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Embedding formulae for wave diffraction by a circular
arc

C.A.J. Moran?, N.R.T. Biggs®*, P.G. Chamberlain®

% Department of Mathematics and Statistics, School of Mathematical and Physical Sciences,
University of Reading, P.O. Box 220, Whiteknights, Reading RG6 6AX, United Kingdom

Abstract

For certain wave diffraction problems, embedding formulae can be derived,
which represent the solution (or far-field behaviour of the solution) for all plane
wave incident angles in terms of solutions of a (typically small) set of other
auxiliary problems. Thus a complete characterisation of the scattering proper-
ties of an obstacle can be determined by only determining the solutions of the
auxiliary problems, and then implementing the embedding formula. The class
of scatterers for which embedding formulae can be derived has previously been
limited to obstacles with piecewise linear boundaries; here this class is extended
to include a simple curved obstacle, consisting of a thin circular arc. Approx-
imate numerical calculations demonstrate the accuracy of the new embedding
formulae.
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1. Introduction

To fully characterise the wave scattering properties of an obstacle, solutions
may be required for a range of plane wave incident angles. Embedding formulae
are a means of reducing the effort required to achieve this full characterisation.
These formulae express the solution or the far-field behaviour of the solution for

an arbitrary incident wave angle in terms of analogous properties of a typically
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small set of other solutions. Thus once the problem is solved for this set of solu-
tions the full characterisation follows immediately from the embedding formula
without need to solve any further problems.

Embedding formulae were first derived in [1] and [2]. These papers showed
that the solution for a plane wave incident at any angle upon a two-dimensional,
thin, straight barrier containing a single gap, can be fully determined from the
single solution corresponding to grazing plane wave incidence. Following [2],
subsequent extensions [3-6] required the boundary-value problem to be formu-
lated as an integral equation; the derivation of the embedding formulae then
exploited the structure of the integral equation, and expressed the solution for
arbitrary plane wave incident angle in terms of solutions corresponding to other
plane wave incident angles. This approach was generalised in [7] in which a gen-
eralised integral equation problem, divorced from a particular wave diffraction
interpretation, was addressed.

The papers [8,9] instead derived embedding formulae directly from the boundary-
value problem, without recourse to an integral equation formulation, and ex-
pressed the far-field of the solution for arbitrary plane wave incident angle in
terms of the far-field of solutions corresponding to particular multipole forcing
at the corners of the scatterers. The method was generalised to certain three-
dimensional scattering problems in [10]. In many ways this approach is more
versatile as the problem does not need to first be formulated as an integral equa-
tion, but the calculation of the particular solutions required for the embedding
formula which are forced by source terms at the scatterer corners may not be
straightforward. To address this, [11-12] modified the boundary-value problem
approach to allow the far-field of the solution for arbitrary plane wave incident
angle to be expressed in terms of the far-field of solutions corresponding to other
plane wave incident angles.

The class of scatterers for which embedding formulae have been derived thus
far is rather limited: the scatterer boundaries must be piecewise linear, with
each linear portion of the boundary oriented at a rational angle (i.e. mm/n, for

integers m,n) to the x-axis (say). In the current paper we extend this class of



scatterers to a canonical scatterer in polar coordinates consisting of a circular
arc.

Similar diffraction problems have been considered previously, though not
within the context of embedding formulae. In [13] a model of a coastal har-
bour as a circular basin semi-embedded in an infinite coastline was developed,
formulating the problem as an integral equation posed on the harbour opening
and using a variational principle to provide an approximate solution. The case
of porous harbour walls was considered in [14]. The problem of an electromag-
netic plane wave incident upon an infinitely long, conducting, slotted cylinder is
mathematically similar, and was solved numerically in [15]. In [16], the diffrac-
tion of a plane wave by precisely the scatterer geometry of the present paper was
considered, though the investigation was limited to cases for which the entrance
to the inner circular region was narrow, and focused on resonance excitation.
More recently, [17] considered the scattering of a plane wave by a semi-circular
inclusion in an otherwise infinite straight barrier.

The paper proceeds as follows. In section 2 the boundary-value problem is
introduced. In section 3 a selection of embedding formulae are derived, firstly by
adapting the approach of [11] to address the boundary-value problem directly,
and then by reformulating the boundary-value problem as an integral equation,
and using the results of [7] to exploit its structure. In each case the initial step is
to decompose the incident plane wave ¢ (1, 0) = e °°3(9=2) into an infinite sum
and then consider the problem forced by an arbitrary term in this sum (referred
to below as the ‘modal problem’). Approximate numerical calculations are
carried out in section 4, and a comparison is made between results determined
from a direct approximation and via the embedding formulae. Finally, some

conclusions and possible extensions are offered in section 5.



2. The boundary-value problem

The scatterer takes the shape of a portion of a circular arc (see fig. 1). Thus,

in terms of standard polar coordinates (r,#), the scatterer occupies the region
B={(r,0):r=aqa, 0 €|—m,n)\(-01,61)}, (2.1)

in which @ > 0 and 6; € (0,7) are specified constants. The gap in the bar-
rier is without loss of generality symmetrically oriented about the line 6§ = 0.
Throughout this paper we will refer to the domain for which r < a as being
‘within the arc’, and r > a as ‘outside the arc’.
We suppose that there is a potential ¢*(r, 6) satisfying the Helmholtz equa-
tion , ,
o « a
83252 * T_laaifr e 85);;

Here k is the (specified) wavenumber, and the superscript « refers to the fact

+ k%9 =0 in R%\B. (2.2)

that ¢® includes a plane wave

¢_o¢ — eikr cos(f—a) (23)

1

of unit amplitude and whose propagation direction makes an angle a € [—m, )
with the positive z-axis, which is incident upon B. The incident plane wave has

the expansion
oo

Gr(r,0) = Y i Jn(kr)em ) (2.4)

n=—o0
(see equation (2.77) in [18]), where J,, denotes the Bessel function of the first
kind and order n.

The barrier B is ‘hard’, in the sense that the potential ¢® satisfies a homo-
geneous Neumann condition on the scatterer:

folon
or

=0 onB. (2.5)

For convenience, we decompose the potential ¢ outside the arc into the sum

of the incident wave ¢{* and a diffracted component ¢§:

¢ (r,0) = ¢3(r,0) + ¢4 (r,0) inr > a. (2.6)



The diffracted potential ¢ satisfies the Sommerfeld radiation condition

095
lim r/2 (4 —ikeg ) =0 2.7
rl{gor or L d)d ’ ( )
uniformly in 6. Lastly, we require that the so-called Meixner or edge condition
(e.g. [19]) holds, that is, if p measures distance from either corner of B, i.e.

(a,01) or (a,—61), then here
o
! (2.8)
This condition ensures that energy is not added to the system at these points.
The boundary-value problem described above models, for example, surface
gravity waves on fluid of uniform depth containing a surface-piercing structure
of cross-section B, or three-dimensional acoustic waves in a medium containing
an infinitely long structure of cross-section B.
The far-field behaviour of the solution as kr — oo is of particular interest.

We write
¢a(r,0) =/ % TN (9, ) + O((kr)~3/?), (2.9)
wkr

where F(0, ) is referred to as the far-field diffraction coefficient, and 6 as the
observation angle. The far-field diffraction coefficient satisfies the well-known

reciprocity principle (see e.g. [18])
Fl@+7,a) =F(a+m0), (2.10)

and because of the symmetry of the scatterer B about the line 8 = 0 it is also

clear that ¢§(r,8) = ¢5“(r,—0) and so
Ff,a) = F(—-0,—a). (2.11)
3. Embedding formulae

Typically derivation of embedding formulae initially follows one of two dis-
tinct but related routes: either a particular differential operator is used, which

commutes with the Helmholtz operator, boundary conditions, and radiation



condition, and annihilates the incident wave; or else the boundary-value prob-
lem is reformulated as an integral equation, and its structure is exploited. In
section 3.1 we first use the differential operator approach, and then in section 3.2
derive an equivalent integral equation formulation and make use of its structure

to derive complementary results.

3.1. From the boundary-value problem

For the scattering geometry B the simple operator

0
D:%—l—const.xl

certainly commutes with the Helmholtz operator 62 /0r?+r=10/0r+r=20% 9} +
k%I, the boundary conditions (since the differentiation in D is in a direction
parallel to the scatterer B), and also the radiation condition, but D¢ # 0.

However, the incident plane wave ¢ has the expansion (2.4), which can be

written as
¢r(r,0) = Y i "GP (r,0), (3.1)
where
o (r,0) = T, (kr)e™? (n ez, (3.2)
and now the operator
D, = i inl, (ne€Z) (3.3)

is such that D, ¢!" = 0 for all n € Z. This property suggests we decompose the

solution ¢ as

¢ (r,0) = Y e "G (r,0) (3.4)

n=—o00
where the solution corresponding to the forcing ¢} is denoted by ¢", and then
seek embedding formulae for solutions of this ‘modal problem’. Once such for-
mulae are derived, quantities related to the full solution ¢® can be reconstructed
via (3.4).

Note that the operator D,, in (3.3) is very similar in form to the basic

operator H used in [8], the only substantial difference being that there 9/00



is replaced by 0/0x and/or 9/0y, because that work involved scatterers with
straight edges.

We isolate the forcing ¢ from ¢™ via the decomposition
¢"(r,0) = 61" (r,0) + ¢ (r,0) in R*\B; (3.5)

comparison of (2.6) and (3.5), and use of (3.1) and (3.4), then shows that

(oo}

¢3(r,0) = > i"e " GR(r,0) forr > a. (3.6)

n—=—oo

We write
G (r0) = | e O (0) + O((kr) ) (37)
T

as kr — oo, with

= ] 1 " —im
Fn(a) = Z fn,mezmea Jnm = Py Fn(Q)G ¢ a6 (nam € Z)
m=—o0 TS
(3.8)
Note that a consequence of (2.9) and (3.6)-(3.8) is that
F(0,0)= Y i"e ™ F,0)= Y "¢ > fume™. (3.9)

3.1.1. Embedding formulae for the modal problem

The operator D, in (3.3) commutes with the Helmholtz operator, the bound-
ary conditions, and the radiation condition, and D,¢{* = 0 for n € Z. It also
introduces so-called ‘overly-singular’ behaviour at the arc corners (a, £6;). To
see this, first note that separation of variables applied local to a corner shows

that a solution consistent with the Meixner condition (2.8) has the behaviour
o" = AY + A7p!? cos(o — m) /2] + O(p2),

where p is the distance from the corner, and ¢ is the local azimuthal coordinate
aligned so that ¢ = 0 points parallel to and away from the barrier (so o = 7
locally coincides with the barrier). Here Aff and A} are constants which depend

on n.



Written in terms of the coordinates local to the corner at (a, 61), the differ-

ential operator D,, is

1

0
D, = —acoso o + (1 +ap~ sino)a—Or —inl,

SO
n 1 n,—1/2
D,¢" = fiaAlp cos[(c +m)/2] + O(1)
as kp — 0, and thus there is one overly singular term at this corner produced by

the action of D,,. Application of D,, to the solution local to the corner at (a, —6)

yields a further overly-singular term. Thus we introduce the combination
¢ =D, ¢" — (B1D,¢? + BaDyo?),

where n, p, ¢ € Z are distinct, and the constants By and Bs are chosen so that the
combination ® is O(1) at each corner. Then ® satisfies the Helmholtz equation,
a homogeneous boundary condition on B, the radiation condition, contains no
forcing term, and is O(1) at the arc corners, i.e. ® satisfies a fully homogeneous
boundary-value problem. The uniqueness of the scattering problem then implies
that ® = 0, so that

Dy ¢" = B1Dp¢? + B Dyl (3.10)

Solving (3.10) would provide an expression for ¢™ in terms of ¢* and ¢4, but
establishing the values of the ‘constants’ of integration is not straightforward,
so we defer the derivation of this sort of embedding formula until section 3.2,
calculated via the integral equation formulation.

Instead, we focus on deriving an embedding formula for the far-field coeffi-
cients. Let kr — oo in (3.10). Using the notation of (3.7), the balance between

leading order terms is
F —inF, = B1(F,/; —ipF,) + BQ(F(; —iqFy),

where F/, denotes the #-derivative of F,(6) and so on. Using the notation of

(3.8), this becomes

o0 oo o0

Y (m=n)fame™ =Br > (m=p)fpme™ +By > (m—q)fyme™’,

m=—0o0 m=—0o0 m=—0oQ



and so

(m —=n)fpm = Bi(m =p)fom+ B2(m —q) fgm  (mEZL). (3.11)

This equality holds irrespective of the choice of m, so in particular setting m =

—p and m = —q in turn shows that

(p+n) fr,—p = 20B1 fp,—p+Bo(p+q) fo,—ps (@+1) fr,—q = B1(p+a) fp,—q+2qBa2fq,—q,

from which
_ fq,qun,fp - fq,fpfn,fq _ fp,*pfn,fq - fp,qun,fp
By = =—— ~————, By =—""—=
fp.,—pfq,—q - fp,—qfq,—p fp,—pfq,—q - fp,—qfq.,—p

where for convenience we have written

fra=0=afpa  (n,g€7) (3.12)
These representations for By, By then allow (3.11) to be rewritten as

fmm — (fq,—qfn,—p - fq,—pf}L,—q)fp,m + (fp,—pfn,—q - fp,—qfn,—p)fq,m (3'13)
fp,—pfqrq - fp,—qfqﬁp

for m € Z.

Equation (3.13) is an expression for the modal far-field coefficient (n —
m) fn,m, but to serve as an embedding formula the right-hand side should de-
pend only on quantities involving ¢” and ¢?. Reference to (3.8) and (3.9) shows
that coefficients in (3.13) with first subscript p or ¢ are acceptable in this sense,
but coefficients with first subscript n are not. However, a form of reciprocity
principle can be used to replace such terms by quantities which depend only on
@? and ¢?. The full reciprocity principle is given in (2.10), which, given (3.8)
and (3.9), can be expressed as

oo ) o0 )
Z M~ ina Z fmmeim(ﬂ-&-ﬂ — Z iPe—ip0 Z fp7qeiq(a+7r).
n=—o0 m=—o0 p=—o0 g=—00
Multiply this equation by e?U¢—t®) for integers j,1, and integrate over o, €
[-7,m): the orthogonality of the exponential functions on this interval shows

that
fj,l = Z.j+lf—l,—j (.]vl € Z)a (314)



in terms of which f;;, =¥+ f_; _;.

Using (3.14), equation (3.13) can then be written as

(iipfq,—qu,—n B iiqfq,—pfq,—n)fp,m + (iiqu,—pfq,—n B Z.7[)]{‘;IJ,—<1Jgp,—n)ng,m

7fnfn,m =

fpﬁpfqﬁq - fpﬁqfqﬁp
(3.15)

the right-hand side of which now only requires knowledge of the far-field be-
haviour of the two solutions ¢?,¢? for its calculation. Here p,q are arbi-
trary distinct but non-zero integers. An obvious choice is ¢ = —p, for then
faomp = fp—q =0, from (3.12), and (3.15) reduces to
iipffpypfpﬁnfp,m + ipfprpffpﬁnffp,m
f pv—pf —p.p .

One further simplification is possible due to the symmetry of B around 6 = 0,

Zlinfn,m =

(3.16)

and the resulting modal symmetry property

fin=(D 0 (Glen), (3.17)

which follows from the full symmetry property (2.11) in a similar fashion to how
(3.14) stems from (2.10). Then f;; = (=1)7t'f_,; ;, and use of this reduces
(3.16) to

fp,*pfn,m = Z'nip(f;o,fnfp,m - fp,nfp,fm)' (318)
Here the coefficient f,, ., (for n # m) associated with the solution ¢" is now
expressed solely in terms of coeflicients which depend only on the single solution
@P, for p # 0. Both sides of (3.18) are zero if m = n, and in this case we can

use L’Hopital’s rule to define

9 (inp(fp,_nfp,m - fp,nf,,,_m)> , (3.19)

fn,n = lim — =
fp,—p

m—n Om
Here derivatives with respect to m can be evaluated via (3.8); evaluation of the

right-hand side of (3.19) still only requires knowledge of the single solution ¢?.
Equation (3.18) is thus an embedding formula, in that it expresses the modal
far-field coefficient f,, ,, for all n,m € Z in terms of coeflicients which require

knowledge of just ¢P for their calculation, for one value of p € Z. Furthermore,

10



using equation (3.9), which expresses the far-field diffraction coefficient F(6, «)
for the full problem in terms of the modal far-field coefficient f;, ,,,, this means
that F'(0, ) can be calculated for all 6, € [—m, 7) once the single solution ¢P

is determined, for any non-zero p € Z, and its far-field behaviour calculated.

8.2. From an integral equation formulation

In this section we formulate the boundary-value problem as an integral equa-
tion, and use the structure of this equation to re-derive and extend the embed-
ding formulae determined in section 3.1.

An appropriate expression for the potential inside the arc is given by

¢ (r,0) = Z anJp (kr)e™® (r<a,—m<0<m), (3.20)

n=—o0
where J,, denotes the Bessel function of the first kind of order n, and the a,,
are coefficients to be determined. These coefficients depend on « but in the
interests of notational clarity this dependence is not made explicit.

The radial derivative of this expression, evaluated on By, is

9%

B (a,0) = Z ka,J,e™m? (—m <6 <),

n=—oo
where we adopt the convention that if the argument of a Bessel (or later Hankel)

function is omitted then it is to be evaluated at ka, so J| = J/ (ka) etc. The

orthogonality of the complex exponentials shows that

0 a
a4 = / 9¢ (a=,0p)e ™% dfy  (n€Z) (3.21)
2kl | g Or 7

where the boundary condition (2.5) has been used to reduce the range of in-
tegration in (3.21) to the gap (—61,60;). For convenience, we introduce the
notation

6 (%

where it is implicit in this definition that 9¢%/0r is continuous across the gap.

(a,0) (=6, <0< 6), (3.22)

Then inserting (3.21) into (3.20) shows that the potential within the arc can be

11



expressed as

oo

z kJ’ / v (0p)e™0=%) qg, (r<a,—m<0<m).
2

(3.23)
To derive a corresponding expression for the diffracted potential outside the

arc we first decompose ¢g as
¢q(r,0) = o2 (1,0) + ¢g (r,0) inr>a, (3.24)

where ¢% encompasses the scattering effect of the solid cylinder By = {(r,9) :
r=a,0 € [-m,m)}, and ¢g is the potential instigated by the presence of the
gap in the cylinder. The potential ¢¢ is such that the combination ¢ + ¢¢
satisfies the Neumann boundary condition (2.5) on By. An explicit expression

for ¢% is easily calculated as

¢ (r,0) Z ZnH, (kr)e™0=«) (3.25)
where H,, denotes the Hankel function of the first kind (this is the only kind
of Hankel function appearing so the superscript in the usual notation Hfll) is
omitted for convenience), and Z,, = —i"J) /H). The corresponding far-field

diffraction behaviour is given by

2 ) © .
a i(kr—m/4) _ in(@—a—m/2)
o° ——Fe(0,0)e . F.(6,a) n;m Zne (3.26)
as kr — oo.
A suitable expansion for ¢y is
PL(r0) = > cnHy(kr)e™  (r>a,—m<0<m), (3.27)

where the ¢, are to be determined. Then, bearing in mind the decompositions
(3.5) and (3.24), and also the fact that by construction the radial derivative of
the combination ¢§* + ¢< vanishes on r = a, we see that
« a(ba + _ a(bg + - 1 _in6
v¥(0) = W(a ,0) = W(a ,0) = Z cnkH) e

n=—oo

12



for —m < 0 < 7, from which, using the orthogonality of the complex exponen-

tials, together with the boundary condition (2.5), we have

1
= onkHY,

/ " v (fp)e" "% dhy  (n € 7Z) (3.28)

and so (3.27) can be written as

o0

01
bg (1,0) E ka / v®(0)e™?=%) dg,. (3.29)
27

The corresponding far-field behaviour is

62 ~ Wz (0, 0)eitr—/4)
as kr — 0o, where
o Lin(0—m/2) (b _
Fy(6,0) = n;m i [ | o 0)e ™ dt (3.30)

In equation (3.23) we have an expression for the solution ¢* within the arc,
and a combination of equations (2.4), (2.6), (3.24), (3.25) and (3.29) provide
a corresponding expression for the solution outside the arc. Now these two
expressions are equated where their domains of dependence meet, on the line

r=a,—01 < 0 < 0, across which ¢® is continuous. The result can be arranged

as
Z /6 *(Bo)e™ %) db,y = Z M™% (=6, <6 < 6y),
T 1 T (3.31)
where
L= (?7 - ?) = Wzk%zJ;LH?g (n€2) (3:32)
and
2in+1
My = i"Jy + Z Hy, = 2mki" T} Ly = —— i (n € 7) (3.33)

in which the final representation in each of (3.32) and (3.33) follows after use

of a standard Wronskian result for Bessel functions (equation (9.1.16) in [20]).

13



Interchanging the order of summation and integration on the left-hand side of

(3.31) allows it to be rewritten as the integral equation

01
K (|0 — 0o])v*(6o) dbo = g*(0) (=6, < 6 <0y), (3.34)
-0,
where
K(|0—6,|) = Z Lyem(0=00) g Z M,e™=) (0, < 6,6y < 6,).
. . (3.35)

Using the standard large order asymptotic form of J,, and H,, (see e.g. equation
(9.3.1) in [20]), we find that L, ~ a/nz for large |n|, so that the kernel K is
logarithmically singular as 6 — 6y — 0.

Equation (3.34) can be decomposed into a series of ‘modal’ problems, pre-
cisely as we did to derive embedding formulae for the boundary-value problem

in section 3.1.1. Thus if g"(6) = ¢ then the solution of (3.34) can be written

as
> Myem ™ (6) (3.36)
where ,
K(\G — 90|)’l}n(90) dby = g"(&) (—91 <fh< 91) (337)
-0,

for n € Z. Comparison of (3.30) and (3.36) shows that the far-field diffraction
coefficient for ¢, can be written in terms of the v" as
© zm (0—7/2) = 01

Fy(8,0) = ; IeRHT Z M,e~ / v"™(00)g ™ (0o) dby. (3.38)

—6,

8.2.1. Embedding formulae for the integral equation
The kernel K (|0 — 0p|) defined in (3.35) is of ‘difference’ (or sometimes ‘dis-
placement’) type, since it depends only on the combination 6 — 5. It is well-
known that equations containing such kernels admit embedding formulae (see,
for example, [7]). The integral equation in (3.37) is actually of a very similar
form to that investigated in [7], namely
1

pda(x) — | E(x — 20)palzo) dzg = e7107 0<z<1), (3.39)
0

14



in which a € R is a parameter, p € C a given constant, and the kernel k (denoted
k in [7]) is at most weakly singular. Because the results in [7] we wish to adapt
for our problem only make use of the fact that the implied integral operator in
(3.39) is injective, rather than invertible, and the uniqueness of the solution to
our underlying boundary-value problem certainly guarantees the injectivity of
the integral operator in (3.34), we readily deduce, after appropriate changes to
notation and integration interval, two results.

The first result can be written as
Gp,—pGnm = GpmGp,—n — Gp—mGpn (meZ), (3.40)

for n,p,m € Z, with n and +p distinct. Here

01
Gnm = (n—m) /_9 v"™(0)g~™(9) dé (n,m € Z) (3.41)

is a far-field diffraction coefficient-like quantity, and to derive (3.40) use has

been made of both reciprocity and symmetry relations, respectively
Gn,m = G—m,—n (77/, m e Z) (342)

and

Gn,m = *G—n,—m, (n,m S Z), (343)

the latter following from
v (f) = v "(-0) (n€Z,0 € (—61,601)). (3.44)

Equation (3.40) expresses the far-field diffraction coefficient for v™, G, 1, in
terms of quantities which require only knowledge of the particular solution v? for
their calculation, and thus is equivalent to the earlier formula (3.18). Verification

of this relationship is straightforward: from (3.24), (3.25) and (3.29) we have

0o 4 0o ' M. 0, '
0 - —ing
o0 = >, Halkr)e™ p;of (Zpawmgé / v Bo)e d90>,
(3.45)
and comparison of this with (3.9) shows that, in the notation of (3.12) and

(3.41),
f _ 67i(n+m)ﬂ/2MnGn7m
nm onkH!

(n,m €7Z), (3.46)

15



from which the equivalence of (3.18) and (3.40) is readily confirmed.
Integrals of the form ff;l v™(6p)g~ "™ (0p) dfy are required to evaluate the
far-field coefficient Fg(f, o) in (3.38), and from (3.40) and (3.41) they have the

representation

6
! GpmGp—n—Gp_mG

o™ (6, -m(p don = p,m~p,—n p,—m>~pn
/91 (Bo)g™"(Bo) ddo (n—m)Gp,—p

(3.47)

for distinct n, m. In the case n = m we must use L’Hopital’s rule (as in section

3.1.1) to give

01 _ A _ A
[ omon)g o) dgy = ~CrnCrmn = CponCon (g
—01 Gp,*p
where
R a 91 . ‘91 )
Com = =— (Gpon) =— / VP (6p)e= "% dfy—i(p—m) / 0ov? (Bp)e™ ™% db,.
on n=m —01 —01

(3.49)
Thus inserting (3.47) and (3.48) into (3.38) results in

& eim(efﬂ/Z) o0 ) G G G Q
F,(0 = - M, e~ p,mp,—n p,—mUp,n
o) = 50 S 3 e (Genfamtohontn

i MMmefima GP’mGP,*m + Gp,fmGp,m

— 2rkH!, Gp—p

(3.50)

which expresses the far-field diffraction coefficient Fy (6, ) in terms of quantities
which depend on the single modal solution v?.

The second result which can be inferred from [7] was not derived in sec-
tion 3.1. Tt relates the solutions of (3.37) themselves rather than their far-field

diffraction coefficients:

Gp,—pv"(0) = Gp 0P (—=0)—i(p+n) (V_nv?)(=0)]+Gp,—n[v" () +i(p—n) (V7 vP)(0)],
(3.51)

where we have introduced the Volterra integral operators

0 01
(Vw)(6) = [ ; v(00)e™=%) gy, (Vi v)(0) = /0 v(0)e™=%) dg, (3.52)
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for n € Z. Thus once the single solution v?, of (3.37), is determined, (3.51) can
be used to determine all others. Equation (3.36) can then in turn be used to
construct v* for any incident plane wave angle «, again in terms of the single

solution v?P of the modal problem, as

Cp—pt®(0) = Y Mue " Cpu[v"(=0) —i(p +n)(Voyo”) (—0)]

n—=—oo

+ D Mue Gy afo?(6) +i(p — ) (V,0")(0)]. (3.53)

n=-—o00
4. Numerical implementation

In this section we determine a numerical approximation to a solution v? of
the modal integral equation (3.37), from which approximations to the far-field
diffraction coefficient-like quantities G, ; can be calculated; these are inserted
into (3.50) to give an approximation to Fg(#, ). This approximation is com-

pared to the result of a direct approximation of the full integral equation (3.34).

4.1. Numerical approximation

To derive an approximate solution of the modal problem (3.37) (with n
replaced by p for convenience) we use Galerkin’s method in conjunction with

the Rayleigh-Ritz approximation

VP (0) = D Noxa(6) (4.1)

where P € No, the A\l are constants to be determined, and the x, are trial-
functions specified below. The Al are found by substituting (4.1) into (3.37),
multiplying both sides by x;(6), and integrating in 6 across (—61,6;), which
results in

01

01 01 P
/ K10 = 001) 3" A xq(60)x1(6) dly d6 = / POx(0) A6 (4.2)
—6, J—0, =0 —6,

for I =0,...,P. For each p this is a system of P + 1 equations from which to

calculate the P + 1 unknowns X{, ..., \},. We write this system as AlI” = r?,
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where A has (I, ¢)-th entry
91 91
g = [ [ KO8 horal6) 0 @0 Ga=0.P) (43)
701 701
17 is a column vector with g-th entry Al (g =0,...,P), and r? is a column
vector with [-th entry
01
o :/ POa0) 0 (=0,....P) (4.4)
—0,
The choice of trial-function is motivated by the corner condition (2.8), from

which v(#) = O((; T 6)~'/?) near § = £6,. Consequently we choose

ey = 100D o py (4.5)

\V0? — 62
where T; is the Chebyshev polynomial of the first kind. Use of trial functions of

this form to approximate a function which is square-root singular at each end

of an interval was used previously in [21]. From (4.4),
ry = / cos(lo)eP1 <57 do = il Jy(phy) (pez, 1=0,...,P), (4.6
0

upon using a standard Bessel function identity (equation (9.1.21) in [20]).
From (3.35), and using (4.4) and (4.6),

o0
A = g Lnrl"r;”

n—=—oo

= 727 N Ly di(nfy)Jy(nbh)

n=—oo

= 7% LoJ(0)J,(0) + 72T (—1) 4 1] Z L, Ji(n01)J,(nb).
n=1

(4.7)

The terms in the sum in (4.7) are O(n™2) as n — oo, so the sum is slowly
convergent. However, calculations can be speeded up, as follows. First we use

the expansions (equations (2.17),(2.18) in [17])

Jo(2) 2z 28 23 Hy(z) =z 2° 23

=24+ 2 2 4100 =
J!(2) n o o T (™), H! (2) n  2n3  2nt
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for n — oo and z fixed, to show that L,, defined in (3.32) has the behaviour

a k2a®
L,=— —5 4.
nw  2n3w +0(™) (4.8)

for large n. Then combining (4.8) and the standard large argument expansion
of the Bessel function of the first kind shows that L, J;(nf1)J,(n01) = vn(l,q) +
O(n=%), where
a
In1,0) = g {eosl2nfy — (L + /2] + cos( — )m/2])
a . .
_ pRERGT {(2q2 + 212 — 1) sin[2n6; — (1 4+ q + 1)7/2] + 2(¢* — 1?) sin[(l — q)m/2]}.

(4.9)

We thus write the infinite sum in (4.7) as

Z Ly Ji(nb1)Jq(nb1) = Z[LnJl(n91)Jq(n6‘1) —ml @)+ q),  (4.10)

in which the sum can be evaluated accurately by truncating the sum at a finite
value of n since the terms are O(n=*) as n — oo. We truncate at n = 1500 for
all calculations presented here, which is sufficient to ensure 5 decimal places of

accuracy in approximations to A;4. Also

= a N
v(l,q) = Z Ml q) = 2720, <)\2 + A2 + 3 cos((l — Q)W/2]>

((2¢ + 217 — 1)(A3 — A3) + 4i(q* — 1%)¢(3) sin[(l — ¢)7/2))

(4.11)

 8in262

in which ¢ denotes the zeta function, and \; = e *(H+a+D7/2[i,(e201) (j = 2,3)
where

. N A G ) L

is the polylogarithm function (section 25.12, [22]), which can be evaluated ac-
curately using standard quadrature techniques applied to its integral form.
Once the Al are determined, the far-field diffraction coefficient-like quantity

for the modal problem, Gy, ,,, in (3.41), is approximated by

P
Gpm =~ (p—m) Y N TIT. (4.12)
q=0
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To apply the embedding formula (3.40) when n = m we also require an approx-

imation to the modified coeflicient épym in (3.49), and for this we need

01 ) 91
B (B0)e ™ g / 902 N ()= b,
—V1 —
where
01 ‘ . |

Boxq(00)e” % dby = 01/ cos o cos(go)e "ML (g — 91( T,
1 (4.13)

so that
Gpm ~ Z’\p [7”” i —m)o (g + )| (4.14)

The approximation of the solution to the full problem (3.34) proceeds in a
similar fashion, the only difference is in the right-hand side: g“ replaces gP. We

write

P
0) = > Aixq(0) (4.15)
q=0

where 1%, the vector with g-th entry Ay, is found from Al* = r®, in which r®

has g-th entry

01 e .
Ty = / *(0)xq(0) do = / Z M,,e(0=a) Xq(0) do = Z Mye™"ry,
- 01 p=—oo n=-—oo
(4.16)
from (3.35) and (4.4). The sum in (4.16) converges very rapidly. To see this first
note that from (3.33), M_,, = M, for n € Z. Also, from (4.8), L, = O(n™!) as

n — 00, and as a consequence of equation (9.3.1) in [20],

e~ (£

as n — oo for fixed z. Putting these results together we deduce that M, is
O(|n|~1"1=1/2) as n — +oc.
Clearly Ay = S M, e’ma)\”, which is the discrete version of the lin-

earity relationship (3.36). From (3.30), the corresponding approximation to the
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far-field diffraction coefficient Fyg (6, ) is then

0 ei7n(6—7r/2) P

m=—oo mo g=0

< gim(9-n/2) P o

= Y WZ Mype™ ™ONIrm. (4.17)

m=—o0 g=0n=—o0

Fy(0,a)

Q

In practice both infinite sums in (4.17) are truncated at the finite values +N.

4.2. Results

Tables 1 and 2 demonstrate the convergence of the numerical scheme for the
modal problem. Table 1 displays values of |G3 1| calculated via (4.12) for 6; =
/5, ka = m, 2w, 37, and increasing P. For larger ka or 6; 2 7/2, higher values of
P must be taken to achieve the same accuracy. In the latter case, the matching
of solutions ‘inside’ and ‘outside’ the arc, as in section 3.2, makes less sense as a
formulation; a preferable numerical approach is likely the hypersingular integral
equation route of [23,18], though this is not pursued here. Table 2 lists values
of |Gy, | for different n,m and increasing P, with ka = 27 and 6; = 7/5. As
n, m increase higher values of P are required to achieve the same accuracy.

The convergence of the numerical scheme for the full problem is demon-
strated in Table 3. Displayed are values of the particular diffraction coefficient
|Fe(m/3,m/7)|, calculated via (4.17) for ka = 27 and 6; = 7/5. Both infinite
sums in (4.17) are truncated at +N, and values are shown in the table for in-
creasing N and P. The convergence with P is comparable to that of the modal
problem, and the factors of 1/H! (= O(|m|~I™*1/2) as m — 400) and M,, in
(4.17) guarantee rapid convergence of the sums in m and n respectively as the
truncation parameter N is increased.

Now we implement the embedding formula via the representation (3.50). We
solve the modal problem for v?, approximate the required G, ,,, and Gpm using
(4.12) and (4.14), and then evaluate the right-hand side of (3.50), truncating
the infinite sums at £/N. The results of Table 2 indicate that the approximation
to vP converges most quickly for small values of p; for comparison we display in

Table 4 results for p = 1 and also p = 9, for increasing N and P. As expected
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the embedding formula results converge more slowly for the larger value of p,
reflecting the slower convergence of the approximation to v? in this case.

To demonstrate the utility of the embedding formula, figure 2(a) shows a
contour plot of |Fg(f, o)| for —m < 0, < m, for parameter values ka = 27 and
61 = w/5. The reciprocity principle (2.10) and symmetry property (2.11) are re-
sponsible for the various symmetries. The results for the plot were generated by
calculating only a single approximate solution v!, and then using the embedding
formula (3.50) to calculate all values of |Fy (6, «)|. Figure 2(b) shows values of
|Fg(0,a) + Fo(0,a)|, which is the far-field diffraction coefficient stemming from
the combined effect of the gap and the cylinder, the latter given in (3.26).

Finally we implement the embedding formula (3.53) which expresses v® in
terms of vP. Figure 3(a) displays values of v*(#) (multiplied by /6% — 62, to
avoid singular behaviour at the end-points) across the gap —6; < 6 < 6y, for
parameter values ka = 27, 0; = 7/5 and incident wave angle o = 27/3. Results
from a direct calculation are shown as lines; the corresponding results from the
embedding formula (3.53), with p = 1, are denoted by symbols, and as expected
show excellent agreement with the direct results. Also shown, in figure 3(b),
is a plot of Re(¢*(z,y)) for the same parameter values, calculated from an

approximation to v® using equations (2.4), (3.20), (3.25) and (3.27).

5. Conclusions and future directions

Based on a decomposition of the incident plane wave into an infinite sum
of modes of the form J,(kr)e™?, for the first time embedding formulae for a
simple polar geometry, consisting of a portion of the circular arc r = a, have been
derived. Embedding formulae for the far-field diffraction coefficients have been
derived directly from the boundary-value problem and from an integral equation
formulation; the latter formulation also allowed the derivation of embedding
formulae for the near-field solution. Numerical results confirm the accuracy and
utility of the embedding formulae.

Dirichlet boundary conditions in place of Neumann conditions require little

change. Embedding formulae for related but more complicated scatterers can
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also be derived. Few modifications to the process are required if the circular arc
contains more than one gap, or if multiple concentric punctured circular arcs
are present (see figs. 4(a),(b)). In each of these cases the route which stems
from the boundary-value problem will be the more straightforward to follow, as
the integral equation formulations will be relatively complicated. The number
of solutions required for the embedding formula will equal the total number of
barrier tips in B; if B is symmetric around # = 0 then half as many solutions
will be needed.

Perhaps more interesting is the case displayed in fig. 4(c), for which the
new feature is the inclusion in the scatterer’s boundaries of lines of the form
0 = constant. Why should this class of scattering geometry be amenable to
the methods described in this paper? To answer this, we recall the portion
of [9] which considered embedding formulae for scattering by a right-angled
wedge, with faces By = {(z,y) : # < 0,y = 0} and By = {(z,y) : « = 0,y <
0}. This was effected by noticing that the second-order differential operator
H, = 0%/02% + k% cos? al evidently commutes with the Helmholtz operator,
annihilates the incident wave, preserves the radiation condition and boundary
conditions on Bj, and, when applied to solutions of the Helmholtz equation
02¢/02% + 9%¢/0y? + k?¢ = 0, it also preserves boundary conditions on B,
since

Ho¢ = % +k%cos’a ¢ = ZZ‘S —k*sin®a ¢
in which the only differentiation is now directed along the face B;. Embedding
formulae for the right-angled wedge were then derived using this differential
operator H,.

These ideas can be carried over to our situation using the operator D, =
0?/06? +n?I in place of H,, which clearly commutes with the Helmholtz equa-
tion, annihilates the incident mode ¢! in (3.2), and preserves the radiation
condition and the boundary condition on any boundary r» = constant. The only

question mark remaining concerns its maintenance of boundary conditions on
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boundaries of the form 6 = const. But

n782¢n 2. n _ 2 n
D,¢" = ETR +n“p" =n“op <r

82¢n ad)n
2 e 2.2, n
oz T or +kr¢>,

in which the only differentiation is now directed along the boundary, so that D,
does indeed preserve homogeneous Neumann or Dirichlet boundary conditions
on such boundaries. With the required properties of D,, having been established,
the derivation of embedding formulae for the class of scatterers displayed in fig.
4(c) should be straightforward.

We note that the scatterers displayed in figs. 4(b),(c) take the form of split-
ring resonators (see, e.g. [24,25]). These structures are of interest since they can
be used to construct so-called ‘left-handed’ media, i.e. media with a negative
refractive index.

Lastly, it seems plausible that embedding formulae for multiple structures
of the types displayed in figs. 1 and 4, which are centred at different points,
could be derived. Whilst the methods presented in this paper certainly seemed
to require the boundaries of the scatterer to each coincide with a portion of
the line r = constant, the common use of Graf’s addition formula (equation
(9.1.79) in [20]) in problems involving scattering by multiple circular scatterers
(see, e.g. [18],[26]) may be transferable. Further work is underway to investigate

this possibility.
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Figure 1: Geometry of scatterer B.

1 08 -06 04 02 0 o0z 04 06 08 1 08 06 04 02 0 o0z 04 06
a/m afm

Figure 2: Absolute value of far-field diffraction coefficients, for ka = 27 and 6; = 7/5, as

functions of incident angle a and observation angle 6. Panels (a) and (b) display |Fg(6,a)|

and |Fg(0, o) + Fc(0, ov)| respectively.
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_—1 —O‘.S —0‘.6 —0.‘4 —0‘.2 6 0.‘2 014 0‘.6 0.‘8 1
0/6:

Figure 3: Panel (a) displays values of real part (solid line) and imaginary part (dashed line)

of v¥(0),/6%2 — 62, for ka = 2m, 6y = 7/5 and incident wave angle o = 2m/3. Symbols

denote corresponding results from embedding formula (3.53), for p = 1. Panel (b) shows

Re{¢*(z,y)}, for the same parameter values.

S0

Figure 4: Examples of alternative scatterers B for which embedding formulae can be derived.

P
ka 2 4 6 8 10 12
m 233437 235708 2.35711 2.35711 2.35711 2.35711
2 8.41238  8.42985 8.42994 8.42993 8.42993 8.42993
3 11.66046 8.77025 8.62414 8.62052 8.62046 8.62046

Table 1: Values of |G3 1] for different ka and increasing P. The gap in the barrier occupies
0] < 61 ==/5.
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P

|Gn,m |

2

4

6

8

10 12

|Gi2|  5.65247 5.69458 5.69455 5.69454
|Gio| 7.67423 5.47806 5.27293  5.26695
|Gsol 0.66926 2.47901

3.52477  3.59077

5.69454  5.69454
5.26691  5.26691
3.59186  3.59187

Table 2: Values of |Gn,m| for different n,m and increasing P. Here ka = 27 and 6; = /5.

N

P

2

4

6

8

10

5
10
15
20

0.09577
0.08158
0.08245
0.08245

0.10130
0.23453
0.23517
0.23517

0.10193
0.25443
0.25433
0.25433

0.10193
0.25509
0.25488
0.25488

0.10193
0.25510
0.25488
0.25488

Table 3: Values of |Fg(n/3,7/7)| calculated via (4.17) for ka = 27, 61 = 7/5 and increasing

P and truncation parameter N.

N,p

P

2

4

6

8

10

10,1
15,1
20,1
10,9
15,9
20,9

0.34132
0.34094
0.34094
0.20317
0.20258
0.20258

0.25576
0.25552
0.25552
0.06232
0.06431
0.06431

0.25527
0.25505
0.25505
0.24417
0.24426
0.24426

0.25510
0.25489
0.25489
0.25522
0.25503
0.25503

0.25510
0.25488
0.25488
0.25510
0.25488
0.25489

Table 4: Values of |Fg(mw/3,m/7)| calculated via the embedding formula (3.50) with increasing
truncation parameter N, in terms of vP for p = 1,9 calculated using different values of P.

Here ka = 2 and 61 = w/5. The converged value is 0.25488 (5d.p.).

29



