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HIGHLIGHTS

o Embedding formulae of use as they reduce effort required for full characterisation of diffraction properties of scatterer.

e Formulae here for first time derived for simple curved scatterer.

e Derivation using direct approach from boundary-value problem, and also via formulation as integral equation.

e Numerical calculations demonstrate implementation and use of embedding formulae.
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characterisation of the scattering properties of an obstacle can be determined by only de-
termining the solutions of the auxiliary problems, and then implementing the embedding
formula. The class of scatterers for which embedding formulae can be derived has pre-

Available online 15 July 2016

s\z\xzrds' viously been limited to obstacles with piecewise linear boundaries; here this class is ex-
Diffraction tended to include a simple curved obstacle, consisting of a thin circular arc. Approximate
Embedding numerical calculations demonstrate the accuracy of the new embedding formulae.

Circular arc © 2016 Published by Elsevier B.V.

1. Introduction

To fully characterise the wave scattering properties of an obstacle, solutions may be required for a range of plane wave
incident angles. Embedding formulae are a means of reducing the effort required to achieve this full characterisation. These
formulae express the solution or the far-field behaviour of the solution for an arbitrary incident wave angle in terms of
analogous properties of a typically small set of other solutions. Thus once the problem is solved for this set of solutions the
full characterisation follows immediately from the embedding formula without need to solve any further problems.

Embedding formulae were first derived in [1,2]. These papers showed that the solution for a plane wave incident at any
angle upon a two-dimensional, thin, straight barrier containing a single gap, can be fully determined from the single solution
corresponding to grazing plane wave incidence. Following [2], subsequent extensions [3-6] required the boundary-value
problem to be formulated as an integral equation; the derivation of the embedding formulae then exploited the structure of
the integral equation, and expressed the solution for arbitrary plane wave incident angle in terms of solutions corresponding
to other plane wave incident angles. This approach was generalised in [7] in which a generalised integral equation problem,
divorced from a particular wave diffraction interpretation, was addressed.
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Fig. 1. Geometry of scatterer B.

The papers [8,9] instead derived embedding formulae directly from the boundary-value problem, without recourse to an
integral equation formulation, and expressed the far-field of the solution for arbitrary plane wave incident angle in terms
of the far-field of solutions corresponding to particular multipole forcing at the corners of the scatterers. The method was
generalised to certain three-dimensional scattering problems in [10]. In many ways this approach is more versatile as the
problem does not need to first be formulated as an integral equation, but the calculation of the particular solutions required
for the embedding formula which are forced by source terms at the scatterer corners may not be straightforward. To address
this, [11,12] modified the boundary-value problem approach to allow the far-field of the solution for arbitrary plane wave
incident angle to be expressed in terms of the far-field of solutions corresponding to other plane wave incident angles.

The class of scatterers for which embedding formulae have been derived thus far is rather limited: the scatterer
boundaries must be piecewise linear, with each linear portion of the boundary oriented at a rational angle (i.e. ms /n, for
integers m, n) to the x-axis (say). In the current paper we extend this class of scatterers to a canonical scatterer in polar
coordinates consisting of a circular arc.

Similar diffraction problems have been considered previously, though not within the context of embedding formulae.
In[13] a model of a coastal harbour as a circular basin semi-embedded in an infinite coastline was developed, formulating the
problem as an integral equation posed on the harbour opening and using a variational principle to provide an approximate
solution. The case of porous harbour walls was considered in [ 14]. The problem of an electromagnetic plane wave incident
upon an infinitely long, conducting, slotted cylinder is mathematically similar, and was solved numerically in [15]. In[16], the
diffraction of a plane wave by precisely the scatterer geometry of the present paper was considered, though the investigation
was limited to cases for which the entrance to the inner circular region was narrow, and focused on resonance excitation.
More recently, [ 17] considered the scattering of a plane wave by a semi-circular inclusion in an otherwise infinite straight
barrier.

The paper proceeds as follows. In Section 2 the boundary-value problem is introduced. In Section 3 a selection of
embedding formulae is derived, firstly by adapting the approach of [11] to address the boundary-value problem directly,
and then by reformulating the boundary-value problem as an integral equation, and using the results of [7] to exploit its
structure. In each case the initial step is to decompose the incident plane wave ¢ (r, 0) = e’*" 5~ into an infinite sum and
then consider the problem forced by an arbitrary term in this sum (referred to below as the ‘modal problem’). Approximate
numerical calculations are carried out in Section 4, and a comparison is made between results determined from a direct
approximation and via the embedding formulae. Finally, some conclusions and possible extensions are offered in Section 5.

2. The boundary-value problem

The scatterer takes the shape of a portion of a circular arc (see Fig. 1). Thus, in terms of standard polar coordinates (r, 6),
the scatterer occupies the region

B={(r,0):r=a, 0 €[—m, 7))\ (—b1,61)}, (2.1)

in whicha > 0 and 6; € (0, ) are specified constants. The gap in the barrier is without loss of generality symmetrically
oriented about the line & = 0. Throughout this paper we will refer to the domain for which r < a as being ‘within the arc’,
and r > a as ‘outside the arc’.
We suppose that there is a potential ¢ (r, 6) satisfying the Helmholtz equation
32 o d¥ 32 o
AL L

= p» 207 +k2¢* =0 inR?\B. (2.2)
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Here k is the (specified) wavenumber, and the superscript « refers to the fact that ¢¢ includes a plane wave

¢q — eikrcos(Qfa) (2.3)

1

of unit amplitude and whose propagation direction makes an angle @ € [—, ) with the positive x-axis, which is incident
upon B. The incident plane wave has the expansion

(o]

¢r(r,0) = Y {"a(kr)e" "= (2.4)

n=—0oo

(see equation (2.77) in [18]), where J, denotes the Bessel function of the first kind and order n.
The barrier B is ‘hard’, in the sense that the potential ¢* satisfies a homogeneous Neumann condition on the scatterer:

Flokd
or

For convenience, we decompose the potential ¢ outside the arc into the sum of the incident wave ¢ and a diffracted
component ¢y :

=0 onB. (2.5)

¢ (r,0) = ¢*(r,0) + ¢5(r,0) inr>a. (2.6)
The diffracted potential ¢¢ satisfies the Sommerfeld radiation condition
a o
lim r'/? < i _ ik¢g) =0, (2.7)
r—00 or

uniformly in 6. Lastly, we require that the so-called Meixner or edge condition (e.g. [ 19]) holds, that is, if p measures distance
from either corner of B, i.e. (a, 6;) or (a, —6), then here

dgp”
ap

This condition ensures that energy is not added to the system at these points.

The boundary-value problem described above models, for example, surface gravity waves on fluid of uniform depth
containing a surface-piercing structure of cross-section B, or three-dimensional acoustic waves in a medium containing an
infinitely long structure of cross-section B.

The far-field behaviour of the solution as kr — o0 is of particular interest. We write

— O(p_l/z). (2.8)

B .0) = | 2T, @) 4 0((kr) ), 29)

where F(0, «) is referred to as the far-field diffraction coefficient, and 6 as the observation angle. The far-field diffraction
coefficient satisfies the well-known reciprocity principle (see e.g. [18])

FO@+n,a)=F(a+m,0), (2.10)
and because of the symmetry of the scatterer B about the line = 0 it is also clear that ¢ (r, 6) = ¢;*(r, —0) and so

F(0,a) = F(—0, —a). (2.11)

3. Embedding formulae

Typically derivation of embedding formulae initially follows one of two distinct but related routes: either a particular
differential operator is used, which commutes with the Helmholtz operator, boundary conditions, and radiation condition,
and annihilates the incident wave; or else the boundary-value problem is reformulated as an integral equation, and its
structure is exploited. In Section 3.1 we first use the differential operator approach, and then in Section 3.2 derive an
equivalent integral equation formulation and make use of its structure to derive complementary results.

3.1. From the boundary-value problem
For the scattering geometry B the simple operator

a0
D= — 4 const. x I
200 +
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certainly commutes with the Helmholtz operator 9%/9r* + r='3/0r 4+ r=23%/3? + kI, the boundary conditions (since the
differentiation in D is in a direction parallel to the scatterer B), and also the radiation condition, but D¢{* # 0. However, the
incident plane wave ¢ has the expansion (2.4), which can be written as

o7 (r,0) = Z i"e” "¢l (r, 0), (3.1)
n=—co
where
¢l'(r,0) = Ju(kr)e™ (n e z), (3.2)
and now the operator
d
D, = i inl, (nez) (3.3)

is such that D,¢{" = 0 for all n € Z. This property suggests we decompose the solution ¢* as

¢%(r,0) = Z i"e~ My (r, ) (3.4)
n=—oo
where the solution corresponding to the forcing ¢! is denoted by ¢", and then seek embedding formulae for solutions of this
‘modal problem’. Once such formulae are derived, quantities related to the full solution ¢* can be reconstructed via (3.4).
Note that the operator D,, in (3.3) is very similar in form to the basic operator H used in [8], the only substantial difference
being that there d/96 is replaced by d/dx and/or d/dy, because that work involved scatterers with straight edges.
We isolate the forcing ¢! from ¢" via the decomposition

P"(r,0) = @(r,0) + ¢5(r,6) inR>\B; (35)
comparison of (2.6) and (3.5), and use of (3.1) and (3.4), then shows that

Pe(r,0) = Z i"e" M @(r,0) forr > a. (3.6)
n=—oo
We write
2
PN, 0) = — - e K =T/VE (6) + 0((kr)/?) (3.7)
(
as kr — oo, with
0 ) 1 T )
Fa®) =Y fome™. fum=:— [ F(®)e"™d6 (n.m e ). (38)
et 21 J_,
Note that a consequence of (2.9) and (3.6)-(3.8) is that
o0 . o0 .
FO.a)= Y i"e7™F,(0) = Z e " fume™. (3.9)
n=—o0 n=—oo m=—o0

3.1.1. Embedding formulae for the modal problem
The operator D, in (3.3) commutes with the Helmholtz operator, the boundary conditions, and the radiation condition,
and D¢ = 0 for n € Z. It also introduces so-called ‘overly-singular’ behaviour at the arc corners (a, +-6;). To see this, first
note that separation of variables applied local to a corner shows that a solution consistent with the Meixner condition (2.8)
has the behaviour
9" = Ay + Ajp'? cosl(o — ) /2] + 0(p*?),

where p is the distance from the corner, and o is the local azimuthal coordinate aligned so that ¢ = 0 points parallel to and
away from the barrier (so 0 = %7 locally coincides with the barrier). Here A} and A’ are constants which depend on n.
Written in terms of the coordinates local to the corner at (a, 6,), the differential operator D, is

d d
D, = —acosoc — + (1+ap~'sino)— —inl,
ap do
)

D,¢" = —%aA';p—l/2 cos[(o + ) /2] + 0(1)
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as kp — 0, and thus there is one overly singular term at this corner produced by the action of D,. Application of D, to the
solution local to the corner at (a, —6,) yields a further overly-singular term. Thus we introduce the combination

@ = Dnd)n - (Bled)p + Bqu¢q),

where n, p, q € Z are distinct, and the constants B; and B, are chosen so that the combination @ is O(1) at each corner. Then
@ satisfies the Helmholtz equation, a homogeneous boundary condition on B, the radiation condition, contains no forcing
term, and is O(1) at the arc corners, i.e. @ satisfies a fully homogeneous boundary-value problem. The uniqueness of the
scattering problem then implies that @ = 0, so that

Da¢" = BiDp¢? + ByD ¢’ (3.10)

Solving (3.10) would provide an expression for ¢" in terms of ¢” and ¢, but establishing the values of the ‘constants’ of
integration is not straightforward, so we defer the derivation of this sort of embedding formula until Section 3.2, calculated
via the integral equation formulation.

Instead, we focus on deriving an embedding formula for the far-field coefficients. Let kr — oo in (3.10). Using the
notation of (3.7), the balance between leading order terms is

F, — inF, = By(F, — ipF,) + By (F, — igF,),

where F; denotes the 6-derivative of F,(6) and so on. Using the notation of (3.8), this becomes

o] o0 o0
Z (m - n)fn,melmg =B Z (m - p)fb,meime + B Z (m - Q)fq,melmg’

m=—00 m=—00 m=—00
and so

(M —n)fom = Bi(M = p)fym + B2(m — Q)fgm (M € Z). (3.11)
This equality holds irrespective of the choice of m, so in particular setting m = —p and m = —q in turn shows that

(p + n)fn,—p = 2pBlfp,—p + Bz(P + Q)fq,—p, (q + n)fn,—q =B (P + q)fp,—q + ququ,—q,
from which
_ fa,—afn,—p — fo,—pfn,—q B, = Jo.~pfn,—q = fo.—afn.—p
fo.~pfa—a — fo.~afa.—p fo.~pfa—q = fo.—afa.—p
where for convenience we have written
fra=@—Qfyg (p.q€D). (3.12)
These representations for B, B, then allow (3.11) to be rewritten as

fn m = (fq,qu,\n,fp _fQ»*Pij*q)fP-m + Efp’*lif”w*q _fp,—qfn,fp)fq,m
’ fp,—pfq.—q _fp,—qfq,—p

By

(3.13)

form € Z.

Eq. (3.13) is an expression for the modal far-field coefficient (n — m)f, m, but to serve as an embedding formula the
right-hand side should depend only on quantities involving ¢” and ¢?. Reference to (3.8) and (3.9) shows that coefficients in
(3.13) with first subscript p or q are acceptable in this sense, but coefficients with first subscript n are not. However, a form
of reciprocity principle can be used to replace such terms by quantities which depend only on ¢? and ¢9. The full reciprocity
principle is given in (2.10), which, given (3.8) and (3.9), can be expressed as

o0 (e 9) o0 o0
§ : jhe—in § : fn,me!m(0+n) — § : ip€7’p9 2 :fp,qelq(o&n).
n=—00 m=—o00 p=—00 q=—00

Multiply this equation by e'%~! for integers j, I, and integrate over «, 0 € [—, 7): the orthogonality of the exponential
functions on this interval shows that

fu=t"f0y Glew, (3.14)
in terms of which f; = #*'f_; .
Using (3.14), Eq. (3.13) can then be written as
(Pfa—afp.—n — i o —pon)oum + (. —pfa.—n — i Pho—afp—n)oum
fo—pfa—q = fo—afa—p

i_nfn,m =

(3.15)
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the right-hand side of which now only requires knowledge of the far-field behaviour of the two solutions ¢*, ¢ for its

calculation. Here p, q are arbitrary distinct but non-zero integers. An obvious choice is ¢ = —p, for thenfq,,p = fp,,q =0,
from (3.12), and (3.15) reduces to

iipf—p,pfp,—nfp,m + ipfpﬁ—pf—p,—nf—p,m

i fom = A, (3.16)
Jo.~pfpp

One further simplification is possible due to the symmetry of B around 6 = 0, and the resulting modal symmetry property

fu=CEV a0 Glen, (3.17)

which follows from the full symmetry property (2.11) in a similar fashion to how (3.14) stems from (2.10). Then fj;, =
(—l)"“f,j,,,, and use of this reduces (3.16) to

f’;,—pfn,m = inip(fp,—rfp,m _fp,nfp,—m)~ (3.]8)

Here the coefficient f, ,, (for n # m) associated with the solution ¢" is now expressed solely in terms of coefficients which
depend only on the single solution ¢?, for p # 0. Both sides of (3.18) are zero if m = n, and in this case we can use L'Hopital’s
rule to define

3 <_inp(fp’_n;fp,m —fp,nfp,_m)) _ (3.19)

fon = lim —
fo.-p

m—n 9m

Here derivatives with respect to m can be evaluated via (3.8); evaluation of the right-hand side of (3.19) still only requires
knowledge of the single solution ¢”.

Eq. (3.18) is thus an embedding formula, in that it expresses the modal far-field coefficient f, ,, for all n, m € Z in terms
of coefficients which require knowledge of just ¢? for their calculation, for one value of p € Z. Furthermore, using Eq. (3.9),
which expresses the far-field diffraction coefficient F (6, «) for the full problem in terms of the modal far-field coefficient
fa.m, this means that F(6, «) can be calculated for all 6, « € [—m, ) once the single solution ¢” is determined, for any
non-zero p € 7Z, and its far-field behaviour calculated.

3.2. From an integral equation formulation

In this section we formulate the boundary-value problem as an integral equation, and use the structure of this equation
to re-derive and extend the embedding formulae determined in Section 3.1.
An appropriate expression for the potential inside the arc is given by

o0

P 0) = Y aakn)e™ (r<a —m <0 <), (3.20)

n=—oo

where J, denotes the Bessel function of the first kind of order n, and the a, are coefficients to be determined. These
coefficients depend on « but in the interests of notational clarity this dependence is not made explicit.
The radial derivative of this expression, evaluated on By, is

Tk
ar

@,0) =) kajpe" (—w <0 <m),
n=—00

where we adopt the convention that if the argument of a Bessel (or later Hankel) function is omitted then it is to be evaluated
at ka, so J; = J; (ka) etc. The orthogonality of the complex exponentials shows that

1 o a¢a - —inf
a, = (a,6p)e ™0 dby (neZ) (3.21)
2rkly J_g, Or

where the boundary condition (2.5) has been used to reduce the range of integration in (3.21) to the gap (—64, 8,). For

convenience, we introduce the notation

ap“
ar

where it is implicit in this definition that d¢“/dr is continuous across the gap. Then inserting (3.21) into (3.20) shows that

the potential within the arc can be expressed as

vi(O) = @, 0) (=61 <6 <6y, (3.22)

&\ Julkry [ in(0—6p)
¢o(r,0) = Z 2l v (0)e™ = dgy (r <a, —m <60 < 7). (3.23)
n J—06;

n=—0o
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To derive a corresponding expression for the diffracted potential outside the arc we first decompose ¢§ as

¢q(r,0) =@ (r,0) + ¢ (r,0) inr>a, (3.24)

where ¢¢ encompasses the scattering effect of the solid cylinder By = {(r,0) : r = a,0 € [—m, 7)},and ¢‘g" is the potential
instigated by the presence of the gap in the cylinder. The potential ¢¢ is such that the combination ¢ + ¢¢ satisfies the
Neumann boundary condition (2.5) on By. An explicit expression for ¢¢ is easily calculated as

o0
PU(r,0) = Y ZyHy(kr)e" ™ (3.25)
n=—o0o
where H,, denotes the Hankel function of the first kind (this is the only kind of Hankel function appearing so the superscript
in the usual notation H,E]) is omitted for convenience), and Z, = —i"J; /H,. The corresponding far-field diffraction behaviour
is given by
[ 2 . el .
¢g ~ ] —=—F.(0, O[)ez(kr77r/4)’ F.(0,a) = Z Znem(Qfafn/Z) (3.26)
wkr o
n=—oo

as kr — oo.

A suitable expansion for ¢ is

o0
PL(r,0) = Y GHa(kr)e™ (r>a,—7 <0 <), (3.27)

n=—o0

where the c, are to be determined. Then, bearing in mind the decompositions (3.5) and (3.24), and also the fact that by
construction the radial derivative of the combination ¢{* 4 ¢ vanishes onr = a, we see that

v (6) = i(a 0) = ¢ @, ) = chkH/ inf

n=—oo

for —7 < 6 < &, from which, using the orthogonality of the complex exponentials, together with the boundary condition
(2.5), we have

01
= “(Bp)e"™ dg, Z 3.28
2kH) f_elv (Bo)e b (ne€Z) (3.28)

and so (3.27) can be written as

X Hp(kr) % o
K= o | VG0 doi. (3.29)
n=-—oo n J—v1

The corresponding far-field behaviour is

2 .
a F 9, a el(kr—ﬂ/4)
% ™\ g 8@

as kr — oo, where

00 pin(0—7/2) .
Ro.o= Y G [ e an (330)

n=—oo

In Eq. (3.23) we have an expression for the solution ¢ within the arc, and a combination of Egs. (2.4), (2.6), (3.24), (3.25)
and (3.29) provide a corresponding expression for the solution outside the arc. Now these two expressions are equated
where their domains of dependence meet, on the line r = a, —6; < 6 < 0y, across which ¢* is continuous. The result can
be arranged as

o0
Z Ly f v (0p)e™ " dog = Y Mpe™ ™ (=61 < 6 < 6y), (3.31)
n=—00 n=-—00
where
1 H '
W H_ g (3.32)
27k \Jl  H] m2k2aJ H!
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and

l'nJrl
My = "y + ZyHy = 27k Ly = ——— (n € Z) (3.33)
mwkaH),
in which the final representation in each of (3.32) and (3.33) follows after use of a standard Wronskian result for Bessel
functions (equation (9.1.16) in [20]). Interchanging the order of summation and integration on the left-hand side of (3.31)
allows it to be rewritten as the integral equation

01
/ K(10 — 6o])v*(6p) dfo = g“(0) (—61 <0 < 6), (3.34)
—61
where
o0 . o .
K6 —6ol) = D L™ g*0) = Y M """ (=61 < 0,6 < 0n). (3.35)
n=—00 n=—00

Using the standard large order asymptotic form of J, and H, (see e.g. equation (9.3.1) in [20]), we find that L, ~ a/nx for
large |n|, so that the kernel K is logarithmically singular as 8 — 6, — 0.

Eq. (3.34) can be decomposed into a series of ‘modal’ problems, precisely as we did to derive embedding formulae for the
boundary-value problem in Section 3.1.1. Thus if g"(9) = e then the solution of (3.34) can be written as

v (0) = Z M,e ™y (9) (3.36)
where
01
/ K(|6 — 6p)v"(0p) dOy = g"(0) (=61 <6 < 6y) (3.37)
—0;

for n € Z. Comparison of (3.30) and (3.36) shows that the far-field diffraction coefficient for ¢; can be written in terms of
the v" as

00 gimB-m/2) o0 ' 0
F.(0,a) = _ Mpe™ " "(00)g™(6p) dby. 3.38
0.0 = 3 G Y e /H]U(o)g (60) doy (3:38)

m=—oo

3.2.1. Embedding formulae for the integral equation

The kernel K(|0 — 6y|) defined in (3.35) is of ‘difference’ (or sometimes ‘displacement’) type, since it depends only
on the combination 6 — 6. It is well-known that equations containing such kernels admit embedding formulae (see, for
example, [7]). The integral equation in (3.37) is actually of a very similar form to that investigated in [7], namely

1
1o (X) — / R(x = Xo)a (o) o = €7 (0 < x < 1), (3.39)
0

inwhicha € Risaparameter, u € Ca given constant, and the kernel k (denoted kin [7]) is at most weakly singular. Because
the results in [7] we wish to adapt for our problem only make use of the fact that the implied integral operator in (3.39) is
injective, rather than invertible, and the uniqueness of the solution to our underlying boundary-value problem certainly
guarantees the injectivity of the integral operator in (3.34), we readily deduce, after appropriate changes to notation and
integration interval, two results.

The first result can be written as

Gp,—pGnm = Gy mGp,—n — Gp—mGpn (M € Z), (3.40)
forn, p, m € Z, with n and +p distinct. Here

Gnm = (n—m) /j v"(@)g"™©O)d0 (n,m e Z) (3.41)
|
is a far-field diffraction coefficient-like quantity, and to derive (3.40) use has been made of both reciprocity and symmetry
relations, respectively
Gnn =G_m—n (N,m € Z) (3.42)
and
Gom=—G_n_m (n,meZ), (3.43)
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the latter following from
V(@) =v"(—0) (n€Z0 e (—040)). (3.44)

Eq. (3.40) expresses the far-field diffraction coefficient for v", G, n,, in terms of quantities which require only knowledge
of the particular solution v? for their calculation, and thus is equivalent to the earlier formula (3.18). Verification of this
relationship is straightforward: from (3.24), (3.25) and (3.29) we have

o0

> ; ; M, o ,
Pi(r.0) = Y Hy(kr)e™ Y e P (zp(spn +— / vP (Bg)e "% d90>, (345)

n=—oo =0 27'[I<H,/1 —61
and comparison of this with (3.9) shows that, in the notation of (3.12) and (3.41),

R e—i(n+m)7'[/2MnGn m

= n,mewZ)), 3.46
nm 2kH! ( ) (3.46)

from which the equivalence of (3.18) and (3.40) is readily confirmed.
Integrals of the form f_e}al v"(6p)g ™™ (6p) db, are required to evaluate the far-field coefficient Fg(6, ) in (3.38), and from
(3.40) and (3.41) they have the representation

o1 Gp.mGy—n — Gp —mG
/ v"(00)g " (Bp) dfp = P PT (3.47)
—0, (n—m)Gp

for distinct n, m. In the case n = m we must use L’Hopital’s rule (as in Section 3.1.1) to give

o —GpmGyp.—m — Gp.—mG
/ V™ (60)g " (60) dfy = —E P TRT (3.48)
—b1 Gp.—p
where
R 9 o1 ) 61 )
Gpm = — (Gp.n) =— / VP (0p)e "™ dhy — i(p — m) f BovP (Bp)e ™™ db,. (3.49)
on n=m —01 —61
Thus inserting (3.47) and (3.48) into (3.38) results in
R — © - oim(0—7/2) 00 v e_ma (Gp,mGp,fn . Gp,fmGp,n>
k] - n
’ m=—00 anHrCn n=-—00,#m (Tl - m)Gp.—p
o pim(@—7/2) p—ime Gp.map,fm + Gp,,map,m (350)
/ m .
e, 2mkH), Gp,—p

which expresses the far-field diffraction coefficient Fg (6, o) in terms of quantities which depend on the single modal solution
VP,

The second result which can be inferred from [7] was not derived in Section 3.1. It relates the solutions of (3.37)
themselves rather than their far-field diffraction coefficients:

Gp,—pv"(0) = Gpn[vP(=0) — i(p + M) (V_nv")(=0)] + Gp —n[v*(0) +i(p — m)(V;vP)(O)], (351)

where we have introduced the Volterra integral operators

0 01
Vo)) = [ v a0 = [ v ao (352)
%

_91

for n € Z. Thus once the single solution v, of (3.37), is determined, (3.51) can be used to determine all others. Eq. (3.36)
can then in turn be used to construct v* for any incident plane wave angle «, again in terms of the single solution v? of the
modal problem, as

Gp.spva(e) = Z Mne_maGp,n[vp(_G) —i(p+ ) (V_pvP)(—6)]

n=—oo

+ Y Mue ™Gy a[vP(0) + i(p — M) (V;vP)(O)]. (353)

n=—o0
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4. Numerical implementation
In this section we determine a numerical approximation to a solution vP of the modal integral equation (3.37), from
which approximations to the far-field diffraction coefficient-like quantities G, 4 can be calculated; these are inserted into

(3.50) to give an approximation to F¢(6, o). This approximation is compared to the result of a direct approximation of the
full integral equation (3.34).

4.1. Numerical approximation

To derive an approximate solution of the modal problem (3.37) (with n replaced by p for convenience) we use Galerkin’s
method in conjunction with the Rayleigh-Ritz approximation

P
V(O) A Y 2P xg(0) (4.1)
q=0

where P € Ny, the A{ are constants to be determined, and the x, are trial-functions specified below. The A§ are found by
substituting (4.1) into (3.37), multiplying both sides by x;(#), and integrating in 6 across (—6y, 6), which results in

01 o p 61
| [ ko = Y- st 0 cendo = [ 210090 (42)
—b6h v -0 q=0 —b1
forl =0, ..., P.Foreach p this is a system of P + 1 equations from which to calculate the P + 1 unknowns A%, ..., )\g. We
write this system as AIP = r?, where A has (I, q)th entry
61 o
Ay = / / K16 — 6o)) xq(00) 1(0) dp d6 (I,q =0, ...,P), (4.3)
=61 J =61
I? is a column vector with gth entry A} (¢ =0, ..., P), and r” is a column vector with Ith entry
01
rf :/ g2 ®)dd (=0,...,P). (4.4)
—61

The choice of trial-function is motivated by the corner condition (2.8), from which v(0) = 0((6; F0)~"/?) near 6 = +6,.
Consequently we choose

Ti(0/61)

62 — 62

where T; is the Chebyshev polynomial of the first kind. Use of trial functions of this form to approximate a function which is
square-root singular at each end of an interval was used previously in [21]. From (4.4),

x1(0) = (l=0,...,P) (4.5)

b g
P = / cos(lo)eP1°5% do = i)y (p6y) (p€Z,1=0,...,P), (4.6)
0

upon using a standard Bessel function identity (equation (9.1.21) in [20]).
From (3.35), and using (4.4) and (4.6),

o0
n.—n
Ag = E Lyt Iy

n=-—oo

= g2 Z LyJi(n61)]q(n67)

n=—oo

74T IL1(0)]4(0) 4+ w4 I(—= 1T 4+ 1] Z LnJi(n61)Jq(n6y). (47)

n=1

The terms in the sum in (4.7) are O(n2) asn — 00, so the sum is slowly convergent. However, calculations can be speeded
up, as follows. First we use the expansions (equations (2.17), (2.18) in [17])
h@ z  2° z3 H.z) z 2 z3

; =-4 = - +0m), =——— ——+0n™),
Jizy n 2n3 2nt H!(2) n 2n® 2nt
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for n — oo and z fixed, to show that L, defined in (3.32) has the behaviour

a k*a?

Ly=—

"7 onx + 2n3m
for large n. Then combining (4.8) and the standard large argument expansion of the Bessel function of the first kind shows
that LyJ;(n6; )]q(n91) = yu(l, q) + O(n™*), where

+0(n~>) (4.8)

wl,q) = 272 {c05[2n01 —(+q+ D)m /2] + cos[(I — q)m /2]}

- ﬁ [q? + 212 — 1) sin[2n8; — (I + q + 17 /2] + 2(¢ — P) sin[(I — g)7/2]} . (4.9)
1

We thus write the infinite sum in (4.7) as

o0

> L0 = > [Lafi(0)]g (1) — ya(l. D1 + ¥ (L. @), (4.10)
n=1

n=1

in which the sum can be evaluated accurately by truncating the sum at a finite value of n since the terms are O(n~*) as
n — oo. We truncate at n = 1500 for all calculations presented here, which is sufficient to ensure 5 decimal places of
accuracy in approximations to Ay. Also

2
y(lg = Zyn(l q) = 2770, <Az + 0+ —cos[(l—q)n/2]>

n=1

292 ((2q% + 2P — 1)(A3 — A3) + 4i(g° — )¢ (3) sin[( — q)7r /2]) (4.11)

in which ¢ denotes the zeta function, and A; = e~ /+4+D7/2j;(e2%1) (j = 2, 3) where

. AN GtV
Lij(z) = 2 5= i~ 2

1
/ Y2 tIn(1 — zt) dt
0

is the polylogarithm function (Section 25.12, [22]), which can be evaluated accurately using standard quadrature techniques
applied to its integral form.

Once the AZ are determined, the far-field diffraction coefficient-like quantity for the modal problem, G, , in (3.41), is
approximated by

Gom ~ (p—m) Y _ADTI. (4.12)

To apply the embedding formula (3.40) when n = m we also require an approximation to the modified coefficient &p,m in
(3.49), and for this we need

01 . .
/ GovP (6p)e ™™ dgy ~ / 6o Z A2 xq(Bo)e ™" dby
—61 —

where
91 . g . -l I I
/ eoxq(eo)eﬂm(?o d, = 6, / cos o COS(qU)eﬂmgl S0 dg = 591 (r[’nJrl + r(']"q), (4.13)
so that
R P 1 .
Gom X — Y M [rgf + i =MoLl + rg'_l)} . (4.14)
q=0

The approximation of the solution to the full problem (3.34) proceeds in a similar fashion, the only difference is in the
right-hand side: g* replaces gP. We write

,
vI(0) X Y 2 xq(0) (4.15)
q=0
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Table 1
Values of |Gs 1] for different ka and increasing P. The gap in the barrier occupies
0] <6, =m/5.
ka p
2 4 6 8 10 12

b4 2.33437 235708  2.35711 235711 235711  2.35711
2w 8.41238 8.42985  8.42994 842993  8.42993  8.42993
37 1166046 877025  8.62414  8.62052  8.62046  8.62046

Table 2
Values of |G, | for different n, m and increasing P. Here ka = 27 and 6, = 7 /5.
[Gaml P

2 4 6 8 10 12

|Gy 2] 565247  5.69458  5.69455  5.69454  5.69454  5.69454
[G1,9] 7.67423 547806  5.27293  5.26695 5.26691  5.26691
|Gs ol 0.66926  2.47901  3.52477  3.59077 3.59186  3.59187

where 1%, the vector with gth entry A%, is found from Al* = r%, in which r* has gth entry

61
re :/ £%(0) x4(0) db :f Z M™% x,(0) d8 = Z Mne™ "1, (4.16)
_91

91 n=—0o0 n=—00

from (3.35) and (4.4). The sum in (4.16) converges very rapidly. To see this first note that from (3.33), M_, = M,, forn € Z.
Also, from (4.8), L, = O(n~') asn — o0, and as a consequence of equation (9.3.1) in [20],

ho~ (2

asn — oo for fixed z. Putting these results together we deduce that My is O(|n|~""=/?) as n — =o0.
Clearly /\g = Z;’ifoo Mpe~™ A" which is the discrete version of the linearity relationship (3.36). From (3.30), the
corresponding approximation to the far-field diffraction coefficient Fz (6, o) is then

o oim@-m/2) P
Fg(G,oz)% Z 2 kH’ qur(;"

m=—o0o m q:O

o0 lm(9 w/2)
— —moz n.m
= T Z Z Mye™ " 00T (4.17)

m=—00 q=0 n=—00

In practice both infinite sums in (4.17) are truncated at the finite values +=N.

4.2. Results

Tables 1 and 2 demonstrate the convergence of the numerical scheme for the modal problem. Table 1 displays values
of |Gs,1| calculated via (4.12) for 6, = 7 /5, ka = m, 27, 37, and increasing P. For larger ka or 6; > /2, higher values
of P must be taken to achieve the same accuracy. In the latter case, the matching of solutions ‘inside’ and ‘outside’ the arc,
as in Section 3.2, makes less sense as a formulation; a preferable numerical approach is likely the hypersingular integral
equation route of [23,18], though this is not pursued here. Table 2 lists values of |G, | for different n, m and increasing P,
with ka = 27 and 6, = 7 /5. As n, m increase higher values of P are required to achieve the same accuracy.

The convergence of the numerical scheme for the full problem is demonstrated in Table 3. Displayed are values of the
particular diffraction coefficient |Fy(r /3, 7t /7)|, calculated via (4.17) for ka = 27 and 6; = /5. Both infinite sums in
(4.17) are truncated at =N, and values are shown in the table for increasing N and P. The convergence with P is comparable
to that of the modal problem, and the factors of 1/H/, (= O(|m|~™*1/2) as m — +00) and M, in (4.17) guarantee rapid
convergence of the sums in m and n respectively as the truncation parameter N is increased.

Now we implement the embedding formula via the representation (3.50). We solve the modal problem for v?,
approximate the required G, ,, and &pﬁm using (4.12) and (4.14), and then evaluate the right-hand side of (3.50), truncating
the infinite sums at +=N. The results of Table 2 indicate that the approximation to v” converges most quickly for small values
of p; for comparison we display in Table 4 results for p = 1and alsop = 9, forincreasing N and P. As expected the embedding
formula results converge more slowly for the larger value of p, reflecting the slower convergence of the approximation to
vP in this case.

To demonstrate the utility of the embedding formula, Fig. 2(a) shows a contour plot of |[Fg(0, o)| for —7 < 6, @ < 7, for
parameter values ka = 2w and 6, = 7 /5. The reciprocity principle (2.10) and symmetry property (2.11) are responsible for
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Table 3
Values of |Fg(r /3, 7 /7)| calculated via (4.17) for ka = 2m, 6; =
7 /5 and increasing P and truncation parameter N.

N P
2 4 6 8 10
5 0.09577 0.10130 0.10193 0.10193  0.10193
10  0.08158  0.23453  0.25443  0.25509  0.25510

15 0.08245 0.23517 0.25433  0.25488  0.25488
20 0.08245 0.23517  0.25433  0.25488  0.25488

Table 4

Values of |Fy(r /3, 7 /7)] calculated via the embedding formula (3.50)
with increasing truncation parameter N, in terms of vP forp = 1,9
calculated using different values of P. Here ka = 27 and 6, = 7 /5.
The converged value is 0.25488 (5d.p.)

N,p P
2 4 6 8 10

10,1 034132 0.25576  0.25527  0.25510  0.25510
15,1 034094 0.25552  0.25505  0.25489  0.25488
20,1 034094 0.25552  0.25505  0.25489  0.25488
10,9 020317 0.06232  0.24417  0.25522  0.25510
159 020258 0.06431 0.24426  0.25503  0.25488
20,9 0.20258 0.06431 0.24426  0.25503  0.25489

b 1
08
06
0.4

0.2

o

Fig. 2. Absolute value of far-field diffraction coefficients, for ka = 27 and 6, = 7 /5, as functions of incident angle « and observation angle 6. Panels (a)
and (b) display |Fy (@, @)| and |Fg (60, @) + F.(0, )| respectively.

the various symmetries. The results for the plot were generated by calculating only a single approximate solution v', and
then using the embedding formula (3.50) to calculate all values of |Fg (6, o) |. Fig. 2(b) shows values of |Fs(6, o) 4 Fc (0, )],
which is the far-field diffraction coefficient stemming from the combined effect of the gap and the cylinder, the latter given

in (3.26).
Finally we implement the embedding formula (3.53) which expresses v* in terms of v”. Fig. 3(a) displays values of v* (6)

(multiplied by ,/912 — 62, to avoid singular behaviour at the end-points) across the gap —0; < 6 < 6, for parameter

values ka = 2w, 6; = /5 and incident wave angle « = 27 /3. Results from a direct calculation are shown as lines; the
corresponding results from the embedding formula (3.53), with p = 1, are denoted by symbols, and as expected show
excellent agreement with the direct results. Also shown, in Fig. 3(b), is a plot of Re(¢* (x, y)) for the same parameter values,
calculated from an approximation to v* using Egs. (2.4), (3.20), (3.25) and (3.27).
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0/6,

Fig. 3. Panel (a) displays values of real part (solid line) and imaginary part (dashed line) of v*(0), /912 — 62, for ka = 27, 6; = 7 /5 and incident wave

angle o = 27 /3. Symbols denote corresponding results from embedding formula (3.53), for p = 1. Panel (b) shows Re{¢* (x, y)}, for the same parameter
values.

| \ C O
Fig. 4. Examples of alternative scatterers B for which embedding formulae can be derived.

5. Conclusions and future directions

Based on a decomposition of the incident plane wave into an infinite sum of modes of the form J,(kr)e™, for the first
time embedding formulae for a simple polar geometry, consisting of a portion of the circular arc r = a, have been derived.
Embedding formulae for the far-field diffraction coefficients have been derived directly from the boundary-value problem
and from an integral equation formulation; the latter formulation also allowed the derivation of embedding formulae for
the near-field solution. Numerical results confirm the accuracy and utility of the embedding formulae.

Dirichlet boundary conditions in place of Neumann conditions require little change. Embedding formulae for related but
more complicated scatterers can also be derived. Few modifications to the process are required if the circular arc contains
more than one gap, or if multiple concentric punctured circular arcs are present (see Fig. 4(a),(b)). In each of these cases the
route which stems from the boundary-value problem will be the more straightforward to follow, as the integral equation
formulations will be relatively complicated. The number of solutions required for the embedding formula will equal the
total number of barrier tips in B; if B is symmetric around # = 0 then half as many solutions will be needed.

Perhaps more interesting is the case displayed in Fig. 4(c), for which the new feature is the inclusion in the scatterer’s
boundaries of lines of the form 8 = constant. Why should this class of scattering geometry be amenable to the methods
described in this paper? To answer this, we recall the portion of [9] which considered embedding formulae for scattering
by a right-angled wedge, with faces By = {(x,y) : x < 0,y = 0}and B, = {(x,y) : x = 0,y < 0}. This was effected
by noticing that the second-order differential operator H, = 9%/9x*> + k? cos? al evidently commutes with the Helmholtz
operator, annihilates the incident wave, preserves the radiation condition and boundary conditions on By, and, when applied
to solutions of the Helmholtz equation 9%¢/3x* + 32¢/dy* + k*¢ = 0, it also preserves boundary conditions on By, since

3¢ 929
ox2 ay?

in which the only differentiation is now directed along the face B,. Embedding formulae for the right-angled wedge were
then derived using this differential operator H,.

Hy¢p = + Kk cos® ¢ =— k% sin® o ¢
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These ideas can be carried over to our situation using the operator D, = 92/36% + n?I in place of H,, which clearly
commutes with the Helmholtz equation, annihilates the incident mode ¢/ in (3.2), and preserves the radiation condition
and the boundary condition on any boundary r = constant. The only question mark remaining concerns its maintenance of
boundary conditions on boundaries of the form 8 = const. But

2 4n 2 4n n
Dpg" = 0°¢ + " = n?¢" — (rza ¢ +r8¢ +k2r2¢"),

002 or? or

in which the only differentiation is now directed along the boundary, so that D, does indeed preserve homogeneous
Neumann or Dirichlet boundary conditions on such boundaries. With the required properties of D,, having been established,
the derivation of embedding formulae for the class of scatterers displayed in Fig. 4(c) should be straightforward.

We note that the scatterers displayed in Fig. 4(b),(c) take the form of split-ring resonators (see, e.g. [24,25]). These
structures are of interest since they can be used to construct so-called ‘left-handed’ media, i.e. media with a negative
refractive index.

Lastly, it seems plausible that embedding formulae for multiple structures of the types displayed in Figs. 1 and 4, which
are centred at different points, could be derived. Whilst the methods presented in this paper certainly seemed to require
the boundaries of the scatterer to each coincide with a portion of the line r = constant, the common use of Graf’s addition
formula (equation (9.1.79) in [20]) in problems involving scattering by multiple circular scatterers (see, e.g. [ 18,26]) may be
transferable. Further work is underway to investigate this possibility.
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