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Embedding formulae for wave diffraction by a circular

arc

C.A.J. Morana, N.R.T. Biggsa,∗, P.G. Chamberlaina

aDepartment of Mathematics and Statistics, School of Mathematical and Physical Sciences,

University of Reading, P.O. Box 220, Whiteknights, Reading RG6 6AX, United Kingdom

Abstract

For certain wave diffraction problems, embedding formulae can be derived,

which represent the solution (or far-field behaviour of the solution) for all plane

wave incident angles in terms of solutions of a (typically small) set of other

auxiliary problems. Thus a complete characterisation of the scattering proper-

ties of an obstacle can be determined by only determining the solutions of the

auxiliary problems, and then implementing the embedding formula. The class

of scatterers for which embedding formulae can be derived has previously been

limited to obstacles with piecewise linear boundaries; here this class is extended

to include a simple curved obstacle, consisting of a thin circular arc. Approx-

imate numerical calculations demonstrate the accuracy of the new embedding

formulae.

Keywords: waves, diffraction, embedding, circular arc

1. Introduction

To fully characterise the wave scattering properties of an obstacle, solutions

may be required for a range of plane wave incident angles. Embedding formulae

are a means of reducing the effort required to achieve this full characterisation.

These formulae express the solution or the far-field behaviour of the solution for

an arbitrary incident wave angle in terms of analogous properties of a typically
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small set of other solutions. Thus once the problem is solved for this set of solu-

tions the full characterisation follows immediately from the embedding formula

without need to solve any further problems.

Embedding formulae were first derived in [1] and [2]. These papers showed

that the solution for a plane wave incident at any angle upon a two-dimensional,

thin, straight barrier containing a single gap, can be fully determined from the

single solution corresponding to grazing plane wave incidence. Following [2],

subsequent extensions [3-6] required the boundary-value problem to be formu-

lated as an integral equation; the derivation of the embedding formulae then

exploited the structure of the integral equation, and expressed the solution for

arbitrary plane wave incident angle in terms of solutions corresponding to other

plane wave incident angles. This approach was generalised in [7] in which a gen-

eralised integral equation problem, divorced from a particular wave diffraction

interpretation, was addressed.

The papers [8,9] instead derived embedding formulae directly from the boundary-

value problem, without recourse to an integral equation formulation, and ex-

pressed the far-field of the solution for arbitrary plane wave incident angle in

terms of the far-field of solutions corresponding to particular multipole forcing

at the corners of the scatterers. The method was generalised to certain three-

dimensional scattering problems in [10]. In many ways this approach is more

versatile as the problem does not need to first be formulated as an integral equa-

tion, but the calculation of the particular solutions required for the embedding

formula which are forced by source terms at the scatterer corners may not be

straightforward. To address this, [11-12] modified the boundary-value problem

approach to allow the far-field of the solution for arbitrary plane wave incident

angle to be expressed in terms of the far-field of solutions corresponding to other

plane wave incident angles.

The class of scatterers for which embedding formulae have been derived thus

far is rather limited: the scatterer boundaries must be piecewise linear, with

each linear portion of the boundary oriented at a rational angle (i.e. mπ/n, for

integers m,n) to the x-axis (say). In the current paper we extend this class of
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scatterers to a canonical scatterer in polar coordinates consisting of a circular

arc.

Similar diffraction problems have been considered previously, though not

within the context of embedding formulae. In [13] a model of a coastal har-

bour as a circular basin semi-embedded in an infinite coastline was developed,

formulating the problem as an integral equation posed on the harbour opening

and using a variational principle to provide an approximate solution. The case

of porous harbour walls was considered in [14]. The problem of an electromag-

netic plane wave incident upon an infinitely long, conducting, slotted cylinder is

mathematically similar, and was solved numerically in [15]. In [16], the diffrac-

tion of a plane wave by precisely the scatterer geometry of the present paper was

considered, though the investigation was limited to cases for which the entrance

to the inner circular region was narrow, and focused on resonance excitation.

More recently, [17] considered the scattering of a plane wave by a semi-circular

inclusion in an otherwise infinite straight barrier.

The paper proceeds as follows. In section 2 the boundary-value problem is

introduced. In section 3 a selection of embedding formulae are derived, firstly by

adapting the approach of [11] to address the boundary-value problem directly,

and then by reformulating the boundary-value problem as an integral equation,

and using the results of [7] to exploit its structure. In each case the initial step is

to decompose the incident plane wave φα
i (r, θ) = eikr cos(θ−α) into an infinite sum

and then consider the problem forced by an arbitrary term in this sum (referred

to below as the ‘modal problem’). Approximate numerical calculations are

carried out in section 4, and a comparison is made between results determined

from a direct approximation and via the embedding formulae. Finally, some

conclusions and possible extensions are offered in section 5.
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2. The boundary-value problem

The scatterer takes the shape of a portion of a circular arc (see fig. 1). Thus,

in terms of standard polar coordinates (r, θ), the scatterer occupies the region

B = {(r, θ) : r = a, θ ∈ [−π, π)\(−θ1, θ1)}, (2.1)

in which a > 0 and θ1 ∈ (0, π) are specified constants. The gap in the bar-

rier is without loss of generality symmetrically oriented about the line θ = 0.

Throughout this paper we will refer to the domain for which r < a as being

‘within the arc’, and r > a as ‘outside the arc’.

We suppose that there is a potential φα(r, θ) satisfying the Helmholtz equa-

tion
∂2φα

∂r2
+ r−1 ∂φ

α

∂r
+ r−2 ∂

2φα

∂θ2
+ k2φα = 0 in R

2\B. (2.2)

Here k is the (specified) wavenumber, and the superscript α refers to the fact

that φα includes a plane wave

φα
i = eikr cos(θ−α) (2.3)

of unit amplitude and whose propagation direction makes an angle α ∈ [−π, π)

with the positive x-axis, which is incident upon B. The incident plane wave has

the expansion

φα
i (r, θ) =

∞
∑

n=−∞

inJn(kr)e
in(θ−α) (2.4)

(see equation (2.77) in [18]), where Jn denotes the Bessel function of the first

kind and order n.

The barrier B is ‘hard’, in the sense that the potential φα satisfies a homo-

geneous Neumann condition on the scatterer:

∂φα

∂r
= 0 on B. (2.5)

For convenience, we decompose the potential φα outside the arc into the sum

of the incident wave φα
i and a diffracted component φα

d :

φα(r, θ) = φα
i (r, θ) + φα

d (r, θ) in r > a. (2.6)
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The diffracted potential φα
d satisfies the Sommerfeld radiation condition

lim
r→∞

r1/2
(

∂φα
d

∂r
− ikφα

d

)

= 0, (2.7)

uniformly in θ. Lastly, we require that the so-called Meixner or edge condition

(e.g. [19]) holds, that is, if ρ measures distance from either corner of B, i.e.

(a, θ1) or (a,−θ1), then here

∂φα

∂ρ
= O(ρ−1/2). (2.8)

This condition ensures that energy is not added to the system at these points.

The boundary-value problem described above models, for example, surface

gravity waves on fluid of uniform depth containing a surface-piercing structure

of cross-section B, or three-dimensional acoustic waves in a medium containing

an infinitely long structure of cross-section B.

The far-field behaviour of the solution as kr → ∞ is of particular interest.

We write

φα
d (r, θ) =

√

2

πkr
ei(kr−π/4)F (θ, α) +O((kr)−3/2), (2.9)

where F (θ, α) is referred to as the far-field diffraction coefficient, and θ as the

observation angle. The far-field diffraction coefficient satisfies the well-known

reciprocity principle (see e.g. [18])

F (θ + π, α) = F (α+ π, θ), (2.10)

and because of the symmetry of the scatterer B about the line θ = 0 it is also

clear that φα
d (r, θ) = φ−α

d (r,−θ) and so

F (θ, α) = F (−θ,−α). (2.11)

3. Embedding formulae

Typically derivation of embedding formulae initially follows one of two dis-

tinct but related routes: either a particular differential operator is used, which

commutes with the Helmholtz operator, boundary conditions, and radiation
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condition, and annihilates the incident wave; or else the boundary-value prob-

lem is reformulated as an integral equation, and its structure is exploited. In

section 3.1 we first use the differential operator approach, and then in section 3.2

derive an equivalent integral equation formulation and make use of its structure

to derive complementary results.

3.1. From the boundary-value problem

For the scattering geometry B the simple operator

D =
∂

∂θ
+ const.× I

certainly commutes with the Helmholtz operator ∂2/∂r2+r−1∂/∂r+r−2∂2/∂2
θ+

k2I, the boundary conditions (since the differentiation in D is in a direction

parallel to the scatterer B), and also the radiation condition, but Dφα
i 6= 0.

However, the incident plane wave φα
i has the expansion (2.4), which can be

written as

φα
i (r, θ) =

∞
∑

n=−∞

ine−inαφn
i (r, θ), (3.1)

where

φn
i (r, θ) = Jn(kr)e

inθ (n ∈ Z), (3.2)

and now the operator

Dn =
∂

∂θ
− inI, (n ∈ Z) (3.3)

is such that Dnφ
n
i = 0 for all n ∈ Z. This property suggests we decompose the

solution φα as

φα(r, θ) =
∞
∑

n=−∞

ine−inαφn(r, θ) (3.4)

where the solution corresponding to the forcing φn
i is denoted by φn, and then

seek embedding formulae for solutions of this ‘modal problem’. Once such for-

mulae are derived, quantities related to the full solution φα can be reconstructed

via (3.4).

Note that the operator Dn in (3.3) is very similar in form to the basic

operator H used in [8], the only substantial difference being that there ∂/∂θ
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is replaced by ∂/∂x and/or ∂/∂y, because that work involved scatterers with

straight edges.

We isolate the forcing φn
i from φn via the decomposition

φn(r, θ) = φn
i (r, θ) + φn

d(r, θ) in R
2\B; (3.5)

comparison of (2.6) and (3.5), and use of (3.1) and (3.4), then shows that

φα
d (r, θ) =

∞
∑

n=−∞

ine−inαφn
d(r, θ) for r > a. (3.6)

We write

φn
d(r, θ) =

√

2

πkr
ei(kr−π/4)Fn(θ) +O((kr)−3/2) (3.7)

as kr → ∞, with

Fn(θ) =
∞
∑

m=−∞

fn,meimθ, fn,m =
1

2π

∫ π

−π

Fn(θ)e
−imθ dθ (n,m ∈ Z).

(3.8)

Note that a consequence of (2.9) and (3.6)-(3.8) is that

F (θ, α) =
∞
∑

n=−∞

ine−inαFn(θ) =
∞
∑

n=−∞

ine−inα
∞
∑

m=−∞

fn,meimθ. (3.9)

3.1.1. Embedding formulae for the modal problem

The operatorDn in (3.3) commutes with the Helmholtz operator, the bound-

ary conditions, and the radiation condition, and Dnφ
n
i = 0 for n ∈ Z. It also

introduces so-called ‘overly-singular’ behaviour at the arc corners (a,±θ1). To

see this, first note that separation of variables applied local to a corner shows

that a solution consistent with the Meixner condition (2.8) has the behaviour

φn = An
0 +An

1ρ
1/2 cos[(σ − π)/2] +O(ρ3/2),

where ρ is the distance from the corner, and σ is the local azimuthal coordinate

aligned so that σ = 0 points parallel to and away from the barrier (so σ = ±π

locally coincides with the barrier). Here An
0 and An

1 are constants which depend

on n.
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Written in terms of the coordinates local to the corner at (a, θ1), the differ-

ential operator Dn is

Dn = −a cosσ
∂

∂ρ
+ (1 + aρ−1 sinσ)

∂

∂σ
− inI,

so

Dnφ
n = −

1

2
aAn

1ρ
−1/2 cos[(σ + π)/2] +O(1)

as kρ → 0, and thus there is one overly singular term at this corner produced by

the action ofDn. Application ofDn to the solution local to the corner at (a,−θ1)

yields a further overly-singular term. Thus we introduce the combination

Φ = Dnφ
n − (B1Dpφ

p +B2Dqφ
q),

where n, p, q ∈ Z are distinct, and the constants B1 and B2 are chosen so that the

combination Φ is O(1) at each corner. Then Φ satisfies the Helmholtz equation,

a homogeneous boundary condition on B, the radiation condition, contains no

forcing term, and is O(1) at the arc corners, i.e. Φ satisfies a fully homogeneous

boundary-value problem. The uniqueness of the scattering problem then implies

that Φ ≡ 0, so that

Dnφ
n = B1Dpφ

p +B2Dqφ
q. (3.10)

Solving (3.10) would provide an expression for φn in terms of φp and φq, but

establishing the values of the ‘constants’ of integration is not straightforward,

so we defer the derivation of this sort of embedding formula until section 3.2,

calculated via the integral equation formulation.

Instead, we focus on deriving an embedding formula for the far-field coeffi-

cients. Let kr → ∞ in (3.10). Using the notation of (3.7), the balance between

leading order terms is

F ′
n − inFn = B1(F

′
p − ipFp) +B2(F

′
q − iqFq),

where F ′
n denotes the θ-derivative of Fn(θ) and so on. Using the notation of

(3.8), this becomes

∞
∑

m=−∞

(m−n)fn,meimθ = B1

∞
∑

m=−∞

(m−p)fp,meimθ+B2

∞
∑

m=−∞

(m−q)fq,meimθ,
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and so

(m− n)fn,m = B1(m− p)fp,m +B2(m− q)fq,m (m ∈ Z). (3.11)

This equality holds irrespective of the choice of m, so in particular setting m =

−p and m = −q in turn shows that

(p+n)fn,−p = 2pB1fp,−p+B2(p+q)fq,−p, (q+n)fn,−q = B1(p+q)fp,−q+2qB2fq,−q,

from which

B1 =
f̂q,−q f̂n,−p − f̂q,−pf̂n,−q

f̂p,−pf̂q,−q − f̂p,−q f̂q,−p

, B2 =
f̂p,−pf̂n,−q − f̂p,−q f̂n,−p

f̂p,−pf̂q,−q − f̂p,−q f̂q,−p

,

where for convenience we have written

f̂p,q = (p− q)fp,q (p, q ∈ Z). (3.12)

These representations for B1, B2 then allow (3.11) to be rewritten as

f̂n,m =
(f̂q,−q f̂n,−p − f̂q,−pf̂n,−q)f̂p,m + (f̂p,−pf̂n,−q − f̂p,−q f̂n,−p)f̂q,m

f̂p,−pf̂q,−q − f̂p,−q f̂q,−p

(3.13)

for m ∈ Z.

Equation (3.13) is an expression for the modal far-field coefficient (n −

m)fn,m, but to serve as an embedding formula the right-hand side should de-

pend only on quantities involving φp and φq. Reference to (3.8) and (3.9) shows

that coefficients in (3.13) with first subscript p or q are acceptable in this sense,

but coefficients with first subscript n are not. However, a form of reciprocity

principle can be used to replace such terms by quantities which depend only on

φp and φq. The full reciprocity principle is given in (2.10), which, given (3.8)

and (3.9), can be expressed as

∞
∑

n=−∞

ine−inα
∞
∑

m=−∞

fn,meim(θ+π) =
∞
∑

p=−∞

ipe−ipθ
∞
∑

q=−∞

fp,qe
iq(α+π).

Multiply this equation by ei(jθ−lα), for integers j, l, and integrate over α, θ ∈

[−π, π): the orthogonality of the exponential functions on this interval shows

that

fj,l = ij+lf−l,−j (j, l ∈ Z), (3.14)
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in terms of which f̂j,l = ij+lf̂−l,−j .

Using (3.14), equation (3.13) can then be written as

i−nf̂n,m =
(i−pf̂q,−q f̂p,−n − i−q f̂q,−pf̂q,−n)f̂p,m + (i−q f̂p,−pf̂q,−n − i−pf̂p,−q f̂p,−n)f̂q,m

f̂p,−pf̂q,−q − f̂p,−q f̂q,−p

(3.15)

the right-hand side of which now only requires knowledge of the far-field be-

haviour of the two solutions φp, φq for its calculation. Here p, q are arbi-

trary distinct but non-zero integers. An obvious choice is q = −p, for then

f̂q,−p = f̂p,−q = 0, from (3.12), and (3.15) reduces to

i−nf̂n,m =
i−pf̂−p,pf̂p,−nf̂p,m + ipf̂p,−pf̂−p,−nf̂−p,m

f̂p,−pf̂−p,p

. (3.16)

One further simplification is possible due to the symmetry of B around θ = 0,

and the resulting modal symmetry property

fj,l = (−1)jf−j,−l (j, l ∈ Z), (3.17)

which follows from the full symmetry property (2.11) in a similar fashion to how

(3.14) stems from (2.10). Then f̂j,l = (−1)j+1f̂−j,−l, and use of this reduces

(3.16) to

f̂p,−pf̂n,m = in−p(f̂p,−nf̂p,m − f̂p,nf̂p,−m). (3.18)

Here the coefficient fn,m (for n 6= m) associated with the solution φn is now

expressed solely in terms of coefficients which depend only on the single solution

φp, for p 6= 0. Both sides of (3.18) are zero if m = n, and in this case we can

use L’Hôpital’s rule to define

fn,n = lim
m→n

∂

∂m

(

−in−p(f̂p,−nf̂p,m − f̂p,nf̂p,−m)

f̂p,−p

)

. (3.19)

Here derivatives with respect to m can be evaluated via (3.8); evaluation of the

right-hand side of (3.19) still only requires knowledge of the single solution φp.

Equation (3.18) is thus an embedding formula, in that it expresses the modal

far-field coefficient fn,m for all n,m ∈ Z in terms of coefficients which require

knowledge of just φp for their calculation, for one value of p ∈ Z. Furthermore,
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using equation (3.9), which expresses the far-field diffraction coefficient F (θ, α)

for the full problem in terms of the modal far-field coefficient fn,m, this means

that F (θ, α) can be calculated for all θ, α ∈ [−π, π) once the single solution φp

is determined, for any non-zero p ∈ Z, and its far-field behaviour calculated.

3.2. From an integral equation formulation

In this section we formulate the boundary-value problem as an integral equa-

tion, and use the structure of this equation to re-derive and extend the embed-

ding formulae determined in section 3.1.

An appropriate expression for the potential inside the arc is given by

φα(r, θ) =
∞
∑

n=−∞

anJn(kr)e
inθ (r < a,−π ≤ θ < π), (3.20)

where Jn denotes the Bessel function of the first kind of order n, and the an

are coefficients to be determined. These coefficients depend on α but in the

interests of notational clarity this dependence is not made explicit.

The radial derivative of this expression, evaluated on B0, is

∂φα

∂r
(a−, θ) =

∞
∑

n=−∞

kanJ
′
ne

inθ (−π ≤ θ < π),

where we adopt the convention that if the argument of a Bessel (or later Hankel)

function is omitted then it is to be evaluated at ka, so J ′
n = J ′

n(ka) etc. The

orthogonality of the complex exponentials shows that

an =
1

2πkJ ′
n

∫ θ1

−θ1

∂φα

∂r
(a−, θ0)e

−inθ0 dθ0 (n ∈ Z) (3.21)

where the boundary condition (2.5) has been used to reduce the range of in-

tegration in (3.21) to the gap (−θ1, θ1). For convenience, we introduce the

notation

vα(θ) =
∂φα

∂r
(a±, θ) (−θ1 < θ < θ1), (3.22)

where it is implicit in this definition that ∂φα/∂r is continuous across the gap.

Then inserting (3.21) into (3.20) shows that the potential within the arc can be
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expressed as

φα(r, θ) =
∞
∑

n=−∞

Jn(kr)

2πkJ ′
n

∫ θ1

−θ1

vα(θ0)e
in(θ−θ0) dθ0 (r < a,−π ≤ θ < π).

(3.23)

To derive a corresponding expression for the diffracted potential outside the

arc we first decompose φα
d as

φα
d (r, θ) = φα

c (r, θ) + φα
g (r, θ) in r > a, (3.24)

where φα
c encompasses the scattering effect of the solid cylinder B0 = {(r, θ) :

r = a, θ ∈ [−π, π)}, and φα
g is the potential instigated by the presence of the

gap in the cylinder. The potential φα
c is such that the combination φα

i + φα
c

satisfies the Neumann boundary condition (2.5) on B0. An explicit expression

for φα
c is easily calculated as

φα
c (r, θ) =

∞
∑

n=−∞

ZnHn(kr)e
in(θ−α) (3.25)

where Hn denotes the Hankel function of the first kind (this is the only kind

of Hankel function appearing so the superscript in the usual notation H
(1)
n is

omitted for convenience), and Zn = −inJ ′
n/H

′
n. The corresponding far-field

diffraction behaviour is given by

φα
c ∼

√

2

πkr
Fc(θ, α)e

i(kr−π/4), Fc(θ, α) =

∞
∑

n=−∞

Zne
in(θ−α−π/2) (3.26)

as kr → ∞.

A suitable expansion for φα
g is

φα
g (r, θ) =

∞
∑

n=−∞

cnHn(kr)e
inθ (r > a,−π ≤ θ < π), (3.27)

where the cn are to be determined. Then, bearing in mind the decompositions

(3.5) and (3.24), and also the fact that by construction the radial derivative of

the combination φα
i + φα

c vanishes on r = a, we see that

vα(θ) =
∂φα

∂r
(a+, θ) ≡

∂φα
g

∂r
(a+, θ) =

∞
∑

n=−∞

cnkH
′
ne

inθ
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for −π ≤ θ < π, from which, using the orthogonality of the complex exponen-

tials, together with the boundary condition (2.5), we have

cn =
1

2πkH ′
n

∫ θ1

−θ1

vα(θ0)e
−inθ0 dθ0 (n ∈ Z) (3.28)

and so (3.27) can be written as

φα
g (r, θ) =

∞
∑

n=−∞

Hn(kr)

2πkH ′
n

∫ θ1

−θ1

vα(θ0)e
in(θ−θ0) dθ0. (3.29)

The corresponding far-field behaviour is

φα
g ∼

√

2

πkr
Fg(θ, α)e

i(kr−π/4)

as kr → ∞, where

Fg(θ, α) =
∞
∑

n=−∞

ein(θ−π/2)

2πkH ′
n

∫ θ1

−θ1

vα(θ0)e
−inθ0 dθ0. (3.30)

In equation (3.23) we have an expression for the solution φα within the arc,

and a combination of equations (2.4), (2.6), (3.24), (3.25) and (3.29) provide

a corresponding expression for the solution outside the arc. Now these two

expressions are equated where their domains of dependence meet, on the line

r = a,−θ1 < θ < θ1, across which φα is continuous. The result can be arranged

as

∞
∑

n=−∞

Ln

∫ θ1

−θ1

vα(θ0)e
in(θ−θ0) dθ0 =

∞
∑

n=−∞

Mne
in(θ−α) (−θ1 < θ < θ1),

(3.31)

where

Ln =
1

2πk

(

Jn
J ′
n

−
Hn

H ′
n

)

=
i

π2k2aJ ′
nH

′
n

(n ∈ Z) (3.32)

and

Mn = inJn + ZnHn = 2πkinJ ′
nLn =

2in+1

πkaH ′
n

(n ∈ Z) (3.33)

in which the final representation in each of (3.32) and (3.33) follows after use

of a standard Wronskian result for Bessel functions (equation (9.1.16) in [20]).
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Interchanging the order of summation and integration on the left-hand side of

(3.31) allows it to be rewritten as the integral equation

∫ θ1

−θ1

K(|θ − θ0|)v
α(θ0) dθ0 = gα(θ) (−θ1 < θ < θ1), (3.34)

where

K(|θ−θ0|) =

∞
∑

n=−∞

Lne
in(θ−θ0), gα(θ) =

∞
∑

n=−∞

Mne
in(θ−α) (−θ1 < θ, θ0 < θ1).

(3.35)

Using the standard large order asymptotic form of Jn and Hn (see e.g. equation

(9.3.1) in [20]), we find that Ln ∼ a/nπ for large |n|, so that the kernel K is

logarithmically singular as θ − θ0 → 0.

Equation (3.34) can be decomposed into a series of ‘modal’ problems, pre-

cisely as we did to derive embedding formulae for the boundary-value problem

in section 3.1.1. Thus if gn(θ) = einθ then the solution of (3.34) can be written

as

vα(θ) =

∞
∑

n=−∞

Mne
−inαvn(θ) (3.36)

where
∫ θ1

−θ1

K(|θ − θ0|)v
n(θ0) dθ0 = gn(θ) (−θ1 < θ < θ1) (3.37)

for n ∈ Z. Comparison of (3.30) and (3.36) shows that the far-field diffraction

coefficient for φg can be written in terms of the vn as

Fg(θ, α) =

∞
∑

m=−∞

eim(θ−π/2)

2πkH ′
m

∞
∑

n=−∞

Mne
−inα

∫ θ1

−θ1

vn(θ0)g
−m(θ0) dθ0. (3.38)

3.2.1. Embedding formulae for the integral equation

The kernel K(|θ− θ0|) defined in (3.35) is of ‘difference’ (or sometimes ‘dis-

placement’) type, since it depends only on the combination θ − θ0. It is well-

known that equations containing such kernels admit embedding formulae (see,

for example, [7]). The integral equation in (3.37) is actually of a very similar

form to that investigated in [7], namely

µφα(x)−

∫ 1

0

k̃(x− x0)φα(x0) dx0 = e−iαx (0 < x < 1), (3.39)
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in which α ∈ R is a parameter, µ ∈ C a given constant, and the kernel k̃ (denoted

k in [7]) is at most weakly singular. Because the results in [7] we wish to adapt

for our problem only make use of the fact that the implied integral operator in

(3.39) is injective, rather than invertible, and the uniqueness of the solution to

our underlying boundary-value problem certainly guarantees the injectivity of

the integral operator in (3.34), we readily deduce, after appropriate changes to

notation and integration interval, two results.

The first result can be written as

Gp,−pGn,m = Gp,mGp,−n −Gp,−mGp,n (m ∈ Z), (3.40)

for n, p,m ∈ Z, with n and ±p distinct. Here

Gn,m = (n−m)

∫ θ1

−θ1

vn(θ)g−m(θ) dθ (n,m ∈ Z) (3.41)

is a far-field diffraction coefficient-like quantity, and to derive (3.40) use has

been made of both reciprocity and symmetry relations, respectively

Gn,m = G−m,−n (n,m ∈ Z) (3.42)

and

Gn,m = −G−n,−m (n,m ∈ Z), (3.43)

the latter following from

vn(θ) = v−n(−θ) (n ∈ Z, θ ∈ (−θ1, θ1)). (3.44)

Equation (3.40) expresses the far-field diffraction coefficient for vn, Gn,m, in

terms of quantities which require only knowledge of the particular solution vp for

their calculation, and thus is equivalent to the earlier formula (3.18). Verification

of this relationship is straightforward: from (3.24), (3.25) and (3.29) we have

φα
d (r, θ) =

∞
∑

n=−∞

Hn(kr)e
inθ

∞
∑

p=−∞

e−ipα

(

Zpδpn +
Mp

2πkH ′
n

∫ θ1

−θ1

vp(θ0)e
−inθ0 dθ0

)

,

(3.45)

and comparison of this with (3.9) shows that, in the notation of (3.12) and

(3.41),

f̂n,m =
e−i(n+m)π/2MnGn,m

2πkH ′
m

(n,m ∈ Z), (3.46)

15



from which the equivalence of (3.18) and (3.40) is readily confirmed.

Integrals of the form
∫ θ1
−θ1

vn(θ0)g
−m(θ0) dθ0 are required to evaluate the

far-field coefficient Fg(θ, α) in (3.38), and from (3.40) and (3.41) they have the

representation

∫ θ1

−θ1

vn(θ0)g
−m(θ0) dθ0 =

Gp,mGp,−n −Gp,−mGp,n

(n−m)Gp,−p
(3.47)

for distinct n,m. In the case n = m we must use L’Hôpital’s rule (as in section

3.1.1) to give

∫ θ1

−θ1

vm(θ0)g
−m(θ0) dθ0 =

−Gp,mĜp,−m −Gp,−mĜp,m

Gp,−p
(3.48)

where

Ĝp,m =
∂

∂n
(Gp,n)

∣

∣

∣

∣

n=m

= −

∫ θ1

−θ1

vp(θ0)e
−imθ0 dθ0−i(p−m)

∫ θ1

−θ1

θ0v
p(θ0)e

−imθ0 dθ0.

(3.49)

Thus inserting (3.47) and (3.48) into (3.38) results in

Fg(θ, α) =

∞
∑

m=−∞

eim(θ−π/2)

2πkH ′
m

∞
∑

n=−∞, 6=m

Mne
−inα

(

Gp,mGp,−n −Gp,−mGp,n

(n−m)Gp,−p

)

−

∞
∑

m=−∞

eim(θ−π/2)

2πkH ′
m

Mme−imα

(

Gp,mĜp,−m +Gp,−mĜp,m

Gp,−p

)

(3.50)

which expresses the far-field diffraction coefficient Fg(θ, α) in terms of quantities

which depend on the single modal solution vp.

The second result which can be inferred from [7] was not derived in sec-

tion 3.1. It relates the solutions of (3.37) themselves rather than their far-field

diffraction coefficients:

Gp,−pv
n(θ) = Gp,n[v

p(−θ)−i(p+n)(V−nv
p)(−θ)]+Gp,−n[v

p(θ)+i(p−n)(V ∗
n v

p)(θ)],

(3.51)

where we have introduced the Volterra integral operators

(Vnv)(θ) =

∫ θ

−θ1

v(θ0)e
in(θ−θ0) dθ0, (V ∗

n v)(θ) =

∫ θ1

θ

v(θ0)e
in(θ−θ0) dθ0 (3.52)
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for n ∈ Z. Thus once the single solution vp, of (3.37), is determined, (3.51) can

be used to determine all others. Equation (3.36) can then in turn be used to

construct vα for any incident plane wave angle α, again in terms of the single

solution vp of the modal problem, as

Gp,−pv
α(θ) =

∞
∑

n=−∞

Mne
−inαGp,n[v

p(−θ)− i(p+ n)(V−nv
p)(−θ)]

+

∞
∑

n=−∞

Mne
−inαGp,−n[v

p(θ) + i(p− n)(V ∗
n v

p)(θ)]. (3.53)

4. Numerical implementation

In this section we determine a numerical approximation to a solution vp of

the modal integral equation (3.37), from which approximations to the far-field

diffraction coefficient-like quantities Gp,q can be calculated; these are inserted

into (3.50) to give an approximation to Fg(θ, α). This approximation is com-

pared to the result of a direct approximation of the full integral equation (3.34).

4.1. Numerical approximation

To derive an approximate solution of the modal problem (3.37) (with n

replaced by p for convenience) we use Galerkin’s method in conjunction with

the Rayleigh-Ritz approximation

vp(θ) ≈

P
∑

q=0

λp
qχq(θ) (4.1)

where P ∈ N0, the λp
q are constants to be determined, and the χq are trial-

functions specified below. The λp
q are found by substituting (4.1) into (3.37),

multiplying both sides by χl(θ), and integrating in θ across (−θ1, θ1), which

results in

∫ θ1

−θ1

∫ θ1

−θ1

K(|θ − θ0|)

P
∑

q=0

λp
qχq(θ0)χl(θ) dθ0 dθ =

∫ θ1

−θ1

gp(θ)χl(θ) dθ (4.2)

for l = 0, . . . , P . For each p this is a system of P + 1 equations from which to

calculate the P + 1 unknowns λp
0, . . . , λ

p
P . We write this system as Alp = rp,
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where A has (l, q)-th entry

Alq =

∫ θ1

−θ1

∫ θ1

−θ1

K(|θ − θ0|)χq(θ0)χl(θ) dθ0 dθ (l, q = 0, . . . , P ), (4.3)

lp is a column vector with q-th entry λp
q (q = 0, . . . , P ), and rp is a column

vector with l-th entry

rpl =

∫ θ1

−θ1

gp(θ)χl(θ) dθ (l = 0, . . . , P ). (4.4)

The choice of trial-function is motivated by the corner condition (2.8), from

which v(θ) = O((θ1 ∓ θ)−1/2) near θ = ±θ1. Consequently we choose

χl(θ) =
Tl(θ/θ1)
√

θ21 − θ2
(l = 0, . . . , P ) (4.5)

where Tl is the Chebyshev polynomial of the first kind. Use of trial functions of

this form to approximate a function which is square-root singular at each end

of an interval was used previously in [21]. From (4.4),

rpl =

∫ π

0

cos(lσ)eipθ1 cosσ dσ = πilJl(pθ1) (p ∈ Z, l = 0, . . . , P ), (4.6)

upon using a standard Bessel function identity (equation (9.1.21) in [20]).

From (3.35), and using (4.4) and (4.6),

Alq =

∞
∑

n=−∞

Lnr
n
l r

−n
q

= π2il−q
∞
∑

n=−∞

LnJl(nθ1)Jq(nθ1)

= π2il−qL0Jl(0)Jq(0) + π2il−q[(−1)l+q + 1]

∞
∑

n=1

LnJl(nθ1)Jq(nθ1).

(4.7)

The terms in the sum in (4.7) are O(n−2) as n → ∞, so the sum is slowly

convergent. However, calculations can be speeded up, as follows. First we use

the expansions (equations (2.17),(2.18) in [17])

Jn(z)

J ′
n(z)

=
z

n
+

z3

2n3
−

z3

2n4
+O(n−5),

Hn(z)

H ′
n(z)

= −
z

n
−

z3

2n3
−

z3

2n4
+O(n−5),
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for n → ∞ and z fixed, to show that Ln defined in (3.32) has the behaviour

Ln =
a

nπ
+

k2a3

2n3π
+O(n−5) (4.8)

for large n. Then combining (4.8) and the standard large argument expansion

of the Bessel function of the first kind shows that LnJl(nθ1)Jq(nθ1) = γn(l, q)+

O(n−4), where

γn(l, q) =
a

n2π2θ1
{cos[2nθ1 − (l + q + 1)π/2] + cos[(l − q)π/2]}

−
a

4n3π2θ21

{

(2q2 + 2l2 − 1) sin[2nθ1 − (l + q + 1)π/2] + 2(q2 − l2) sin[(l − q)π/2]
}

.

(4.9)

We thus write the infinite sum in (4.7) as

∞
∑

n=1

LnJl(nθ1)Jq(nθ1) =

∞
∑

n=1

[LnJl(nθ1)Jq(nθ1)− γn(l, q)] + γ(l, q), (4.10)

in which the sum can be evaluated accurately by truncating the sum at a finite

value of n since the terms are O(n−4) as n → ∞. We truncate at n = 1500 for

all calculations presented here, which is sufficient to ensure 5 decimal places of

accuracy in approximations to Alq. Also

γ(l, q) =

∞
∑

n=1

γn(l, q) =
a

2π2θ1

(

λ2 + λ̄2 +
π2

3
cos[(l − q)π/2]

)

−
a

8iπ2θ21

(

(2q2 + 2l2 − 1)(λ3 − λ̄3) + 4i(q2 − l2)ζ(3) sin[(l − q)π/2]
)

(4.11)

in which ζ denotes the zeta function, and λj = e−i(l+q+1)π/2Lij(e
2iθ1) (j = 2, 3)

where

Lij(z) =
∞
∑

n=1

zn

nj
=

(−1)j−1

(j − 2)!

∫ 1

0

t−1 lnj−2 t ln(1− zt) dt

is the polylogarithm function (section 25.12, [22]), which can be evaluated ac-

curately using standard quadrature techniques applied to its integral form.

Once the λp
q are determined, the far-field diffraction coefficient-like quantity

for the modal problem, Gp,m in (3.41), is approximated by

Gp,m ≈ (p−m)

P
∑

q=0

λp
q rmq . (4.12)
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To apply the embedding formula (3.40) when n = m we also require an approx-

imation to the modified coefficient Ĝp,m in (3.49), and for this we need

∫ θ1

−θ1

θ0v
p(θ0)e

−imθ0 dθ0 ≈

∫ θ1

−θ1

θ0

P
∑

q=0

λp
qχq(θ0)e

−imθ0 dθ0

where

∫ θ1

−θ1

θ0χq(θ0)e
−imθ0 dθ0 = θ1

∫ π

0

cosσ cos(qσ)e−imθ1 cosσ dσ =
1

2
θ1(rmq+1+rmq−1),

(4.13)

so that

Ĝp,m ≈ −
P
∑

q=0

λp
q

[

rmq +
1

2
i(p−m)θ1(rmq+1 + rmq−1)

]

. (4.14)

The approximation of the solution to the full problem (3.34) proceeds in a

similar fashion, the only difference is in the right-hand side: gα replaces gp. We

write

vα(θ) ≈

P
∑

q=0

λα
q χq(θ) (4.15)

where lα, the vector with q-th entry λα
q , is found from Alα = rα, in which rα

has q-th entry

rαq =

∫ θ1

−θ1

gα(θ)χq(θ) dθ =

∫ θ1

−θ1

∞
∑

n=−∞

Mne
in(θ−α)χq(θ) dθ =

∞
∑

n=−∞

Mne
−inαrnq ,

(4.16)

from (3.35) and (4.4). The sum in (4.16) converges very rapidly. To see this first

note that from (3.33), M−n = Mn for n ∈ Z. Also, from (4.8), Ln = O(n−1) as

n → ∞, and as a consequence of equation (9.3.1) in [20],

J ′
n(z) ∼

1

z

√

n

2π

( ez

2n

)n

as n → ∞ for fixed z. Putting these results together we deduce that Mn is

O(|n|−|n|−1/2) as n → ±∞.

Clearly λα
q =

∑∞
n=−∞ Mne

−inαλn
q , which is the discrete version of the lin-

earity relationship (3.36). From (3.30), the corresponding approximation to the
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far-field diffraction coefficient Fg(θ, α) is then

Fg(θ, α) ≈

∞
∑

m=−∞

eim(θ−π/2)

2πkH ′
m

P
∑

q=0

λα
q r

m
q

=
∞
∑

m=−∞

eim(θ−π/2)

2πkH ′
m

P
∑

q=0

∞
∑

n=−∞

Mne
−inαλn

q r
m
q . (4.17)

In practice both infinite sums in (4.17) are truncated at the finite values ±N .

4.2. Results

Tables 1 and 2 demonstrate the convergence of the numerical scheme for the

modal problem. Table 1 displays values of |G3,1| calculated via (4.12) for θ1 =

π/5, ka = π, 2π, 3π, and increasing P . For larger ka or θ1 & π/2, higher values of

P must be taken to achieve the same accuracy. In the latter case, the matching

of solutions ‘inside’ and ‘outside’ the arc, as in section 3.2, makes less sense as a

formulation; a preferable numerical approach is likely the hypersingular integral

equation route of [23,18], though this is not pursued here. Table 2 lists values

of |Gn,m| for different n,m and increasing P , with ka = 2π and θ1 = π/5. As

n,m increase higher values of P are required to achieve the same accuracy.

The convergence of the numerical scheme for the full problem is demon-

strated in Table 3. Displayed are values of the particular diffraction coefficient

|Fg(π/3, π/7)|, calculated via (4.17) for ka = 2π and θ1 = π/5. Both infinite

sums in (4.17) are truncated at ±N , and values are shown in the table for in-

creasing N and P . The convergence with P is comparable to that of the modal

problem, and the factors of 1/H ′
m (= O(|m|−|m|+1/2) as m → ±∞) and Mn in

(4.17) guarantee rapid convergence of the sums in m and n respectively as the

truncation parameter N is increased.

Now we implement the embedding formula via the representation (3.50). We

solve the modal problem for vp, approximate the required Gp,m and Ĝp,m using

(4.12) and (4.14), and then evaluate the right-hand side of (3.50), truncating

the infinite sums at ±N . The results of Table 2 indicate that the approximation

to vp converges most quickly for small values of p; for comparison we display in

Table 4 results for p = 1 and also p = 9, for increasing N and P . As expected
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the embedding formula results converge more slowly for the larger value of p,

reflecting the slower convergence of the approximation to vp in this case.

To demonstrate the utility of the embedding formula, figure 2(a) shows a

contour plot of |Fg(θ, α)| for −π ≤ θ, α ≤ π, for parameter values ka = 2π and

θ1 = π/5. The reciprocity principle (2.10) and symmetry property (2.11) are re-

sponsible for the various symmetries. The results for the plot were generated by

calculating only a single approximate solution v1, and then using the embedding

formula (3.50) to calculate all values of |Fg(θ, α)|. Figure 2(b) shows values of

|Fg(θ, α) + Fc(θ, α)|, which is the far-field diffraction coefficient stemming from

the combined effect of the gap and the cylinder, the latter given in (3.26).

Finally we implement the embedding formula (3.53) which expresses vα in

terms of vp. Figure 3(a) displays values of vα(θ) (multiplied by
√

θ21 − θ2, to

avoid singular behaviour at the end-points) across the gap −θ1 < θ < θ1, for

parameter values ka = 2π, θ1 = π/5 and incident wave angle α = 2π/3. Results

from a direct calculation are shown as lines; the corresponding results from the

embedding formula (3.53), with p = 1, are denoted by symbols, and as expected

show excellent agreement with the direct results. Also shown, in figure 3(b),

is a plot of Re(φα(x, y)) for the same parameter values, calculated from an

approximation to vα using equations (2.4), (3.20), (3.25) and (3.27).

5. Conclusions and future directions

Based on a decomposition of the incident plane wave into an infinite sum

of modes of the form Jn(kr)e
inθ, for the first time embedding formulae for a

simple polar geometry, consisting of a portion of the circular arc r = a, have been

derived. Embedding formulae for the far-field diffraction coefficients have been

derived directly from the boundary-value problem and from an integral equation

formulation; the latter formulation also allowed the derivation of embedding

formulae for the near-field solution. Numerical results confirm the accuracy and

utility of the embedding formulae.

Dirichlet boundary conditions in place of Neumann conditions require little

change. Embedding formulae for related but more complicated scatterers can
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also be derived. Few modifications to the process are required if the circular arc

contains more than one gap, or if multiple concentric punctured circular arcs

are present (see figs. 4(a),(b)). In each of these cases the route which stems

from the boundary-value problem will be the more straightforward to follow, as

the integral equation formulations will be relatively complicated. The number

of solutions required for the embedding formula will equal the total number of

barrier tips in B; if B is symmetric around θ = 0 then half as many solutions

will be needed.

Perhaps more interesting is the case displayed in fig. 4(c), for which the

new feature is the inclusion in the scatterer’s boundaries of lines of the form

θ = constant. Why should this class of scattering geometry be amenable to

the methods described in this paper? To answer this, we recall the portion

of [9] which considered embedding formulae for scattering by a right-angled

wedge, with faces B1 = {(x, y) : x < 0, y = 0} and B2 = {(x, y) : x = 0, y <

0}. This was effected by noticing that the second-order differential operator

Hα = ∂2/∂x2 + k2 cos2 αI evidently commutes with the Helmholtz operator,

annihilates the incident wave, preserves the radiation condition and boundary

conditions on B1, and, when applied to solutions of the Helmholtz equation

∂2φ/∂x2 + ∂2φ/∂y2 + k2φ = 0, it also preserves boundary conditions on B2,

since

Hαφ =
∂2φ

∂x2
+ k2 cos2 α φ = −

∂2φ

∂y2
− k2 sin2 α φ

in which the only differentiation is now directed along the face B2. Embedding

formulae for the right-angled wedge were then derived using this differential

operator Hα.

These ideas can be carried over to our situation using the operator Dn =

∂2/∂θ2+n2I in place of Hα, which clearly commutes with the Helmholtz equa-

tion, annihilates the incident mode φn
i in (3.2), and preserves the radiation

condition and the boundary condition on any boundary r = constant. The only

question mark remaining concerns its maintenance of boundary conditions on
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boundaries of the form θ = const. But

Dnφ
n =

∂2φn

∂θ2
+ n2φn = n2φn −

(

r2
∂2φn

∂r2
+ r

∂φn

∂r
+ k2r2φn

)

,

in which the only differentiation is now directed along the boundary, so that Dn

does indeed preserve homogeneous Neumann or Dirichlet boundary conditions

on such boundaries. With the required properties ofDn having been established,

the derivation of embedding formulae for the class of scatterers displayed in fig.

4(c) should be straightforward.

We note that the scatterers displayed in figs. 4(b),(c) take the form of split-

ring resonators (see, e.g. [24,25]). These structures are of interest since they can

be used to construct so-called ‘left-handed’ media, i.e. media with a negative

refractive index.

Lastly, it seems plausible that embedding formulae for multiple structures

of the types displayed in figs. 1 and 4, which are centred at different points,

could be derived. Whilst the methods presented in this paper certainly seemed

to require the boundaries of the scatterer to each coincide with a portion of

the line r = constant, the common use of Graf’s addition formula (equation

(9.1.79) in [20]) in problems involving scattering by multiple circular scatterers

(see, e.g. [18],[26]) may be transferable. Further work is underway to investigate

this possibility.
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Figure 1: Geometry of scatterer B.

0.
15

0.15 0.15

0.15

0.15

0.
15

0.
15

0.
15

0.15

0.
15

0.
15

0.
15

0.
15

0.15

0.15

0.15

0.15

0.15
0.15

0.15

0.15

0.15

0.
15

0.
15

0.
15

0.
15

0.3

0.3

0.3

0.3

0.
3

0.3

0.30.3

0.30.3

0.3

0.3

0.3

0.3

0.
3

0.45

0.45

0.45

0.450.45

0.
450.
45

0.45

0.45

0.45

0.6

0.6

0.60.
6

0.6

0.6

0.6

0.6

0.75

0.75

0.
75

0.75

0.75

0.75

0.9

0.9

0.
9

0.9

1.5

1.5

1.5

1.5

2

2

2

2

3
3

4 4
5 5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

α/π

θ/π

(a)

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1 1
1

1

1

1

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3 3

4

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

α/π

(b)

Figure 2: Absolute value of far-field diffraction coefficients, for ka = 2π and θ1 = π/5, as
functions of incident angle α and observation angle θ. Panels (a) and (b) display |Fg(θ, α)|
and |Fg(θ, α) + Fc(θ, α)| respectively.
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Figure 3: Panel (a) displays values of real part (solid line) and imaginary part (dashed line)

of vα(θ)
√

θ21 − θ2, for ka = 2π, θ1 = π/5 and incident wave angle α = 2π/3. Symbols

denote corresponding results from embedding formula (3.53), for p = 1. Panel (b) shows
Re{φα(x, y)}, for the same parameter values.
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Figure 4: Examples of alternative scatterers B for which embedding formulae can be derived.

P
ka 2 4 6 8 10 12
π 2.33437 2.35708 2.35711 2.35711 2.35711 2.35711
2π 8.41238 8.42985 8.42994 8.42993 8.42993 8.42993
3π 11.66046 8.77025 8.62414 8.62052 8.62046 8.62046

Table 1: Values of |G3,1| for different ka and increasing P . The gap in the barrier occupies
|θ| < θ1 = π/5.
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P
|Gn,m| 2 4 6 8 10 12
|G1,2| 5.65247 5.69458 5.69455 5.69454 5.69454 5.69454
|G1,9| 7.67423 5.47806 5.27293 5.26695 5.26691 5.26691
|G8,9| 0.66926 2.47901 3.52477 3.59077 3.59186 3.59187

Table 2: Values of |Gn,m| for different n,m and increasing P . Here ka = 2π and θ1 = π/5.

P
N 2 4 6 8 10
5 0.09577 0.10130 0.10193 0.10193 0.10193
10 0.08158 0.23453 0.25443 0.25509 0.25510
15 0.08245 0.23517 0.25433 0.25488 0.25488
20 0.08245 0.23517 0.25433 0.25488 0.25488

Table 3: Values of |Fg(π/3, π/7)| calculated via (4.17) for ka = 2π, θ1 = π/5 and increasing
P and truncation parameter N .

P
N, p 2 4 6 8 10
10,1 0.34132 0.25576 0.25527 0.25510 0.25510
15,1 0.34094 0.25552 0.25505 0.25489 0.25488
20,1 0.34094 0.25552 0.25505 0.25489 0.25488
10,9 0.20317 0.06232 0.24417 0.25522 0.25510
15,9 0.20258 0.06431 0.24426 0.25503 0.25488
20,9 0.20258 0.06431 0.24426 0.25503 0.25489

Table 4: Values of |Fg(π/3, π/7)| calculated via the embedding formula (3.50) with increasing
truncation parameter N , in terms of vp for p = 1, 9 calculated using different values of P .
Here ka = 2π and θ1 = π/5. The converged value is 0.25488 (5d.p.).
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