controllable reaction kinetics.*? The functionality of the stickers is set to be
f = 3, meaning that each sticker can maximally associate with two other stickers. This
is the minimum functionality required for percolated network formation.®? Telechelic
chains with functionality of f = 2 undergo head-to-tail associations, which have been
studied in other theoretical and simulation works.??%35 The choice of f = 3 could
be traced to experimental supramolecular networks constructed by mixtures of associ-

ating ditopic (A2) and tritopic (B3) molecules.>*%5" By making the sticky monomer



association directional, this model can also be conveniently applied to study reversible

112 or ureidopyrimidinone (UPy) stacking. %> More

networks formed by 7 — 7 stacking
importantly, stickers with finite functionality can form clusters with well-defined size dis-
tribution in equilibrium state, which is essential for providing a clear microscopic picture
of the relationship between the dynamics of the cross-links and the viscoelastic behav-
ior in the reversible networks of interconnected clusters or micelles. Our simulations
reveal that the dynamics and stress relaxation in such systems are dominated by the
partner exchange process which is facilitated by the repeated dissociation and associa-
tion of sticker clusters, rather than by the theoretically assumed single sticker hopping
process. These findings can be applied to understand the dynamics in supramolecular
polymer networks where the stickers aggregate into clusters or micelles and also allow
for examination of assumptions made in the related theoretical models. 273!

The rest of this paper is organized as follows. In Section 2 we describe the polymer
chain model and the hybrid MD/MC simulation method used in this study. Simulation
results on the static, dynamic and rheological properties of supramolecular systems are
presented and discussed in Section 3, together with some theoretical models developed

for describing the dynamic behavior of reversible polymer networks. The conclusions are

drawn in Section 4. Table 1 lists all the characteristic time scales used in this work.

2 Models and Simulation Methods

The telechelic polymers are represented by the flexible bead-spring model.?' Each chain
consists of N monomers with one monomer at each chain end defined as a sticker. The
stickers are identical to normal monomers except that they are capable of reversibly
associating with one another. With a fixed functionality of f = 3, each sticker can
maximally associate with two other stickers. It is prohibited for a given sticker to form
both sticky bonds with the same other sticker. Otherwise the telechelic chains will tend
to associate into long linear living polymers, instead of 3D transient networks that are

the main interest of the current work. The sticker functionality value can easily be



adjusted for modeling different polymer systems.

The monomer density in the systems is fixed at p = 0.85/0% ;7 where o is the
diameter of the monomers. This choice of p has been widely used to simulate polymer
melts.®! For flexible Kremer-Grest chains in the melt condition, the entanglement length
is estimated to be in the range of N, = 50 ~ 80, depending on the analysis method
used. %062 Therefore we choose to study two polymer chain lengths, N = 25 and 45,
in the unentangled regime, bearing in mind that there could occasionally be locked-
in entanglements due to the reversible association of the end monomers. As will be
seen in the stress modulus calculations, there is no significant contributions from such
entanglements. By studying unentangled parent polymer chains we can focus on relating
the dynamics of the cross-links to the dynamic and rheological behavior of the resulting
transient networks.

All monomers in the system interact pairwise via the purely repulsive Lennard-Jones
(LJ) potential

onatr) =ty | (%) (720)" - (72) s (2] 0

for r < r., where r, = 2%, ; is the cut-off radius and Urs(r) =0 for r > r.. The LJ

interaction parameter is chosen to be €7, ;7 = 1.0kgT where kg is the Boltzmann constant
and T is the absolute temperature. Each pair of adjacent beads in a chain interact via

the finitely extensible non-elastic (FENE) potential

Ureng(r) = —kRé%’mln [1 - < d )2] (2)

max

where R4 = 1.5017 and k = 30er7/0or7. The system is coupled to the Langevin ther-
mostat to maintain a constant temperature. The equations of motion of the monomers
are solved numerically using the Verlet algorithm with a MD time step size §t =
0.0177,5 where the Lennard-Jones time 77,5 = \/mU%J/ELJ and m is the mass of the
monomers. %1263 The simulations are carried out in the canonical (NVT) ensemble with
periodic boundary conditions applied in all three directions. The stickers are allowed to

associate across periodic boundaries.



When two stickers form a reversible sticky bond, they interact via the potential4?:54
Usp(r,€) = UrenNEe(r) — UrenEe(ro) — € (3)

where rg ~ 0.9701; is the equilibrium bond length at the minimum of the combined
potential Uppng(r) + Urs(r). The energy offset Uppng(ro) + € in eq.(3) is introduced
to control the lifetime of the sticky bonds and consequently the fraction of associated
stickers in the system. The sticky bonding energy ¢ is independent of the separation
between the two stickers and so does not alter their associating force. The formation
and breaking of sticky bonds are controlled by the Metropolis Monte Carlo Algorithm 4
where the energy change due to the formation of a new sticky bond is AFE(r,e) =
Ug(r,e) and the energy change to break an existing bond is AE(r,e) = —Ug(r,e). If
an MC move causes a reduction in the change of energy AE(r,e) < 0, it is always
accepted. On the other hand, if AE(r,e) > 0, a move is accepted with probability
exp|—AE(r,e)/kpT]. The forming/breaking processes of the two sticky bonds for each
sticker are treated independently. At each MC step pairs of stickers are chosen randomly.
If the chosen pair are already bonded, an attempt is made to break the bond. Conversely,
if the pair are not bonded, an attempt is made to create a sticky bond. Each pair is
chosen on average once per MC step. The frequency fyjc = 7r7/Tmc at which MC
steps occur governs the reaction kinetics of the stickers. By increasing the MC time
step size Tyr¢ the sticky bond relaxation is effectively changed from diffusion-limited to
kinetically limited regime, which will consequently alter the dynamic behavior of the
system, but not the thermodynamic or static properties. Most of the simulation data
presented in this work were generated using ;¢ = 0.0177; (i.e., one MC step at each
MD time step), with some extra runs using 7y;c = 1.07z; for comparison. As will
be shown in the next section, the use of smaller 73;c value leads to shorter terminal
relaxation times of the systems and so enables us to obtain good statistical results with
affordable computational efforts. It should be noted that the change of T3;¢c values
will not affect the qualitative results obtained in the equilibrium systems as studied

here. Furthermore, Hoy and Fredrickson have shown that small MC time step sizes are



needed to reduce systematic errors in calculating dynamic and mechanical properties
of reversible associating polymer networks.*® Our hybrid MD/MC algorithm can be
conveniently applied to study supramolecular polymer systems where the stickers have
higher functionality (f > 4) and so can associate into large clusters, such as via ionic or
hydrophobic interactions. The slow dynamics of stickers in large clusters due to caging
effects will dramatically slow down the dynamics and stress relaxation of the system. To
simulate such systems will be computationally much more expensive than that required
in the current work with f = 3. One also needs to make sure that data analysis is
carried out in equilibrium state. We will thus leave such systems for later study. We
also noticed that for simulating systems with high sticker functionality the MC moves
for the sticky bond formation and breakage can be alternatively treated by the method
proposed by Daoulas et al. where the probability for a sticker to associate with one of
its neighboring stickers (if not bonded) is determined by the Boltzmann weights of these
neighbors. %3

Each simulation system undergoes two stages of equilibration before any analysis
takes place. At first the system is equilibrated as a polymer melt with all stickers treated

61,62 This stage lasts for a period of multiple Rouse

as normal monomers along the chains.
times of the unentangled chains. As an example, the Rouse time for the flexible chains of
length N = 25 as used in our simulations is 7p ~ 92377,;. In the second stage the hybrid
MD/MC simulation are carried out with the sticker association mechanism switched on.
This stage is considerably longer than the first one due to the much longer relaxation
time of polymer chains in a supramolecular network than in a melt (typically increased by
a factor of 5 —10). Following the equilibration stages the static and dynamic properties
of the reversible network are calculated on the fly over an equilibrium run of 10 — 100
terminal relaxation times of the whole system.

The static, dynamic and rheological properties of the model systems are studied for a
range of sticky bonding energy from € = 0, corresponding to regular polymer melt, up to

e = 12kgT. As shown in Appendix A, the sol-gel transition of such systems takes place

at € &~ 4.3kpT, which is consistent with the critical ¢ value found in simulation systems

10



where sticky monomers interact with the same bonding potential as in eq. (3), but follow
the binary bonding rule.*® The simulation box we used contains N, = 400 polymer
chains in case of polymerization N = 25. For N = 45 there are N, = 200 chains. The
finite size effects have been addressed in Appendix A and found to be insignificant in the
current work. To improve the statistics, all simulation data on the reversible networks
are averaged over at least 4 independent runs for each set of system parameters. Much
larger ensemble averages are taken for the permanent networks generated by preventing

the sticky bonds from dissociation, as will be seen in the next section.

Figure 1: Snapshot of a transient network formed by associating telechelic chains of
length N = 25 and sticky bonding energy ¢ = 10kgT. The red spheres represent the

stickers at the chain ends.

3 Results and Discussions

3.1 Static properties: reversible network analysis

Fig. 1 presents a snapshot of the simulation system consisting of associating telechelic
chains of length N = 25 and sticky bonding energy ¢ = 10kpT'. It shows clearly that at

high enough bonding energy, the stickers associate into clusters of different sizes which
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cross link the parent polymer chains into a transient network. The topological structures

of the networks can thus be understood from the sticker cluster size distributions.

3.1.1 Sticker cluster formation

In our model systems each sticker can bond with up to two partners. This allows for
three possible bonding states: open with no bonded partner, partially reacted with one
bonded partner and fully reacted with two bonded partners. The average fraction of
stickers in each state is calculated as a function of the bonding energy . The simulation
results in Fig. 2 for the systems with chain length N = 25 demonstrate that the fraction
of open stickers decreases monotonically with the increase of e, while the total fraction
of (partially and fully) reacted monomers keeps on increasing and gradually saturates at
high e values. The crossover of these two fraction curves occurs at € ~ 4.3kgT which is
very close to the critical bonding energy for the sol-gel transition, see Appendix A. The
fraction of fully reacted stickers becomes dominant when ¢ > 6kgT. At high bonding
energies ¢ > 10kgT, the majority of the stickers are fully reacted and the fraction of
open stickers is down to less than 1%. In the sticker hopping picture for binary bonding

22,29,30,34,49 4f the fraction of open stickers is low, pairs of associated stickers

systems,
usually break and recombine many times before finding other open stickers to associate
with. This significantly slows down the dynamic relaxation behavior as recombination
with previous partners leaves the network topology unchanged. In the transient networks
we studied, the formation of larger sticker clusters can facilitate the partner exchange
process as shown in Section 3.2.2.

Stickers with functionality f = 3 (or above) can associate into clusters with various
sizes. The cluster size distribution can be described by the probability for finding a
sticker in a cluster of size Ny,

n N,
P(Nclu) = NQC?\} hclu (4)
C

where ny,, is the average number of sticker clusters of size N, and 2Ny, is the total

number of stickers in the system. Simulation results on P(Ng,,) for the two different
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Figure 2: Average fractions of stickers that are in open, partially reacted and fully

reacted states as a function of sticky bonding energy €. The chain length is N = 25.

chain lengths at e = 10kpT are given in Fig. 3(a). In agreement with the high reaction
rate at this bonding energy (Fig. 2), the majority of the stickers aggregate into clusters
with sizes N, > 3. The distinct peak at N, = 3 corresponds to the smallest cluster
size for which each sticker can be fully reacted and so gain —e in association energy.
The cluster size distribution is determined by the competition between this energy gain
and the entropic penalties due to the loss of sticker translational entropy. In solutions
of associating polymers, the formation of sticker clusters or micelles can lead to elastic
stretching of the polymer chains, which in turn affects the sizes of stable clusters. But
this polymeric effect is negligible in melt conditions, because the average end-to-end
distance of the polymer chains is nearly constant in systems with different ¢ values.
Cluster formation of stickers in equilibrium state can be theoretically described in
a similar way as micelle formation of amphiphilic molecules in dilute solutions.®® Equi-

librium thermodynamics requires the mole fraction, Xy, , of stickers associated into

lu?

clusters of size N, to satisfy the condition

kpT
M?Vclu + ]\]B;l ]'n (XNclu /NCZ’U,) - CO”St, (5)
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Figure 3: (a) Probabilities for finding a sticker in a sticker cluster of size N, in the sys-

tems with sticky bonding energy € = 10kpT. The dashed curves illustrate the analytical

results given by eq. (9). (b) Average sticker cluster size as a function of sticky bonding

energy.
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where the chemical potential of a sticker inside a cluster is given by
MS)VCZ’LL =—¢€ + Fpozy(NClu)7 NClu Z 3 (6)

The second term on the right hand side of eq. (6) allows the inclusion of possible

(positive) polymeric contributions to the free energy. Since the chemical potential has a

minimum value of ,u(])wdu = —¢ at the cluster size M, = 3, it is convenient to describe
the mole fraction Xy, by%
Nc u/Mclu
XN, X, !
o — < < exp [Mclu(,u(l]\/[czu - N?VCzu)/kBT]> v Naw 2 Mau (7)
Nclu Mclu

In our system of telechelic chains Xy, is related to the sticker density as

oo

> X = o 0

Nepy=1
Hence, the probability of finding a sticker in a cluster of size N, is related to Xy,
by Peu(New) = Xn,,, N/2 where ZNM Py (Ney) = 1. If we neglect all the polymeric

effects by assuming FP°(N,) = 0, eq.(7) can be simplified to

2 Nclu/371 P Nclu/3
Pclu(Nclu > 3) - Nclu () ( clu(3)> ; (9)

N 3

where the only input parameter is P(N,, = 3) whose value can be found in simulations.

As shown in Fig. 3(a), the predictions of eq. (9) are in reasonably good agreement
with the simulation data. The relatively faster decay of the theoretical curves can
be attributed to the assumption of dilute solution of stickers made in developing eq.
(7). Since the polymer chain lengths we studied are still relatively short, the small
sticker clusters have a fairly high probability to meet each other and associate into larger
clusters, leading to a slower decay of P, (Ngy,) at large N, values. When the chain
length is increased from N = 25 to 45, the peak at P, (N, = 3) becomes higher and
consequently the fraction of larger clusters gets smaller because of the reduced sticker
density. The agreement between the theoretical prediction and simulation results also

improves.
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Simulation results on the average sticker cluster sizes, defined as N7 = 3~ Nejy P(Negw),
are plotted in Fig. 3(b) as a function of e. The value of N7 first increases with the
sticky bonding energy until € ~ 9kgT and then reaches a plateau, e. g., Ngzg ~ 3.6
for N = 25. This is consistent with the results in Fig. 3(a) that at high ¢ values more
than 50% of stickers are in clusters of size 3, because the chemical potential of stickers
is minimized at N, = 3 for the functionality of f = 3. The average sticker cluster size
can be considered as the active functionality of junctions in a polymer network.%” As
will be shown in Section 3.2.2, the existence of larger clusters plays an essential role in

determining the terminal relaxation times of the supramolecular systems.

3.1.2 Elastically effective strands

The mechanical strength of a polymer network is determined by the fraction of elastically
effective strands. In unentangled networks each effective strand contributes to the rub-
bery modulus by an order of kgT.%? Apart from the reversible nature of cross-links, the
transient networks formed by associating polymers have similar topological structures
to chemically fixed networks and so posses elastically ineffective components, such as
dangling chains and loops. This can already be seen in Fig. 2 from the nonzero fraction
of open stickers even at the highest bonding energy studied. In addition, some of the
partially reacted stickers are involved in the formation of sticker clusters of size two and
consequently longer chains or network strands by the linear association of two or more
parent polymer chains. This also reduces the modulus of the network.

We investigated the fraction of elastically effective strands in the transient networks
using a method inspired by the primitive path analysis (PPA) of entangled polymers. 5
This was done by randomly selecting instantaneous network configurations from the
trajectories obtained in well-equilibrated hybrid MD/MC simulations. The topological
structures of these networks were fixed by preventing any existing sticky bonds from
breaking in addition to stopping the creation of new sticky bonds. The excluded volume
interactions among all monomers were then switched off to make the bonds contract and

the system temperature was set to zero to remove thermal fluctuations. This results in
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Figure 4: (a) Fraction of elastically ineffective strands, @iners, in the supramolecular
networks obtained by using different cutoffs to identify fully contracting chains in the
PPA-type analysis. The inset presents the probability distributions of the chain end-to-
end distances in the fixed networks with both excluded volume interactions and thermal
fluctuations switched off; (b) Direct MD simulation results on the stress relaxation of
fixed polymer networks that are generated by fixing the topological structures of tran-
sient networks obtained from hybrid MD/MC simulations. All results are averaged over
100 statistically independent network configurations and the error bars show the stan-

dard deviation of the mean. The polymer chain length is N = 25.
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the collapse of chains not contributing to the plateau modulus. The dangling chains
shrink into single points, giving the chain end-to-end distance R.. = 0. The chain loops
are somewhat different. Even though both ends of the loop belong to the same cluster or
cross-link, they may still have a small separation (Ree # 0) because other stickers in the
cluster are subject to tension along the shrunken network strands connected to them.
For this reason, we need to introduce a cutoff distance for R to identify the ineffective
strands.

In Fig. 4(a) we show the fraction of elastically ineffective chains, ¢sy, obtained
from the PPA-type analysis of transient networks formed by telechelic polymers of length
N = 25. The ¢;pners values decrease with the use of smaller cutoffs and starts to converge
after Ree < 0.75017. This is consistent with the probability distributions of the chain
end-to-end distances given in the inset of Fig. 4(a) which show two distinct peaks
at higher bonding energies with the minimum between the peaks occurring at Re. =
0.7501, 5. The peak located at smaller R, is indicative of chains that have collapsed, while
the one at larger R.. represents the chains which contribute to the network elasticity.
Therefore we can reasonably use this minimum location (0.7507) between these peaks
as an approximation for the cutoff. It follows that there are about 5% ineffective strands
in the networks formed at sticky bonding energies € > 10kpT when the average sticker
cluster size nearly saturates, see Fig. 3. The strongly associated transient networks thus
have high elastic efficiency. We note that unlike the PPA method our analysis algorithm
does not preserve entanglements between the network strands. The cross-linking of
unentangled polymer chains will unavoidably lock in a certain number of entanglements.
How such entanglements contribute to the stress relaxation of the reversible networks
should be investigated as a function of the parent chain length and sticky bonding energy,
which will be left for further study.

To provide a reference for the plateau modulus of the reversible networks, we cal-
culate the stress relaxation function, G(t), of the fixed polymer networks used in Fig.
4(a) by performing standard MD simulations. The MD results on G(t) are presented
in Fig. 4(b) for network configurations taken from hybrid MD/MC simulations us-
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ing two different sticky bonding energies ¢ = 10kpT and 12kpT. FEach curve has
been averaged over 100 statistically independent fixed network configurations. As ex-
pected the stress relaxation behaviors of the two sets of fixed networks agree with
each other within error bars, confirming the similar topological structures of the re-
versible networks formed at high enough sticky bonding energies (¢ > 9kgT). The
corresponding plateau modulus is G =~ 0.028kpT/ 0% 7> which is close to the estimation
of Gy = pkpT /N = 0.034kpT/ ai ; for an ideal polymer network with monomer number

density p = 0.850%, and strand length N = 25.

3.2 Dynamic and rheological properties

A key difference of supramolecular polymer networks from polymer melts and permanent
or chemical networks is the formation of reversible bonds. These introduce additional
timescales into the systems, and consequently affects their dynamic and rheological be-
havior. We thus start with identifying the timescales characterizing the dynamics of
reversible association of stickers and the underlying microscopic pictures, and then re-
late them to experimentally measurable properties, such as sticky monomer diffusion,

stress and chain end-to-end vector relaxation functions.

3.2.1 Timescales characterizing reversible association of stickers

Sticky bonds are formed by physical association of pairs of stickers. Considering the
dissociation of sticky bonds as a thermally activated process, their average lifetime, 7,

is predicted to depend exponentially on the bonding energy 3449

T =~ Tvc exp(e/ksT), (10)

where the MC step size mp;¢ reflects the controllable reaction rates of the stickers in
the hybrid MD/MC simulation model. Fig. 5 presents the simulation data on 7, for
two different chain lengths and 7a;¢ = 0.01777, which follow the expected exponential
dependence on €. When increasing 7370 from 0.0177; to 1.07z 7, the 7, value was found

to increase by a factor of about 100 without altering any static properties of the systems

19



(results not shown). The average sticky bond lifetimes in the systems with longer chains
(N = 45) are slightly larger than those in the shorter chain systems (N = 25). This
can be attributed to the higher probability of stickers to form stable clusters (of size
Ny = 3, see Fig. 3) in the former systems, which effectively prolongs their average
association time.

In the systems with sufficiently high bonding energies (¢ > 6kpT') most of the stickers
are associated into clusters as shown in Fig. 2. Following a bond breaking event,
the open stickers will most likely recombine with their old partners due to the low
density of available open reaction sites nearby. This breaking and reforming process
needs to be repeated many times before a sticker finally combines with new partners
without returning to the old ones. It is through such partner exchange events that the
topological constraint imposed by a sticker on its parent polymer chain is partly released.
Therefore an additional timescale much longer than 7, is required for describing the
dynamic properties of associated polymer systems.??344%68 T systems where stickers
only experience binary bonding, a renormalized bond lifetime, 7,7, was conveniently
defined as the average time from the first moment that a sticker is bonded with one
particular partner up to the moment that a bond is formed with a new open partner.3?
The situation becomes more complicated for systems consisting of stickers with higher
functionality (f > 3) where larger sticker clusters are formed.

We introduce two timescales for characterizing the dynamics of releasing the topo-
logical constraints imposed by associated stickers. The first one is the partner exchange
time, Tpe, which is defined as the average time taken for a given sticker from first be-
ing bonded with two particular partners until forming bonds with two new partners, as
sketched in Fig. 6(a). This definition can be considered as an extension of the renor-
malized bond lifetime concept from the binary association cases (f = 2) to the systems
with sticker functionality f = 3. For a partner exchange event to take place there is no
requirement for the two sticky bonds of a given sticker to break at the same time. In-
stead it may take multiple sticky bond formation and breaking steps until both partners

of the sticker are exchanged. In many supramolecular systems the stickers can associate
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Figure 5: Average sticky bond lifetime 7, partner exchange time 7, and cluster exchange
time 7., with respect to sticky bonding energy ¢ for the systems with two different chain

lengths and 7;¢ = 0.017z ;.

with more than two partners and the sticker clusters also have a broad size distribution,
e. g., see Fig. 3. A more general definition of the characteristic timescale could be the
cluster exchange time, 7., which is the time taken for a given sticker from being initially
associated into one cluster consisting of three or more stickers until associating into an-
other sticker cluster of size N, > 3 which shares no other member stickers in common
with the original cluster. This process can also occur in multiple steps with the member
stickers within a cluster changing over time until none but the given one matches the
original. The definition of 7., can be easily understood from the hopping picture of a
sticker from one sticker cluster or micellar core to another,?”3! although this is not the
dominant chain relaxation mechanism in the systems we studied as shown below. We
note that these timescales are better defined in the strongly associated supramolecular
networks than in the systems with low bonding energies. The latter cases are anyhow
of little interest, because no transient network is formed and so chain dynamics are only
weakly altered by the presence of stickers.

Fig. 6 compares the probability distributions of the partner exchange and cluster
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exchange times for the system with chain length N = 25 and bonding energy ¢ = 10kpT.
At short time scales the cluster exchange events show higher probabilities than the
partner exchange events, because the calculation of 7., also counts the events that involve
partially-reacted stickers. In other words, a cluster exchange event is considered to be
accomplished even if a given sticker is connected to a new cluster by a single sticky bond,
while for finishing the partner exchange process the sticker is required to form sticky
bonds with two new partners. The two probability distributions agree with each other
reasonably well at timescales close to and beyond their average values. This agreement
is expected for the systems with f = 3 where more than 50% of the sticker clusters are of
size 3. The ensemble-averaged values of 7, and 7., are presented in Fig. 5 as a function
of ¢ for the two different chain lengths. The two definitions provide nearly identical
results within error bars (of symbol size). For convenience we will only use the partner
exchange time 7, to represent these timescales in the remaining sections. This is also
related to the later discussion on the microscopic picture of partner exchange events.
The simulation data on 7, and also 7. can be fitted to an exponential function of the

form

Tpe,ce =~ TMC eXp(Bg/kBT) (11)

where B = 1.36 > 1 indicates that the partner exchange time grows with e faster than
the single exponential function of 7, ~ exp(e/kpT). This is qualitatively consistent
with the renormalized bond lifetime 7* ~ exp(7¢/6kpT) predicted by Stukalin et al.
for binary association of stickers at the ends of dangling chains.3* For a given bonding
energy, the values of 7, and 7. are up to two orders of magnitude larger than the
average bond lifetime 73, indicating that 73, is not sufficient for describing the dynamics
in the supramolecular networks. Our simulation results are thus very different from the
theoretical assumption that the bond lifetime renormalization is negligible in systems

with micellar core formation, although the sticker bonding energy we studied does not

N4/3 31

clu *

fall exactly into the relevant range of Ncllf <e/kpT <
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Figure 6: (a) Schematic demonstration of a partner exchange event which has a char-
acteristic time 7,¢; (b) Probability distributions of the partner exchange time 7,. and
cluster exchange time 7. for supramolecular systems with chain length N = 25 and

bonding energy € = 10kpT.
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3.2.2 Microscopic picture of sticker partner exchange

According to the original sticker hopping picture, a sticker first dissociates from the
initial sticker cluster or micellar core and then diffuses as an open sticker until meeting
another cluster to associate with. Although the difference in the total bonding energy
of the sticker is negligible between the initial and final states, it needs to overcome
an energy barrier on the order of (f — 1)e to break all the sticky bonds formed in
the initial cluster. In equilibrium systems the probability for such hopping events to
happen is exponentially low, and the corresponding time scale would be proportional
to exp [(f —1)e/kpT]. But the simulation results on 7. or 7. in Fig. 5 grow with
the association energy € much slower than exp (2¢/kpT) for f = 3. This implies the
existence of other pathways that have much lower energy barriers to allow the stickers
to move from one cluster to another.

The sticker clusters in a supramolecular network fluctuate in space just like junction
points in a permanent polymer network. When two smaller sticker clusters are in close
proximity there is a high likelihood for them to associate into a large cluster due to
the frequent breaking and formation processes of the sticky bonds under thermal fluc-
tuations. Since the large cluster is entropically unfavorable and so short-lived, it will
break apart into two new clusters which may or may not be of the same size as the two
original ones, but has a relatively high probability to contain different member stickers.
It is through this association-dissociation process of sticker clusters that stickers change
their partners. Figure 7(a) sketches such a process where two sticker clusters both of size
N, = 3 associate into a larger one of size 6 which later breaks into two new clusters to
complete a partner exchange event. The cluster association-dissociation pathway thus
facilitates the changes in the transient network topology without requiring stickers to
fully dissociate from the network. In Fig. 7(a) the total number of sticky bonds remains
6 throughout the process, with sticky bonds frequently breaking and recombining under
thermal fluctuations.

Based on the microscopic picture in Fig. 7(a), we perform a detailed analysis of

partner exchange events, and correspondingly network topological changes, by studying
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the variation of sticker cluster size from the perspective of a sticker. Firstly, we define the
stable sticker clusters as those possessing a lifetime larger than the average bond lifetime,
At > 71,. Then we look at the transitions through which a sticker initially attached to a
stable cluster finally associates with another stable cluster. We require the new cluster to
either be of a new size or contain different members from the original cluster. This allows
for three possible cases: 1) two clusters combine to form a larger cluster; 2) a smaller
cluster breaks off from a larger cluster; 3) a cluster exchanges members with another
cluster, but remains the same size. The events where two clusters combine together and
then separate back into the original ones are not counted, because they do not result in
changes in transient network topology. From the number of transitions we can determine
a right-stochastic matrix, M; ;, which measures the probability that a sticker initially
in a cluster of size N, = i (initial state or ith row in the matrix) transfers into a
final cluster of size j (final state or jth column of the matrix). The matrix is described
as right-stochastic because we normalize each row such that ZMH = 1. The matrix
is illustrated in Fig. 7(b) where the color of a block represenjts the magnitude of the
transition probability.

Fig. 7(b) shows that for N, < 3 the clusters usually attempt to grow in size, e.
g., from a cluster of size 2 to that of size 5 with M5 = 0.383 (red block). This is
contrasted by a usual decrease in cluster size when N, > 4, e. g., from a cluster of size
7 to clusters of sizes 3 and 4 with M7 3 = 0.281 (orange block) and M7 4 = 0.259 (yellow
block), respectively. It is evident that the most probable pathway for sticker cluster size
changes is the addition or subtraction of three stickers, as marked by the two solid lines
in Fig. 7(b). This can be understood by the fact that a group of three associated stickers
has the maximum possible translational entropy without compromising bonding energy,
as discussed in Section 3.1.1. On the contrary, the probabilities in the first column of the
transition matrix are very low, indicating that it’s very unlikely for a single sticker to
break off a cluster. This further confirms that the partner exchange events usually take
place via the cluster association and dissociation processes, rather than by single sticker

hopping. The presence of large sticker clusters thus facilitates polymer chain relaxation
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Figure 7: (a) Sketch of a partner exchange event via the sticker cluster association-
dissociation process; (b) Right-stochastic matrix that measures the probability for a
sticker initially in a cluster of size i (ith row) to transfer into a final cluster of size j (jth
column) for the system with ¢ = 10kgT and N = 25. The two solid lines indicate the
high probabilities for the cluster sizes to change by +3 stickers.
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through the partner exchange process. In Section 3.2.4 we investigate how imposing
an upper cap on the sticker cluster size would affect the stress relaxation behavior of
the transient networks. We note that a sticker may need to experience multiple cluster
association-dissociation events in order to exchange all of its original partners. This can
be seen in the example sketched in Fig. 7(a) where stickers 1 and 4 have successfully
exchanged both of their partners, while other stickers have only exchanged half of their
original partners and so need more cluster association-dissociation events to exchange

those which remain.

3.2.3 Mean square displacement of stickers

The effect of varying bonding energy on the mean square displacements (MSD) of stick-
ers, giticker(y) = ((psticker () — psticker(0))2) where r5%ker(t) is the coordinate of the
sticker center of mass, is shown in Fig. 8(a). For comparison we also include the MSD
data of chain end monomers in polymer melts (¢ = 0kpT’) and of stickers in fixed poly-
mer networks whose configurations were taken from the simulations of supramolecular
systems with ¢ = 12kgT. Since the parent chain lengths we studied are well below
the entanglement segment length N, the monomer mean square displacements in the
melt system follow Rouse-like behavior. At intermediate time scales 79 < t < Tr where
70 = Tr/N 2. the end monomers diffuse faster than the middle monomers due to lower
time-dependent effective friction. The ratio between the MSDs of the end and middle
monomers has been shown previously to increase from 1 in the ballistic regime to a
plateau value around 2 close to the Rouse time 75.9%% Beyond 7x all monomers move
coherently into the free diffusion regime, g (t) ~ t1.

In supramolecular systems, the association of stickers significantly slows down their
diffusion behavior. The transition from the subdiffusive to diffusive regime is delayed
beyond the partner or cluster exchange time 7,
MSD of the stickers is governed by the cluster size distribution. Fig. 8(b) shows the

(ce) (> Tr). At time scales t < 7y, the

mean square displacements of sticker clusters of different sizes, g{v clu(t), for the system

with ¢ = 10kgT. The MSD of stickers in clusters of size N, = 2 is analogous to that
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of middle monomers in chains of length 2/N. As expected the growth rates of the gfl“
curves decrease with the increase of Ng,. For each given bonding energy, the gf”‘lke’"
data in Fig. 8(a) can be exactly calculated by taking a weighted average of the cluster
MSD results by using the cluster size distribution Py, (N ),

o0
gftwker(t) = Z PclU(NclU)g{Vdu (t)
Neiw=1

up to the lifetimes of the related clusters.

The growth rate of g§"“*"(t) decreases with the increase of ¢ as a consequence of
the increased average cluster size. When € > 9kpT the average cluster size converges,
e. g., to Ngyg ~ 3.6 in systems with chain length N = 25. Correspondingly the sticker
MSD curves obtained at these high e values follow a universal behavior analogous to
that resulting from the thermal fluctuations of cross-links in fixed polymer networks
(dotted-dashed line) up to the partner exchange time in each case. This indicates that
below 7, the supramolecular systems behave like permanent networks. At larger time
scales t > T,., the stickers are able to exchange their partners through the cluster
association-dissociation processes and so gradually forget their topological constraints.
The g§tiker (t) curves slowly cross over into the diffusive regime. Fig. 8 also shows that
for the bonding energies studied in this work (¢ < 12kgT), there is still no extended
plateau regime in the diffusion curves due to the limited lifetimes of the clusters.

The diffusion coefficients D of the stickers and equivalently of the entire chains in
the free diffusion regime are plotted as a function of € in the inset of Fig. 8(a). The
decrease of the chain diffusivity with increasing sticker association energy has also been
observed in experimental measurements of tracer chain diffusion in supramolecular poly-
mer networks with different strengths of chain cross-linking. "7 Our simulation data on
D show an exponential decay with € at higher bonding energies. As will be seen below,
this is consistent with the exponential dependence of the chain terminal relaxation time

T4 On €.
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Figure 8: (a) Mean-square displacements of stickers in supramolecular systems with
different sticky bonding energies €. The black dotted-dashed curve shows results ob-
tained from fixed polymer networks whose configurations were taken from simulations of
supramolecular systems with ¢ = 12kgT. For reference the Rouse time 7 of the chains
and the sticker partner exchange time 7,. at ¢ = 12kgT" are given by the two vertical
dashed lines on the right. The inset presents the diffusion coefficients of the stickers
in the free diffusion regime as a function of sticky bonding energy. (b) MSD of sticker

clusters with different sizes N, < 6 at € = 10kgT. The parent chain length is N = 25

in all cases.
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Figure 9: Stress relaxation (a) and chain end-to-end vector correlation function (b) in the

systems with N = 25 and various bonding energies €. The dotted-dashed curves present

the results obtained from fixed polymer networks whose configurations were taken from

simulations of supramolecular systems with ¢ = 12kpT.
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Figure 10: Simulation results on the terminal times of the stress relaxation, TdSt"ess ,

and chain end-to-end vector correlation function, 75°. The terminal relaxation times
predicted by eq. (14) using simulation data on the sticker partner exchange time and

hopping distance are also included.

3.2.4 Stress and dielectric relaxation

The reversible association of stickers also strongly affects the rheological behavior of the
supramolecular systems. Fig. 9 presents the simulation results of the stress relaxation
function, G(t), and chain end-to-end vector correlation function or dielectric relaxation
function, ®(t), for the systems with N = 25 and various bonding energies €. Results
obtained from polymer melts and fixed polymer networks are also included for compari-
son. All these time correlation functions were calculated on the fly using the multiple-tau
correlator method to ensure good statistics. 7

As the bonding energy e increases, the relaxation of the supramolecular systems
demonstrates a gradual transition from the polymer melt-like behavior to fixed network-
like behavior. In the systems with high enough ¢ values where 7p < 7, three distinct
relaxation regimes can be clearly identified in the G(t) and ®(¢) curves: 1) initial Rouse

regime at 7y < t << T where the relaxation curves follow universal Rouse-like behaviors,

G(t) ~ t71/2 and ®(t) ~ t~1/2; 2) intermediate rubbery regime at 7r < t < 7, where the
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systems show rubber-like behavior due to the transient network formation; 3) terminal
relaxation regime at ¢t > 7, where the sticker partner exchange events lead to the stress
and dielectric relaxation. Fig. 10 shows that at high sticky bonding energy the terminal

stress

times, 75 and 75, of the stress and chain end-to-end vector relaxation functions both

grow exponentially with . There is roughly a factor of 2 difference between these two
terminal times, but subject to rather poor statistics in 755 at high bonding energies.
The analogy to the Rouse chain behavior (75¢ = 27517¢5)3 implies that the release of
topological constraints by partner exchange events takes place in a random-walk manner,
and a theoretical model could be constructed based on this observation.

Earlier in Section 3.2.2 we described how the presence of large sticker clusters fa-
cilitates the partner exchange events. We now test this effect on the stress relaxation
behavior directly by imposing an upper cap on the maximum size of the clusters, N}, ,
in simulations. Fig. 11 presents the stress relaxation functions for the systems with two
different upper caps, namely N} = 3 and 4 respectively, together with that of the reg-

ular uncapped systems (N = oco). The G(t) results show clearly that preventing the

clu
sticker clusters from growing in size leads to a much slower stress relaxation behavior in
comparison with the regular supramolecular network we simulated, even though single
sticker hopping events are allowed in both cases. Partner exchange events facilitated by
the sticker cluster dissociation-association processes thus play a dominant role in con-
trolling the dynamic and rheological behavior of supramolecular networks cross-linked
by stickers cluster or micellar cores. In a theoretical work on the dynamics of telechelic

ionomers, Leibler et al. have also pointed out that the stress relaxation should take place

by exchanging pairs of charged chain ends to lower the free energy costs.
3.3 Theoretical models

3.3.1 Phantom chain hopping model

In this section we introduce a simple theoretical model to describe the dynamic behavior
of supramolecular polymer networks formed at high bonding energies (¢ > 9kpT') where

nearly all stickers have associated into clusters. At time scales ¢ < 7., the system
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Figure 11: Stress relaxation functions of supramolecular systems with and without a
upper cap N, on sticker cluster size. The system parameters are ¢ = 10kgT" and

N = 25.

behaves like a fixed polymer network and so can be described by the phantom network
model where the sticker clusters act as cross-links or junctions.’? In a phantom network
consisting of ideal-chain strands of length N* and cross-links of functionality f*, each
end monomer of a target network strand is considered to be effectively connected to
an elastic non-fluctuating background via a virtual chain of length N.¢r = N/(f* — 2).
The other end, also called the anchor point, of the virtual chain is fixed in space. For
mapping the phantom model to a supramolecular network formed by bead-spring chains
with a broad distribution of sticker cluster sizes, we first choose a strand length N* and
then match the time scales of the two systems by the ratio between the Rouse times
of the phantom network strand and the parent polymer chains in the supramolecular
system. Following that the virtual chain length N.;¢, or equivalently the effective cross-
link functionality f*, is determined by matching the mean square fluctuations of the
end-to-end vectors of the network chains in the two different systems.

Unlike a permanent network, the end monomers or stickers of a polymer chain in a

supramolecular network can change its topological connection to the network by moving

33



from one sticker cluster or cross-link to another at time scales ¢ > 7,.. The change of
topological constraint on the target chain end via the partner exchange process can be
represented by a hopping of the anchor point of the virtual chain in the phantom model.
Fig. 12 sketches this phantom chain hopping model (PCHM) where a target Rouse chain
consisting of N* beads is end-linked to two other Rouse chains each of N,y beads and
anchored in space at the other end. The dynamics of the system is then controlled by

the chain fluctuations and anchor point hopping.

Negs
Neyy

t X Tanchor

Figure 12: Sketch of the phantom hopping model. The red circles represent the stickers

at the ends of the target chain.

The phantom chain hopping model can be solved numerically to provide dynamic

relaxation functions of the target polymer. Apart from the two anchored beads, the

dynamics of all other beads in the system are governed by the equations of motion™

dR; _ 3kgT
dt b2

¢ (Riv1 —2R; + R;_1) + f;, (12)

where R; is the Cartesian coordinate of bead ¢, ( is the bead friction coefficient, b is
the average bond length and f, is the Gaussian random force. Considering the broad
distribution of the partner exchange times as shown in Fig. 6(b), each anchor point is

assigned a lifetime ¢}, fe randomly taken from a simple exponential distribution

P(tikife) =hH eXp(_t;ife/Tan)v (13)

where P, is a normalization constant and 7., is the average anchor point lifetime whose
value can be varied to reflect the dependence of the partner exchange time 7, on the

bonding energy. For a given e value, we set T, = Tpe(7h/7r) Where 7 and Tp are

34



the Rouse times of the target phantom network strand and the polymer chains in the
supramolecular systems, respectively.

After t7; fe the anchored bead performs a random hopping to a nearby position. The
hopping process is carried out by eliminating a chain segment consisting of s(< Neyy)
beads from the anchored end of the virtual chain and then regenerating it by a s-step
random walk of step size b, as sketched in Fig. 12. The position of the regenerated end
monomer is taken as the new anchor point which is assigned a new lifetime from the
distribution P(t;; f .)- The resulting anchor point hopping distance follows the Gaussian
distribution of the end-to-end distance of an ideal chain with 2s bonds and so has the
mean value of aq, = (25)'/2b. In this algorithm, the impact of the abrupt hopping of
the anchor point propagates to the related end monomer or sticker of the target chain
through Rouse fluctuations of the virtual chain. Therefore the sticker can adapt to its
new equilibrium position in the transient network smoothly, analogous to the partner
exchange events in real supramolecular systems. The average hopping distance of the
anchor point and correspondingly the number of hopping events needed for a target
chain to fully relax can be tuned by changing the chain segment length s. The terminal
relaxation of the target chain depends on both the mean anchor point lifetime 7., and
the mean hopping distance aq,. These essentially capture the effect of increasing the
bonding energy and the sticker density as observed in the hybrid MD/MC simulations.

The system parameters of the phantom chain hopping model are set up as follows.
For convenience we choose the number of beads in the target phantom chain same as
that of the parent chains in the modeled supramolecular systems, i. e, N* = N. To find
the virtual chain length N¢// or the effective cross-link functionality f*, we recall that
in the phantom network model the mean square fluctuation of the end-to-end vector
around its average value is given by < (Ree— < Ree >)? >= 2N*b?/f*.7 Fig. 9
(b) shows that the end-to-end vector correlation function ®(¢) of the polymer chains
with N = 25 is relaxed by about 30% in the fixed supramolecular polymer networks.
One can thus deduce the effective cross-link functionality by the relation of 2/ f* =~ 0.3

which gives f* = 7. This f* value is somewhat larger than the average sticker cluster
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size N9

ou ~ 3.6 found in the supramolecular networks. But as shown in Fig. 13 (a),

the resulting virtual chain length of N.s; = 5 provides a very good prediction of the
permanent phantom network model for the chain end-to-end vector correlation function
in the fixed supramolecular networks. As mentioned above, the average lifetimes of the
anchor points 7,4, are determined directly from the sticker partner exchange times 7.
obtained in the hybrid MD/MC simulations at different bonding energies €.

Fig. 13 presents the numerical results of the PCHM on the chain end-to-end vec-
tor correlation functions ®(t) and the end-monomer or sticker mean square displace-
ments g{"**"(t) of the target chains, together with the MD/MC simulation data on
supramolecular networks with N = 25. At each € value the two sets of data show rea-
sonably good agreement in both the Rouse and rubbery (plateau) relaxation regimes
without requiring any extra tuning parameters. Further agreement in the terminal re-
laxation regime after 7, or 7, is achieved by choosing proper hopping distance ag, or
the eliminated/regenerated chain segment length s. For example, a value of s = 4 has

been used for modeling the supramolecular systems with N = 25 and € = 10kgT.

3.3.2 Discrete model of sticker diffusion

In supramolecular networks formed by associating telechelic chains, the topological con-
straints on the polymer chain ends are released in a step-by-step manner by sticker
partner exchange events. The terminal relaxation time of the system can thus be esti-
mated as the time taken for a sticker to diffuse a distance comparable to the size of its
parent chain,

Nb?

Td R —5Tpes (14)

Upe
where a,. is the average distance that a sticker diffuses after one partner exchange event
with the characteristic time 7,.. Eq.(14) takes a similar form as the free path (FP) model
proposed by Marrucci et al. for equilibrium conditions,?” but the microscopic origins
of the time and length scales of the discrete diffusion steps are very different from their

model assumption.

In hybrid MD/MC simulations, we define ap. as the separation between the mean
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Figure 13: Simulation results of the phantom chain hopping model on the end-to-end
vector correlation function ®(t) (a) and the sticker mean square displacement (b) of the
target chains. The symbols are the results obtained from hybrid MD/MC simulations of
supramolecular networks with polymer chain length N = 25 at various bonding energies
€. The simulation times in both the PCHM and supramolecular systems have been
rescaled by the Rouse times of the corresponding polymer chains. The dotted-dashed

line in (a) presents the ®(¢) data of the fixed polymer network same as in Fig. 9(b).
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positions of the initial and final sticker clusters that a sticker is associated with before
and after a successful partner exchange event. The value of ay, is found to increase with
the sticky bonding energy e even while the average size of clusters converges [Fig. 3(b)].
This implies that the sticker diffusion distance is determined by not only the average
distance between sticker clusters, but also the lifetime of clusters. As the bonding energy
increases, a cluster is able to explore a larger volume before the bond breakage permits its
association with another cluster to facilitate sticker partner exchange. Fig. 10 compares
the predictions of eq. (14) obtained by using the simulation values of ap. and 7, with the
terminal times of the stress relaxation and chain end-to-end vector correlation functions
of the supramolecular networks formed at high e values. They show qualitatively good
agreement. But it should be noted that the statistics of the a,. and 7). values as well
as the terminal times 7575 and 75° are getting worse with increasing bonding energy,
because the simulation runs can only last 15 ~ 200 terminal relaxation times depending
on €.

We note that the sticker diffusion step size a, used in eq. (14) is different from
the anchor point hopping distance ag, defined in the phantom chain hopping model.
But the random walk feature of the chain end diffusion can be well correlated to the
Rouse-like relationship between the terminal times of the stress and chain end-to-end
vector relaxation functions, namely 75¢ ~ 2757¢5. The PCH model has the advantage
of being able to predict the entire relaxation functions over eq.(14) which only gives the

terminal times.

4 Conclusions

Hybrid molecular dynamics/Monte Carlo simulations have been performed to study
the static, dynamic and rheological properties of supramolecular systems consisting of
unentangled telechelic chains with end sticky monomers. The choice of functionality
f = 3 allows each sticker to form reversible bonds with two other stickers, which is the

minimum requirement for network formation. The sol-gel transition occurs at a critical
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sticky bonding energy of ¢ ~ 4.3kpT when the fraction of reacted stickers overtakes
that of the unreacted ones. At sufficiently high bonding energies (¢ > 10kgT), the
majority of the stickers are fully reacted and less than one percent of stickers remain
open. The distribution of the sticker cluster sizes can be well described by a theoretical
model analogous to that used to predict micellar size distribution in dilute solutions of
amphiphilic molecules. The proportion of elastically inefficient strands in the strongly
associated supramolecular networks is found to be less than 5%.

The dynamic and rheological behavior of the strongly associated supramolecular
networks are shown to be dominated by partner exchange events in which the stickers
exchange their associated partners, and so release the imposed topological constraints,
through the disassociation-association processes of the sticker clusters. This is in contrast
to the traditional picture of single sticker hopping where a sticker needs to dissociate
from a cluster by breaking all existing sticky bonds, which is energetically unfavorable.
Our study indicates that the system can relax without waiting for the chain ends to
completely disassociate from the network. The presence of large sticker clusters can ac-
tually increase the chain relaxation rate. As a result preventing stickers from associating
into larger clusters will significantly slow down stress relaxation.

Two characteristic time scales, namely the partner exchange time 7, and cluster
exchange time T, are introduced to measure the dynamics of supramolecular networks
formed at high sticky bonding energies. These time scales are up to two orders of
magnitude larger than the average sticky bond lifetime 7,. Three distinctive regimes
can be identified in the stress and end-to-end vector relaxation functions, i. e., an
initial Rouse regime at time scales 7y < t << 7p, an intermediate rubbery or plateau
regime at 7T < t < 7Tpe and a terminal relaxation regime at ¢ > 7,.. A phantom chain
hopping model is developed based on the microscopic picture of sticker partner exchange
process. Numerical predictions of this model on the sticker mean square displacements
and chain end-to-end vector correlation functions are in reasonably good agreement with
the hybrid MD/MC simulation results. Furthermore the terminal relaxation time of a

supramolecular network can be estimated as the time taken for a sticker to diffuse a
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distance comparable to the size of its parent chain. The time and length scales of the
discrete steps of the chain-end diffusion are determined by the sticker partner exchange

events.
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Appendix A: Sol-gel transition in supramolecular polymer

systems

In supramolecular polymer systems, the association of stickers leads to the formation
of chain clusters of different sizes. For a system consisting of N, telechelic chains with
sticky end monomers of functionality f, the extent of reaction is measured by

. Nbond _
P Na(F -1 (A1)

where Npypq is the ensemble-averaged total number of sticky bonds formed in the system.
The reaction extent p increases with the increase of the sticky bonding energy . The
sol-gel transition occurs when p exceeds a critical threshold of p..

In order to determine if the system is percolated in a given direction we use the

method of Koopman and Lowe”® which tests whether any group of associated chains is
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Figure 14: Weight-averaged chain cluster size as a function of the extent of reaction p
as obtained in supramolecular polymer systems with sticker functionality f = 3. The
simulations were performed using different box sizes and so different number of parent

chains Ny,.

connected to its periodic image. We only require the system to be percolated in one
direction. This analysis allows us to identify which chains make up the gel and which

are part of the sol. The sol-gel transition can be characterized by the weight-averaged

cluster size measured in the sol phase®® 77
Nch
]2P50l (])
c _J=1
NW — Nch . (A—2)
Z szol (])
j=1

where Py (7) is the probability for a chain to be associated into a finite cluster consisting
of j chains. When p approaches p., NVC{, diverges in infinite system due to the formation
of percolated network. However, since our simulations can only consider finite N, a
maximum in NVCI;/ (p) is expected at the percolation transition.

Fig. 14 presents the simulation results on NVC;, as a function of the extent of reaction
as obtained in hybrid MD/MC simulations using different box sizes. The maximum of

NV([;, occurs at p. =~ 0.4, which is in agreement with that found in systems of binary
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associations.?® This p. value corresponds to a sticker bonding energy e, ~ 4.3kgT. In
Fig. 2 this bonding energy is approximately where the fraction of open stickers becomes
less than the total fraction of (partially- and fully-)reacted stickers. Percolated transient

networks are formed in the systems with € > e..

Table 1: List of symbols for the characteristic times used in this work.

Timescale | Description

TLJ Lennard-Jones time

T™C Monte Carlo step size

TR Rouse time of polymer chain

Td Terminal relaxation time of polymer chain

T3¢ Terminal relaxation time of polymer chain end-to-end vector
Tjtress Terminal time of stress relaxation

Ty Average lifetime of sticky bonds

T Renormalized lifetime of sticky bonds

Tpe Partner exchange time of stickers

Tee Sticker cluster exchange time

Tan Average lifetime of anchor points in the phantom chain hopping model
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