

# *Regional and global temperature response to anthropogenic SO<sub>2</sub> emissions from China in three climate models*

Article

Accepted Version

Kasoar, M., Voulgarakis, A., Lamarque, J.-F., Shindell, D. T., Bellouin, N. ORCID: <https://orcid.org/0000-0003-2109-9559>, Collins, W. J. ORCID: <https://orcid.org/0000-0002-7419-0850>, Faluvegi, G. and Tsigaridis, K. (2016) Regional and global temperature response to anthropogenic SO<sub>2</sub> emissions from China in three climate models. *Atmospheric Chemistry and Physics Discussions*, 16 (15). pp. 9785-9804. ISSN 1680-7375 doi: 10.5194/acp-2015-1017 Available at <https://reading-pure-test.eprints-hosting.org/65996/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.5194/acp-2015-1017>

Publisher: Copernicus Publications

[www.reading.ac.uk/centaur](http://www.reading.ac.uk/centaur)

**CentAUR**

Central Archive at the University of Reading

Reading's research outputs online

1 **Regional and global temperature response to**  
2 **anthropogenic SO<sub>2</sub> emissions from China in three climate**  
3 **models**

4

5 **M. Kasoar<sup>1</sup>, A. Voulgarakis<sup>1</sup>, J.-F. Lamarque<sup>2</sup>, D. T. Shindell<sup>3</sup>, N. Bellouin<sup>4</sup>, W. J.**  
6 **Collins<sup>4</sup>, G. Faluvegi<sup>5</sup>, and K. Tsigaridis<sup>5</sup>**

7 [1]{Department of Physics, Imperial College London, London, UK }

8 [2]{NCAR Earth System Laboratory, National Center for Atmospheric Research, Boulder, CO,  
9 USA }

10 [3]{Nicholas School of the Environment, Duke University, Durham, NC, USA }

11 [4]{Department of Meteorology, University of Reading, Reading, UK }

12 [5]{Center for Climate Systems Research, Columbia University, and NASA Goddard Institute  
13 for Space Studies, New York, NY, USA }

14 Correspondence to: M. Kasoar (m.kasoar12@imperial.ac.uk)

15

16 **Abstract**

17 We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the  
18 global and regional aerosol burden, radiative flux, and surface temperature responses to  
19 removing anthropogenic sulfur dioxide (SO<sub>2</sub>) emissions from China. We find that the models  
20 differ by up to a factor of six in the simulated change in aerosol optical depth (AOD) and  
21 shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large  
22 range of magnitudes in the regional and global temperature responses. Two of the three models  
23 simulate a near-ubiquitous hemispheric warming due to the regional SO<sub>2</sub> removal, with  
24 similarities in the local and remote pattern of response, but overall with a substantially different  
25 magnitude. The third model simulates almost no significant temperature response. We attribute  
26 the discrepancies in the response to a combination of substantial differences in the chemical  
27 conversion of SO<sub>2</sub> to sulfate, translation of sulfate mass into AOD, cloud radiative interactions,  
28 and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model

1 with the strongest response (HadGEM3-GA4) compares best with observations of AOD  
2 regionally, however the other two models compare similarly (albeit poorly) and still disagree  
3 substantially in their simulated climate response, indicating that total AOD observations are far  
4 from sufficient to determine which model response is more plausible. Our results highlight that  
5 there remains a large uncertainty in the representation of both aerosol chemistry as well as direct  
6 and indirect aerosol radiative effects in current climate models, and reinforces that caution must  
7 be applied when interpreting the results of modelling studies of aerosol influences on climate.  
8 Model studies that implicate aerosols in climate responses should ideally explore a range of  
9 radiative forcing strengths representative of this uncertainty, in addition to thoroughly  
10 evaluating the models used against observations.

11

## 12 **1 Introduction**

13 Short-lived atmospheric pollutants such as aerosols have very inhomogeneous spatial  
14 distributions. This means that, unlike long-lived greenhouse gases such as CO<sub>2</sub>, the radiative  
15 forcing due to aerosols is highly variable, and the resulting climate response may be strongly  
16 influenced by the region of emission and the prevailing circulation patterns. There is increasing  
17 interest in trying to understand how aerosol forcing from different regions affects the climate,  
18 both locally and remotely. For example, Shindell and Faluvegi (2009) and Shindell et al. (2012)  
19 looked systematically at the response of temperature and precipitation to single-species forcings  
20 imposed in different latitude bands, and showed that the influence of remote forcings on certain  
21 regions can often outweigh and even have opposite sign to the influence of local forcings. Teng  
22 et al. (2012) investigated the global temperature response to drastically increasing carbonaceous  
23 aerosols only over Asia, finding a strong remote effect on US summertime temperatures.

24 One of the most important anthropogenically-sourced aerosol species is sulfate (SO<sub>4</sub>) (e.g.  
25 Myhre et al., 2013b). Sulfate-containing aerosols are formed following chemical conversion  
26 of gaseous sulfur dioxide (SO<sub>2</sub>) emissions from fossil-fuel combustion, as well as natural  
27 sources such as volcanic SO<sub>2</sub> and ocean dimethyl sulfide (DMS) emissions (e.g. Andres and  
28 Kasgnoc, 1998; Andreae and Crutzen, 1997). Sulfate particles strongly scatter incoming  
29 shortwave (SW) radiation, which helps to increase the planetary albedo and cool the surface.  
30 They also act as cloud condensation nuclei, leading to additional cloud droplets forming in  
31 supersaturated conditions, which increases cloud albedo and again cools the Earth system

1 (Boucher et al., 2013). Historically, cooling from sulfate aerosol, predominantly in the more  
2 industrialised northern hemisphere, has been implicated by a range of modelling studies in  
3 disrupting climate since the mid-20<sup>th</sup> century. For instance, Booth et al. (2012), Hwang et al.  
4 (2013), and Wilcox et al. (2013) discussed the importance of historical aerosol cooling in  
5 modulating large-scale temperature and precipitation patterns, while other studies such as  
6 Bollasina et al. (2011), Dong et al. (2014), and Polson et al. (2014) have looked at the impact  
7 of historical aerosols on regional climate features such as the monsoon systems or Sahelian  
8 rainfall.

9 The few studies that have investigated specific regional aerosol forcings (e.g. Shindell and  
10 Faluvegi, 2009; Shindell et al., 2012; Teng et al., 2012) typically used a single climate model  
11 at a time to investigate the climate response to idealised, historical, or projected forcings.  
12 However models vary considerably in their representation of aerosols and their radiative  
13 properties, resulting in a large uncertainty in aerosol radiative forcing (e.g. Myhre et al., 2013b;  
14 Shindell et al., 2013a). When investigating the climate response to regional aerosol emissions,  
15 such uncertainties are likely to be confounded even further by the variability between models  
16 in regional climate and circulation patterns, and variation in the global and regional climate  
17 sensitivity (the amount of simulated warming per unit radiative forcing). To best interpret the  
18 findings of single-model experiments with regional aerosol forcings, it is therefore critical to  
19 understand the range of uncertainty in the climate response that may arise as a result of  
20 structural and parametric differences between climate models.

21 We investigate here the range of variability that can arise in the translation of a regional  
22 emission perturbation to a climate (temperature) response, between three different state-of-the-  
23 art global climate models. We select as a case study the removal of SO<sub>2</sub> anthropogenic  
24 emissions from the region of China. Since China is currently the largest anthropogenic source  
25 region of sulfur dioxide (Smith et al., 2011) and hence anthropogenic aerosol, this regional  
26 perturbation represents a substantial modification to global aerosol levels, with the additional  
27 characteristic of being localised over a particular part of the world. This aspect of our  
28 experiment is distinct from many previous model intercomparison studies, which have typically  
29 compared the climate response in models forced by global historical trends in aerosols (for  
30 example, Shindell et al., 2015; Wilcox et al., 2013), or which have only considered the impact  
31 of regional emissions on long-range pollution transport and on radiative forcing (for example  
32 the HTAP and AeroCom experiments (HTAP, 2010; Yu et al., 2013; Kinne et al., 2006; Schulz

1 et al., 2006; Textor et al., 2006; Myhre et al., 2013)), but have not investigated the range of  
2 model climate responses to a regionally localised emission perturbation. The potential  
3 importance of remote climate effects due to the strong zonal asymmetry created by such  
4 regional emissions has therefore not yet been explored in multi-model studies. Single-model  
5 studies such as Teng et al. (2012) suggest though that regionally localised forcings can produce  
6 significant climate teleconnections in at least the longitudinal direction.

7 In the following sections we first describe the three models employed, and our experimental  
8 setup (Sect. 2). We then present the results of the radiative flux and surface temperature  
9 responses to the removal of Chinese SO<sub>2</sub> (Sect. 3), and analyse the possible reasons for  
10 differences between the model responses (Sect. 4). Finally, in Sect. 5 we present our  
11 conclusions.

12

## 13 **2 Model descriptions and experimental set-up**

14 The three models we employ are the Hadley Centre Global Environment Model 3 – Global  
15 Atmosphere 4.0 (HadGEM3-GA4), the Community Earth System Model 1 (CESM1), and the  
16 Goddard Institute for Space Studies ModelE2 (GISS-E2). To allow the climate system to freely  
17 respond, the models are all used in a fully coupled atmosphere-ocean configuration. These  
18 three models all feature explicit aerosol modelling, and include both direct and indirect radiative  
19 effects of aerosols. However the models all vary in the details of the parameterisations used,  
20 the dynamical cores, radiation and cloud schemes, model grids and horizontal and vertical  
21 resolutions, land surface and ocean components, etc. This lack of common structural features  
22 makes these three models well suited to contrast against one another and probe the range of  
23 potential model uncertainty, as we do here. The models are briefly described below, and the  
24 key references and features are summarised in Table 1.

25

### 26 **2.1 Model descriptions**

#### 27 **2.1.1 HadGEM3-GA4**

28 For HadGEM3, we use the Global Atmosphere 4.0 version of the model (Walters et al., 2014)  
29 in a standard climate configuration with a horizontal resolution of 1.875° longitude x 1.25°  
30 latitude in the atmosphere, with 85 vertical levels and the model top at 85km. The atmosphere

1 is coupled to the JULES land surface model (Walters et al., 2014). Here we prescribe fixed  
2 vegetation and also globally-uniform observed mass-mixing ratios for CO<sub>2</sub>, CH<sub>4</sub>, and other  
3 long-lived greenhouse gases, taking their year-2000 values from the CMIP5 historical dataset  
4 (Meinshausen et al., 2011). A zonally-uniform present-day ozone climatology is also  
5 prescribed in the radiation scheme, derived from the SPARC dataset (Cionni et al., 2011). The  
6 atmospheric model is coupled to the NEMO dynamical ocean model (Madec, 2008) and CICE  
7 sea-ice model (Hunke and Lipscombe, 2008), which are run with a 1° horizontal resolution, and  
8 75 vertical depth levels for the ocean.

9 HadGEM3-GA4 can be run with a choice of two aerosol schemes of differing complexity –  
10 CLASSIC (Bellouin et al., 2011), and GLOMAP (Mann et al., 2010). Here we use the simpler  
11 CLASSIC scheme, which is less computationally expensive, and is also the aerosol scheme that  
12 was used for CMIP5 simulations with the predecessor of this model (HadGEM2). CLASSIC  
13 is a mass-based scheme, meaning that only aerosol mass (and not particle number) is tracked,  
14 and therefore all aerosol species are assumed to be externally mixed. The scheme includes an  
15 interactive representation of sulfate in three modes (Aitken, accumulation, and in-cloud), fossil-  
16 fuel black carbon, fossil-fuel organic carbon, and biomass-burning aerosol in three modes  
17 (fresh, aged, and in-cloud), dust in six size bins, and sea-salt in two modes (jet and film), as  
18 well as an offline biogenic aerosol climatology. The scheme can also include a representation  
19 of nitrate aerosol, but this option was not used here.

20 The sulfate component of the scheme (Jones et al., 2001) includes tracers for two gas-phase  
21 precursors: SO<sub>2</sub> from anthropogenic and natural sources, and DMS from natural sources. These  
22 are emitted into the atmosphere and can undergo advection, wet and dry deposition, or oxidation  
23 using prescribed 4D oxidant fields (Derwent et al., 2003). In CLASSIC, oxidation of SO<sub>2</sub> to  
24 SO<sub>4</sub> aerosol can proceed through three possible reaction pathways: in the gas phase by reaction  
25 with OH, or in the aqueous phase by reaction with either H<sub>2</sub>O<sub>2</sub> or O<sub>3</sub>.

26 The radiative transfer scheme of Edwards and Slingo (1996) is used with six spectral bands in  
27 the shortwave, and all aerosol species interact with radiation. The hygroscopic aerosols (sulfate,  
28 organic carbon, biomass-burning aerosol, sea-salt) can also interact with clouds via their role  
29 as cloud condensation nuclei. Cloud droplet number concentration and effective radius are  
30 determined from the mass concentration of these aerosols, which affects the simulated cloud  
31 lifetime (2<sup>nd</sup> indirect effect) and cloud brightness (1<sup>st</sup> indirect effect) as described in Bellouin et  
32 al. (2011) and Jones et al. (2001).

1

2 **2.1.2 CESM1**

3 CESM1 is run in its standard CAM5-Chem configuration (Tilmes et al., 2015) with a horizontal  
4 resolution of  $2.5^\circ$  longitude x  $1.875^\circ$  latitude, and 30 vertical levels, with the model top at  
5 approximately 40 km. The atmosphere is coupled to the Community Land Atmosphere version  
6 4 land surface model (Lawrence et al., 2011). In the present configuration, the vegetation  
7 distribution is fixed at its 2005 distribution and the CO<sub>2</sub> concentration is specified. The  
8 atmosphere model is coupled to the POP2 ocean and CICE4 sea-ice models, with an equivalent  
9 resolution of  $1^\circ$ .

10 In the present CAM5-Chem configuration (Tilmes et al., 2015) we use an online representation  
11 of tropospheric and stratospheric chemistry so that no chemical constituents are specified, other  
12 than specifying the long-lived greenhouse gases' concentrations in the surface layer. CAM5-  
13 Chem uses the MAM3 modal aerosol scheme (Liu et al., 2012), which is the same as used for  
14 the CESM1 submission to CMIP5. Both aerosol mass and particle number are prognostic, and  
15 the scheme simulates sulfate, black carbon, primary organic matter, secondary organic aerosol,  
16 dust, and sea salt aerosol species as an internal mixture in Aitken, accumulation, and coarse  
17 modes.

18 The model includes emissions of natural and anthropogenic SO<sub>2</sub> and natural DMS as sulfate  
19 precursors, and the gas-phase chemistry is coupled to the MAM3 aerosol scheme so that the  
20 rate of formation of sulfate aerosols is dependent on the chemical state of the atmosphere. SO<sub>2</sub>  
21 can be converted to SO<sub>4</sub> through three oxidation pathways: by OH in the gas phase, or by either  
22 H<sub>2</sub>O<sub>2</sub> or O<sub>3</sub> in the aqueous phase. In addition, the surface area of the prognostic tropospheric  
23 aerosols is used to compute heterogeneous reaction rates that affect gas-phase chemistry.

24 Shortwave radiative transfer is based on the RRTM\_SW scheme (Clough et al., 2005) with 14  
25 spectral bands, and aerosols interact with climate through both absorption and scattering of  
26 radiation. Aerosol-cloud interactions allow for the effect of aerosols on both cloud droplet  
27 number and mass concentrations (Tilmes et al, 2015).

28

29 **2.1.3 GISS-E2**

1 GISS-E2 is run in the configuration used for CMIP5 with a horizontal resolution of  $2.5^{\circ}$   
2 longitude x  $2^{\circ}$  latitude, and 40 vertical levels, with the model top at 0.1 hPa (80 km). The  
3 atmospheric model is coupled to the dynamic Russell ocean model with horizontal resolution  
4 of  $1^{\circ}$  latitude x  $1.25^{\circ}$  longitude, and 32 vertical levels as described in Schmidt et al. (2014) and  
5 Russell et al. (1995).

6 Well-mixed greenhouse gases are prescribed as described in Miller et al. (2014), but methane  
7 is only prescribed at the surface and is otherwise interactive with the chemistry. The ozone  
8 distribution is prognostic throughout the simulated atmosphere, and the chemical mechanism is  
9 described in Shindell et al. (2013b). In general, other atmospheric gas and aerosol constituents  
10 are also simulated online and interact with each other (via oxidants in both the gas and aqueous  
11 phases, heterogeneous chemistry, aerosol-influenced gas photolysis, and secondary coating of  
12 dust) and with climate (via radiative effects of ozone and methane, water vapour change due to  
13 chemistry, and aerosol direct and indirect effects) in a manner consistent with the physics of  
14 the rest of the GCM as described in Sect. 2 of Schmidt et al. (2014).

15 GISS-E2 has a choice of three aerosol schemes of varying complexity – OMA (Koch et al.,  
16 2011; 2006), MATRIX (Bauer et al, 2008), and TOMAS (Lee and Adams, 2012). Following  
17 the GISS-E2 CMIP5 configuration, we use here simpler mass-based OMA scheme, which  
18 includes sulfate, nitrate, elemental and organic carbon, along with secondary organic aerosols  
19 and natural sea-salt and mineral dust. Aerosols are parameterised as an external mixture of dry  
20 and dissolved aerosol, with particle size parameterised as a function of relative humidity  
21 (Schmidt et al., 2006). The sulfur scheme includes natural emissions of DMS, and natural and  
22 anthropogenic emissions of  $\text{SO}_2$ .  $\text{SO}_2$  from these sources can be oxidised to  $\text{SO}_4$  aerosol  
23 through two reaction pathways: by OH in the gas phase, or by  $\text{H}_2\text{O}_2$  in the aqueous phase.

24 Aerosol direct effects are calculated following the Hansen et al. (1983) radiation model, with  
25 six spectral bands in the shortwave. Aerosol indirect effects are calculated as described in  
26 Menon et al. (2010), such that cloud droplet number concentration and autoconversion rate  
27 depend on the local concentration of aerosol.

28

## 29 **2.2 Experimental setup**

30 For this study we investigate the surface temperature response to an idealised regional emission  
31 perturbation, on a centennial timescale. Each model has a control simulation, initialised from

1 a present-day state, which is forced with the same anthropogenic emissions of aerosols and their  
2 precursors following the year-2000 ACCMIP emission inventory (Lamarque et al., 2010). The  
3 control simulations are run for 200 years with continuous year-2000 conditions. For each  
4 model, we then also run a 200-year perturbation simulation from the same initial state, in which  
5  $\text{SO}_2$  emissions from energy production, industry, transport, domestic use, and waste, are set to  
6 zero over the region of China, defined here to be the rectangular domain  $80^\circ\text{-}120^\circ\text{E}$ ,  $20^\circ\text{-}50^\circ\text{N}$ .  
7 These emission sectors contribute 98.7% of the anthropogenic  $\text{SO}_2$  emitted from this region, so  
8 this corresponds to a near complete removal of  $\text{SO}_2$  emissions from this highly polluting area  
9 of the globe. Quantitatively, this perturbation reduces global anthropogenic  $\text{SO}_2$  emissions  
10 from around  $104 \text{ Tg yr}^{-1}$  to  $86 \text{ Tg yr}^{-1}$ , a reduction of around  $17 \text{ Tg yr}^{-1}$ , or 16.5%.

11 Additionally, shorter atmosphere-only simulations were performed with HadGEM3-GA4  
12 (identical in setup except that sea-surface temperatures (SSTs) and sea-ice cover are prescribed  
13 to year-2000 values) in order to diagnose the effective radiative forcing, as well as the  $\text{SO}_2$   
14 oxidation rates and  $\text{SO}_4$  wet deposition rates for this model, referred to in Section 3, Section  
15 4.1, and Section 4.1.1. In CESM1, the  $\text{SO}_2$  burden, surface  $\text{SO}_4$  concentration, clear-sky  
16 radiative flux, and cloud cover referred to in Sections 4.1.1, 4.2, and 4.3, were all diagnosed  
17 from a 30-year extension of the control and perturbation coupled simulations, rather than from  
18 the original 200 years.

19

### 20 **3 Radiative forcing and climate response**

21 We investigate the change in the mean state of the models by taking averages over the last 150  
22 years of the 200-year-long simulations (the first 50 years are discarded to allow the response to  
23 the perturbation to establish itself), and taking the difference between the perturbation  
24 simulation and the control simulation. As well as plotting maps of 2D variables, we also  
25 calculate area-weighted means of temperature, short-wave radiative flux, and aerosol optical  
26 depth, both globally and for an east China region (E. China) defined as  $100^\circ\text{-}120^\circ\text{E}$ ,  $20^\circ\text{-}40^\circ\text{N}$ .  
27 This region is found to contain the most intense changes in sulfate aerosol in all three models,  
28 and is used from here on to quantify the magnitude of local changes over China. The global-  
29 and regionally-averaged quantities, with associated uncertainties where available, are tabulated  
30 in Table 2, along with the total sulfate burdens over the globe and E. China, and the ratios of  
31 AOD to sulfate burden and SW flux to AOD changes.

1 The anticipated immediate consequence of removing SO<sub>2</sub> emissions from China is that there  
2 will be a reduction in the amount of sulfate aerosol formed, leading to a positive shortwave  
3 (SW) radiative forcing. Figure 1 shows the changes in net downward top-of-atmosphere (TOA)  
4 SW radiative flux in each of the three models. For HadGEM3-GA4 and GISS-E2, the plot is  
5 stippled in locations where the change exceeds two standard deviations, estimated for  
6 HadGEM3-GA4 from the grid-point standard deviations from six 150-year-long year-2000  
7 control simulations with perturbed atmospheric initial conditions, and for GISS-E2 from 12  
8 non-overlapping 150-year sections of a 1900-year-long pre-industrial control simulation that  
9 had reached radiative equilibrium. Such uncertainty analysis has not been performed for  
10 CESM1 due to lack of the necessary unforced simulation output for the version of the model  
11 used here. For reference, Fig. 1 also shows the outline of the E. China region, which  
12 corresponds well to the region of maximum SW flux changes in all three models.

13 Figure 1 reveals that there is a very substantial variation between the models in the intensity of  
14 the local radiative flux change over China. GISS-E2 shows a fairly weak increase in net  
15 downward SW flux over E. China, with a local increase (from Table 2) of 0.91 W m<sup>-2</sup> and an  
16 insignificant global mean change (-0.034 W m<sup>-2</sup>), whereas HadGEM3-GA4 shows a very  
17 pronounced change of 5.3 W m<sup>-2</sup> locally over E. China, and a global mean value of 0.28 W m<sup>-2</sup>. CESM1 lies in the middle, with a moderate local SW flux change of 4.2 W m<sup>-2</sup>, and 0.19 W  
18 m<sup>-2</sup> in the global mean. Between GISS-E2 and HadGEM3-GA4, there is a 6-fold increase in  
19 the intensity of the local SW radiative flux change over E. China.  
20

21 Because these are fully coupled simulations, the change in the TOA SW flux does not provide  
22 a measure of the shortwave radiative forcing, since the underlying climate has been allowed to  
23 adjust, potentially allowing feedbacks on clouds, and snow and ice cover. A complementary  
24 pair of atmosphere-only simulations were performed with HadGEM3-GA4 to diagnose the  
25 effective radiative forcing (ERF) – the change in TOA radiative flux when feedbacks due to the  
26 slow response of the ocean are prevented (Andrews et al., 2010). The global SW ERF due to  
27 removing SO<sub>2</sub> from China in these fixed-SST simulations is 0.18 W m<sup>-2</sup>, 35% smaller than the  
28 0.28 W m<sup>-2</sup> change in the fully coupled case. However, locally over the E. China region, the  
29 fixed-SST SW ERF was found to be 4.2 W m<sup>-2</sup>, which is only 21% lower than the 5.3 W m<sup>-2</sup>  
30 value in the fully coupled experiment. Moreover, the spatial map of the SW flux anomaly over  
31 China is very similar between the two experiments (Supplementary fig. S1). At least in  
32 HadGEM3-GA4, over E. China the change in sulfate therefore appears to be the dominant

1 driver of the change in TOA SW flux, and the local change in SW flux over this region is  
2 reasonably representative of the local radiative effect of the sulfate perturbation even in the  
3 fully-coupled simulations with this model. The same is less true of the global-mean values  
4 because of positive feedback from ice melt in the Arctic, and also some small but widespread  
5 changes in cloud cover, which globally add up to a sizeable effect in the coupled simulations  
6 (not shown).

7 Based on the fully coupled simulations, the substantial differences in the intensity of SW flux  
8 changes over China ultimately translate to very pronounced differences in the strength of the  
9 resulting climate response. Figure 2 shows the change in surface air temperatures between the  
10 perturbation and control simulations for each of the three models, clearly demonstrating that  
11 temperature effects extend far beyond the more localised radiative effects. Again stippling  
12 indicates that the response exceeds the  $2\sigma$  level in HadGEM3-GA4 and GISS-E2. The  
13 difference between GISS-E2 and HadGEM3-GA4 is particularly striking. Apart from a small  
14 warming in parts of eastern China and north-east Europe by around 0.1-0.3 K, there is virtually  
15 no coherent temperature response across the rest of the globe in GISS-E2. The global mean  
16 temperature change (Table 2) is -0.028 K and is not significant. In contrast HadGEM3-GA4  
17 displays significant warming across almost all of the northern hemisphere, with much larger  
18 increases in temperature between 0.4-1 K in many regions, not only in China but also in much  
19 of the US, northern Eurasia, and the Arctic. The global mean temperature response is +0.12 K.  
20 CESM1 sits again in the middle, with clear warming responses between 0.2-0.5 K over much  
21 of eastern Europe, Asia, and the western Pacific. Overall the warming response is still less  
22 strong and less widespread than in HadGEM3-GA4, with a global mean warming of +0.054 K.  
23 The spatial pattern of warming over Europe and Asia in CESM1 bears some qualitative  
24 similarity though to the pattern over the same region in HadGEM3-GA4, suggesting that there  
25 may be a similar mode of global response to heating over eastern China in these models, at least  
26 across the Eurasian continent. The dynamical mechanisms through which local aerosol  
27 emissions are translated to remote response are beyond the scope of this manuscript though.  
28 Whether GISS-E2 would have displayed the same pattern had the radiative forcing over China  
29 been stronger is impossible to tell from these results; given the small magnitude of the SW flux  
30 change it seems that most of the spatial pattern in the temperature response in GISS-E2 can be  
31 attributed to internal variability – the largest changes in temperature seen in this model are in

1 fact a region of cooling over the north-west Atlantic, which is mostly not significant and appears  
2 instead to be the result of particularly large internal variability in this region.

3

4 **4 Exploring drivers of diversity**

5 We investigate the differences between these models that lead to such a large variation in the  
6 predicted temperature response. We explore below a number of possible sources of  
7 discrepancy.

8

9 **4.1 Differences in simulated aerosol amounts and aerosol optical depths**

10 We address first the possibility that differences in the aerosol schemes themselves, lead directly  
11 to very different aerosol loadings between the models, despite the identical change in SO<sub>2</sub>  
12 emissions applied. Figure 3 shows the change in column-integrated SO<sub>4</sub> in each model as a  
13 result of removing SO<sub>2</sub> emissions from China. The models vary in both the distribution and  
14 magnitude of SO<sub>4</sub> reductions. In particular, HadGEM3-GA4 has the reduction in SO<sub>4</sub> burden  
15 fairly concentrated over China. CESM1 and GISS-E2 simulate changes in SO<sub>4</sub> which extend  
16 further downwind from the source region, giving a larger spatial footprint, although CESM1  
17 still has large reductions over China as well.

18 For GISS-E2 and HadGEM3-GA4, more detailed chemistry diagnostics were available from a  
19 5-year period of a HadGEM3-GA4 atmosphere-only control simulation, and a 5-year period of  
20 the GISS-E2 coupled control simulation. For these two models, the difference in spatial extent  
21 of the SO<sub>4</sub> field from Chinese SO<sub>2</sub> emissions seems to be due to faster conversion of SO<sub>2</sub> to  
22 SO<sub>4</sub> in HadGEM3-GA4, resulting in much more concentrated changes in SO<sub>4</sub> close to the  
23 source. The SO<sub>2</sub> lifetime is around 1.8 times shorter in HadGEM3-GA4, associated with around  
24 45% higher wet oxidation rates in this model. This difference is due in part to the inclusion of  
25 an additional wet oxidation pathway in HadGEM3-GA4: whereas GISS-E2 only includes wet  
26 oxidation of SO<sub>2</sub> by H<sub>2</sub>O<sub>2</sub> (around 730 kg(S) s<sup>-1</sup> globally integrated), HadGEM3-GA4 includes  
27 wet oxidation by both H<sub>2</sub>O<sub>2</sub> and O<sub>3</sub>, each of which contribute similarly in this model (around  
28 540 kg(S) s<sup>-1</sup> and 520 kg(S) s<sup>-1</sup> respectively).

29 Globally integrated, HadGEM3-GA4 and GISS-E2 simulate fairly similar reductions in SO<sub>4</sub>  
30 burden, at -0.070 Tg and -0.077 Tg respectively (Table 2). This, combined with the more

1 spread-out  $\text{SO}_4$  field in GISS-E2, means that locally over eastern China HadGEM3-GA4 has a  
2 much more intense reduction in  $\text{SO}_4$  burden, with 50% of the global reduction occurring over  
3 E. China in HadGEM3-GA4 (-0.035 Tg), compared with only 21% (-0.016 Tg) in GISS-E2.

4 CESM1 includes the same oxidation pathways as HadGEM3-GA4, and in fact has a slightly  
5 shorter  $\text{SO}_2$  lifetime still, and so the differences between these two models have different  
6 origins. CESM1 in fact simulates almost double the global change in  $\text{SO}_4$  burden as the other  
7 two models, with -0.136 Tg. This means that although the  $\text{SO}_4$  reduction spreads further from  
8 the source in CESM1 than in HadGEM3-GA4, CESM1 still has a similar reduction to  
9 HadGEM3-GA4 locally over E. China as well (-0.039 Tg), which is also evident in Fig. 3.

10 Given that HadGEM3-GA4 and GISS-E2 simulate a similar global reduction in  $\text{SO}_4$ , it is  
11 surprising that there is such a difference in the magnitude of their climate responses. Also,  
12 given that CESM1 simulates a much larger global reduction in  $\text{SO}_4$  than the other two models,  
13 it is similarly surprising that this model does not have the largest response. A partial  
14 explanation may be found by inspecting the change in total aerosol optical depth (AOD), which  
15 is a more direct measure of the radiative properties of the aerosol column. Unfortunately, the  
16 AOD diagnosed by the models is not completely equivalent: HadGEM3-GA4 diagnosed clear-  
17 sky AOD, which is done in this model by calculating the relative humidity in the cloud-free  
18 portion of each grid-box, and using this adjusted humidity to calculate the size of the aerosol  
19 droplets in the optical depth calculation (Bellouin et al., 2007). However CESM1 uses the  
20 unadjusted grid-box relative humidity to calculate the droplet sizes in its optical depth  
21 calculation, thereby providing an all-sky AOD calculation (Neale et al., 2012). GISS-E2  
22 diagnosed both all-sky and clear-sky AOD, and unless otherwise stated we compare here its  
23 clear-sky AOD, as it is more directly comparable with satellite retrievals of AOD (Kahn et al.,  
24 2010; Levy et al., 2013). Figure 4 shows these changes in AOD at the 550nm wavelength for  
25 the three models.

26 As with the radiative flux change, there is a large range in the magnitude of local AOD  
27 reduction, with E. China AOD reductions ranging from 0.047 in GISS-E2 to 0.287 in  
28 HadGEM3-GA4, i.e. about six times higher (Table 2). This is comparable to the approximately  
29 6-fold range of SW flux change found over this region. Globally averaged, HadGEM3-GA4  
30 also has a much larger AOD reduction than GISS-E2; 0.0042 compared with an almost  
31 negligible 0.0003 in GISS-E2, despite these two models having a similar change in global  $\text{SO}_4$   
32 burden. The much lower globally-averaged value in GISS is partly due to a very small but quite

1 zonally-uniform compensating increase in nitrate aerosol (absent in HadGEM3-GA4), which  
2 occurs across the northern hemisphere (not shown). However, the global change in sulfate-  
3 only optical depth in GISS-E2 is still only half that in HadGEM3-GA4 (not shown), and locally  
4 around eastern China we find the increase in nitrate optical depth in GISS-E2 is at least an order  
5 of magnitude smaller than the decrease in sulfate optical depth, and so nitrate compensation  
6 does not substantially contribute to the discrepancy in local AOD changes. We therefore still  
7 find that HadGEM3-GA4 simulates a considerably larger change in sulfate optical depth per  
8 unit change in  $\text{SO}_4$  burden at both global and local scales. Having the largest change in AOD  
9 per unit change in aerosol burden (Table 2) appears to be key to this model simulating the  
10 largest climate response.

11 Comparing the clear-sky and all-sky AOD for GISS-E2 (for which we have both diagnostics),  
12 we find that the simulated reduction in E. China all-sky AOD (-0.183) is much larger than the  
13 reduction in clear-sky AOD (-0.047). We cannot be sure that the same would apply to CESM1,  
14 but it suggests that we might expect the all-sky values we have for CESM1 to be larger than the  
15 equivalent clear-sky values. Given this, it is all the more surprising to find reductions of all-  
16 sky AOD in CESM1 for the E. China region of -0.076 and for the global mean of -0.0013 (Table  
17 2), which lie in between the clear-sky values of GISS-E2 and HadGEM3-GA4 even though  
18 CESM1 had the largest change in  $\text{SO}_4$  burden both locally and globally.

19 The AOD changes per unit burden change are summarised in Table 2, and it is clear that there  
20 is a large diversity between the models. The possible contributors to diversity in the AOD per  
21 unit burden are extensive, and a full analysis of them is beyond the scope of this paper. Host  
22 model effects, such as different cloud climatologies and radiative transfer schemes, are one  
23 likely contributor. Stier et al. (2013) suggests that one third of total diversity originates there.  
24 Relative humidity, which drives water uptake (hygroscopic growth), is also diverse among  
25 models. For example, Pan et al. (2015) find that over India, boundary-layer RH is the main  
26 source of diversity. At the more basic level, assumed composition and hygroscopic growth  
27 curves also often differ between models – in this case, the aerosol scheme used for HadGEM3-  
28 GA4 assumes that all sulfate is in the form of ammonium sulfate, whereas CESM1 and GISS-  
29 E2 both assume a mixture of ammonium sulfate and sulfuric acid, and additionally all three  
30 models use different sources for their hygroscopic growth parameterisations (Bellouin et al.,  
31 2011; Liu et al., 2012; Koch et al., 2011; and references therein).

1 The changes in SW radiative flux and the final climate response seem to correlate with the  
2 changes in AOD much better than with the changes in SO<sub>4</sub> burden for HadGEM3-GA4 and  
3 GISS-E2, where over China there is a 6-fold difference both in AOD and in SW flux change  
4 between these two models. For CESM1, the all-sky AOD change over E. China is about 1.6  
5 times larger than the clear-sky change in GISS-E2 (Table 2). If we used instead all-sky AOD  
6 from GISS-E2 (not shown in Table 2), we find that the AOD change over E. China is more than  
7 2 times smaller in CESM1 than in GISS-E2. However, the change in TOA SW over the same  
8 region is about 4.7 times larger in CESM1, and so it seems that unlike the discrepancies between  
9 HadGEM3-GA4 and GISS-E2, differences in the AOD response cannot explain the difference  
10 in the magnitudes of radiative flux change between CESM1 and GISS-E2 (see Sect. 4.2).

11

#### 12 **4.1.1 Validation of aerosol fields**

13 To get an indication of whether the model-simulated AODs are realistic in the region of interest,  
14 we compare the mean AOD from each model's control run with station observations in Asia  
15 from the AERONET radiometer network (Holben et al., 2001). Because of the limited number  
16 of stations in the region with long data records, we use the observed AOD at 500 nm from all  
17 AERONET stations able to provide an annual mean estimate for at least one year, averaged  
18 over all years for which an annual mean was available, (generally ranging between 1998 and  
19 2014 in different stations), and compare this with the annual mean AODs at 550 nm from the  
20 three models, masked to the locations of the AERONET stations (Supplementary fig. S2).  
21 Focusing on stations in E. China (eight in total), we find that HadGEM3-GA4 compares best  
22 with AERONET in this region with a mean station bias of -22%, whilst both GISS-E2 and  
23 CESM1 appear to be biased lower in this part of the world, with mean biases of -56% and -60%  
24 respectively.

25 We also calculate the area-weighted mean AOD as observed by the MODIS and MISR satellite  
26 instruments. The MODIS (Moderate Resolution Imaging Spectroradiometer) instrument is  
27 flown on both the Terra and Aqua satellites, whilst MISR (Multi-angle Imaging  
28 SpectroRadiometer) is flown on Terra. For MODIS we use the collection 6 combined Deep  
29 Blue + Dark Target monthly AOD product at 550 nm (Levy et al., 2013) (available from  
30 <https://ladsweb.nascom.nasa.gov/>), averaged from both Terra and Aqua satellites, and take a  
31 10-year average from 2003-2012 (2003 being the earliest year that data from both satellites is

1 available). For MISR we use the best estimate monthly AOD product (Kahn et al., 2010)  
2 version 31 (available from <https://eosweb.larc.nasa.gov/>) at 550 nm over a 15-year averaging  
3 period, from 2000-2014 (2000 being the earliest year MISR data is available). For MODIS the  
4 area-weighted E. China mean AOD is 0.51, whilst for MISR it is 0.31, so regionally there is a  
5 considerable uncertainty in these observations. HadGEM3-GA4 overestimates the AOD  
6 compared with both instruments (though only slightly so when compared to MODIS), with a  
7 regional average AOD of 0.58, whilst GISS-E2 and CESM1 underestimate it with regionally-  
8 averaged AODs of 0.23 for both models. Globally the two instruments are in better agreement,  
9 with MODIS giving a global average AOD of 0.17 and MISR giving 0.15. Again HadGEM3-  
10 GA4 overestimates global AOD compared with both instruments (0.22) whilst GISS-E2 and  
11 CESM1 both underestimate it (0.13 and 0.12). Given that CESM1 diagnosed all-sky AOD,  
12 whereas satellite retrievals are only possible for clear-sky conditions, the underestimate for this  
13 model is likely greater than these numbers suggest.

14 There is considerable variation in the observations as well as the models. Globally-averaged,  
15 GISS-E2 seems to compare best against MODIS and MISR, though tentatively HadGEM3-  
16 GA4 seems to have the more accurate AOD over China, comparing best regionally with both  
17 AERONET and MODIS, though poorer against MISR. This suggests that the more concentrated  
18 sulfate aerosol burden and larger AOD reduction simulated by HadGEM3-GA4 over this region  
19 may be more realistic. We note though that since these observations only measure total AOD  
20 and cannot differentiate by species, the comparison cannot show for certain that the higher  
21 sulfate optical depth specifically is more realistic in HadGEM3-GA4. The AOD reduction over  
22 E. China due to removing Chinese SO<sub>2</sub> represents 50% of the climatological total AOD in  
23 HadGEM3-GA4 over the region, compared with 34% in CESM1 and only 20% in GISS-E2.  
24 Even if the total AOD in HadGEM3-GA4 is more realistic, there is still considerable variation  
25 between the models as to what fraction of that total AOD is due to Chinese SO<sub>2</sub> emissions. This  
26 is illustrated further for the two extreme cases, HadGEM3-GA4 and GISS-E2, in  
27 Supplementary Fig. S3, which shows that the fraction of climatological AOD made up by  
28 sulfate is consistently higher across the east Asian region in HadGEM3-GA4 than in GISS-E2.  
29 However, the total non-sulfate AOD is fairly similar across the region in these two models  
30 (Supplementary Fig. S4), indicating that the stark difference in the fractional contribution of  
31 sulfate comes primarily from HadGEM3-GA4 simulating much greater sulfate AOD alone.  
32 Given that regionally GISS-E2 appeared to underestimate total AOD, this would then suggest

1 that either the higher sulfate AOD in HadGEM3-GA4 is more realistic, or else both models  
2 underestimate the non-sulfate AOD.

3 To try and better constrain whether the sulfate content (rather than total aerosol) is correct, we  
4 therefore also compared against the surface sulfate observations conducted in China reported  
5 by Zhang et al. (2012) for 2006-2007 (Supplementary fig. S5). However, all three models  
6 performed extremely poorly, with HadGEM3-GA4 having a mean bias of -71% (-66% if urban  
7 stations are excluded), CESM1 a mean bias of -71% (unchanged if urban stations are excluded),  
8 and GISS-E2 a mean bias of -87% (-86% when urban stations are excluded). Although  
9 HadGEM3-GA4 and CESM1 are slightly closer to the observed values, the large  
10 underestimation despite the relatively good column AOD in HadGEM3-GA4 suggests that at  
11 least this model has difficulty representing the vertical profile of sulfate aerosol, and so this  
12 comparison with surface measurements may not be particularly useful in constraining the  
13 sulfate optical depth or column-integrated burdens. Large underestimations of surface sulfate  
14 concentration over East Asia have been reported previously for two other models, MIROC and  
15 NICAM, by Goto et al. (2015), suggesting that this is a problem common to many current  
16 generation models.

17 It seems plausible that any differences in the processing of sulfate aerosol would apply to all  
18 polluted regions, and not just over China. Indeed, the spatial pattern of the climatological  
19 sulfate burden over other major emission regions such as the United States shows a similar  
20 characteristic to that over China, with HadGEM3-GA4 and CESM1 having higher burdens  
21 close to the emission source regions, whilst GISS-E2 has a more diffuse sulfate distribution  
22 (Supplementary fig. S6). With this in mind we also validated the models against surface sulfate  
23 observations from the Interagency Monitoring of Protected Visual Environments (IMPROVE)  
24 network in the United States (Malm et al., 1994), a dataset with a far more extensive record  
25 than the Zhang et al. (2012) dataset for China. Taking 61 IMPROVE stations which have data  
26 for at least six years between 1995 and 2005, we find that over the United States all three models  
27 are in fact biased high, with GISS-E2 performing relatively better with a mean bias of +10.1%,  
28 but HadGEM3-GA4 somewhat worse with +44.5%, and CESM1 worse still with +86%.  
29 However, in the case of HadGEM3-GA4 we find that the larger mean bias comes mainly from  
30 an incorrect spatial distribution (Supplementary fig. S7), with a high bias on the West Coast but  
31 a pronounced low bias in surface  $\text{SO}_4$  on the East Coast. Consequently, this comparison would  
32 suggest that HadGEM3-GA4 in fact has too little sulfate around the principal US emission

1 regions on the East Coast, even though over that area HadGEM3-GA4 actually has a larger  
2 column-integrated sulfate burden (Supplementary fig. S6) and a larger AOD (not shown) than  
3 GISS-E2, as was the case for China. This suggests that HadGEM3-GA4 again fails to capture  
4 the vertical profile of sulfate, underestimating surface concentrations over this region despite  
5 having a high column-integrated burden.

6 Validation with surface observations therefore seems insufficient to constrain which model  
7 performs better with regard to the more climate-relevant column-integrated quantities of sulfate  
8 burden and AOD. Returning to Asia, we therefore also tried evaluating the models against  
9 column sulphur dioxide observations. We use the gridded, monthly mean Level 3 observations  
10 from the Ozone Monitoring Instrument (OMI) (Krotkov et al, 2008) (available from  
11 <http://disc.sci.gsfc.nasa.gov/Aura>) which is flown on the Aura satellite, averaged over eight  
12 years from 2005 - 2012. Over the E. China region the mean OMI SO<sub>2</sub> is 0.153 Dobson Units  
13 (DU), and all three models appear to overestimate this substantially, with very similar regional  
14 mean SO<sub>2</sub> columns of 0.282 DU for HadGEM3-GA4, 0.272 DU for GISS-E2, and 0.259 DU  
15 for CESM1. Spatially, all three models have more diffuse SO<sub>2</sub> fields than the OMI  
16 observations, in which by contrast the SO<sub>2</sub> burden seems much more localised around sources  
17 (Supplementary Fig. S8). This may be partly due to the coarse resolution of the models  
18 compared with the 0.25° satellite product, but also suggests that the lifetimes for SO<sub>2</sub> may be  
19 too long in all three models, or transport processes too efficient. The surprisingly similar  
20 column SO<sub>2</sub> burdens in all three models suggests that, at least on regional scales, column SO<sub>2</sub>  
21 may not constrain SO<sub>4</sub> burden that well.

22 An alternative observational measure which to an extent reflects a column-integrated quantity  
23 is the deposition rate, and for the two extreme cases of HadGEM3-GA4 and GISS-E2 we  
24 therefore also try comparing against observations of sulfate wet deposition. We use the 3-year  
25 mean wet deposition data from 2000-2002 described in Vet et al. (2014) and provided by the  
26 World Data Centre for Precipitation Chemistry (<http://wdcpc.org>, 2014), taking the 6 stations  
27 located in China. We exclude the station in Guizhou province in southern China where  
28 HadGEM3-GA4 has a bias of +590% and GISS-E2 a bias of +253%. This station only provided  
29 data for one year and was flagged as having a high uncertainty in the Vet et al. (2014) dataset;  
30 it is also located in a mountainous region and so it could equally be that the models cannot  
31 resolve the specific local conditions. Removing this station from the analysis we find for the  
32 remaining 5 stations in China that HadGEM3-GA4 performs well with a mean bias of -3.9%,

1 compared with -64.8% for GISS-E2. This gives an indication that HadGEM3-GA4 has more  
2 realistic sulfate deposition directly over China (though the sample size is very small), and  
3 supports the earlier findings from the comparison against AERONET and MODIS. If we  
4 broaden the analysis to include all stations described as being broadly in Asia – an additional  
5 32 stations – then the mean bias for HadGEM3-GA4 is worsened (-41.8%), whilst the bias in  
6 GISS-E2 is slightly improved (-54.1%). HadGEM3-GA4 still performs better over the Asian  
7 region as a whole, though less dramatically so (Supplementary fig. S9). This overall picture  
8 seems consistent with that of the other observational measures looked at here, although it should  
9 be noted that wet deposition rates are dependent not just on the column sulfate burden but also  
10 on the amount and distribution of precipitation, and so biases in wet deposition could also be  
11 due to incorrect precipitation distribution rather than sulfate.

12 Still, overall HadGEM3-GA4 seems to compare slightly better than GISS-E2 and CESM1  
13 regionally over E. Asia against observations of total AOD, and better than GISS-E2 regionally  
14 against surface sulfate as well as wet deposition observations, although globally and over other  
15 regions this model is not necessarily found to compare better in general. This might hint that  
16 at least over China, HadGEM3-GA4 has more realistic sulfate optical depth, although none of  
17 these comparisons is very conclusive in that respect. Moreover, given that none of these  
18 observational measures directly constrains the sulfate radiative forcing, there is also no  
19 guarantee that performance with respect to these variables will necessarily translate to a more  
20 realistic climate response (see also Section 4.3).

21

## 22 **4.2 Differences in cloud effects**

23 Sulfate aerosol exerts indirect radiative effects by modifying cloud properties. The strength of  
24 these indirect effects is highly uncertain (e.g. Boucher et al., 2013) and differs substantially  
25 between the models, having been shown to contribute substantially to inter-model variation in  
26 historical aerosol forcing (Wilcox et al., 2015). Differences in the underlying climatologies of  
27 the models, particularly with regard to cloud distributions, could also be important. For  
28 instance, the radiative effect of sulfate aerosol is modulated by the reflectivity of the underlying  
29 surface in the radiation scheme (Chýlek and Coakley, 1974; Chand et al., 2009), which may  
30 often be a cloud-top. The low contrast with a highly reflective cloud surface means that sulfate  
31 aerosol above a cloud top will have a reduced direct radiative forcing. Blocking of radiation

1 by clouds will also reduce the direct radiative effects of any aerosols within or below them (e.g.  
2 Keil and Haywood, 2003). Additionally, aerosol indirect effects can saturate in regions with a  
3 high level of background aerosol (e.g. Verheggen et al., 2007; Carslaw et al., 2013), meaning  
4 that the potential for indirect radiative forcing can also vary with the location of clouds. On top  
5 of diversity in indirect effects, and in the climatological distribution of clouds, different  
6 dynamical changes in cloud cover could also alter the all-sky flux.

7 In our case, the good correspondence between higher (clear-sky) AOD change in HadGEM3-  
8 GA4 and higher (all-sky) SW flux change in this model might suggest that the cloud effects are  
9 not the root cause of the larger radiative response in this model. However, the origin of this  
10 good correspondence in fact appears to be somewhat dependent on how clouds modify the  
11 radiative effects of sulfate aerosol:

12 For the extreme cases of HadGEM3-GA4 and GISS-E2, comparing the changes in clear-sky  
13 TOA SW flux with the all-sky TOA SW flux anomalies (Table 2 and Supplementary Fig. S10)  
14 reveals that for clear-sky conditions, there is in fact a much smaller regional discrepancy  
15 between these two models: Over the E. Asia region GISS-E2 has a  $4.1 \text{ Wm}^{-2}$  clear-sky SW flux  
16 change, whereas HadGEM3-GA4 has a  $5.1 \text{ Wm}^{-2}$  flux change. HadGEM3-GA4 still has the  
17 larger radiative change, but nowhere near the 6-fold difference that is seen in the all-sky flux  
18 (Section 3, and Table 2). This much reduced difference between GISS-E2 and HadGEM3-GA4  
19 in the clear-sky compared with the all-sky anomaly is hard to apportion quantitatively though,  
20 because compared with the clear-sky change, the all-sky response incorporates all the  
21 contributing factors described above: the additional radiative forcing due to aerosol indirect  
22 effects, the screening of direct radiative effects due to clouds blocking radiation and providing  
23 a high albedo background, and also any dynamical changes in cloud cover.

24 In this case, GISS-E2 is found to simulate a small increase in cloudiness in east China due to  
25 dynamical changes when sulfate is removed (Supplementary Fig. S11a). Combined with the  
26 screening effect of clouds, this appears to almost completely offset the direct forcing of reduced  
27  $\text{SO}_4$ , and results in a far smaller all-sky flux change than clear-sky flux change over E. China  
28 ( $0.9 \text{ Wm}^{-2}$  all-sky compared with  $4.1 \text{ Wm}^{-2}$  clear-sky). HadGEM3-GA4 by contrast has very  
29 little difference between all-sky and clear-sky flux changes ( $5.3 \text{ Wm}^{-2}$  and  $5.1 \text{ Wm}^{-2}$   
30 respectively (Table 2)). The changes in cloud amount over east China are somewhat more  
31 mixed (Supplementary Fig. S11c), although area-averaged, the overall cloud change is a small  
32 decrease, which should enhance the all-sky flux change. However, spatially as well as in

1 magnitude the HadGEM3-GA4 all-sky flux change is exceptionally similar to the clear-sky flux  
2 change, and does not resemble the pattern of cloud changes (comparing Supplementary Figs.  
3 S10e,f, and Fig. S11c), which suggests that changes in aerosol radiative effects are larger than  
4 the effect of the small cloud cover changes, and still dominate the all-sky flux changes.  
5 Therefore, the very similar regional all-sky and clear-sky SW flux changes in HadGEM3-GA4  
6 imply that unlike in GISS-E2, aerosol indirect effects in HadGEM3-GA4 probably roughly  
7 compensated for the presence of clouds reducing the direct effect, so that the change in all-sky  
8 combined direct and indirect forcing is similar to the change in clear-sky direct forcing when  
9 sulfate is removed.

10 The picture is different again for CESM1. Comparing the clear-sky and all-sky TOA SW flux  
11 changes for this model (Supplementary Figs. S10c,d), we find that regionally, the clear-sky  
12 changes are much smaller than the all-sky flux changes – in fact, over China the clear-sky SW  
13 flux changes in CESM1 are considerably smaller in magnitude than the clear-sky flux changes  
14 in GISS-E2 (comparing Supplementary Figs. S10a,c). Averaged over the E. China region, the  
15 clear-sky flux change in CESM1 is only  $2.2 \text{ Wm}^{-2}$ , compared with the  $4.1 \text{ Wm}^{-2}$  clear-sky  
16 change in GISS-E2 (Table 2). However, whereas in GISS-E2 the all-sky SW flux change ( $0.9$   
17  $\text{Wm}^{-2}$ ) was then more than four times smaller than this clear-sky flux change, in CESM1 the  
18 all-sky SW flux change is instead almost two times larger than the clear-sky flux change:  $4.2$   
19  $\text{Wm}^{-2}$  regionally averaged.

20 This is partly again due to cloud changes – in this case CESM1 has predominantly reductions  
21 in cloud amount over E. China (Supplementary Fig. S11b), which will have the effect of  
22 increasing the all-sky radiative flux change relative to the clear-sky changes. However, as with  
23 HadGEM3-GA4, these regional cloud reductions in CESM1 do not match up spatially with the  
24 maximum changes in all-sky SW flux seen in Fig. 1b and Supplementary Fig. S10d. Instead,  
25 the maximum changes in the all-sky SW flux change match closely the clear-sky SW flux  
26 changes (Supplementary Fig. S10c), which in turn correspond very well with the reduction in  
27 AOD (Fig. 4b). Both all-sky and clear-sky SW flux changes are maximum around where the  
28 AOD reduction is maximum, and in this location the all-sky flux change is still substantially  
29 greater than the clear-sky change. This implies that in CESM1 a large aerosol indirect effect,  
30 and/or effect of clouds increasing aerosol particle size through hygroscopic growth, overall  
31 amplifies the radiative effect of aerosols considerably in cloudy conditions, resulting in the  
32 much greater regional change in all-sky flux when aerosol is removed.

1 Between these three models, then, the way that clouds modify the radiative balance is a major  
2 source of diversity over the E. China region in the response to removing SO<sub>2</sub> emissions from  
3 China. In GISS-E2, the inclusion of clouds greatly reduces the radiative effect of a change in  
4 sulfate aerosol. In HadGEM3-GA4, the effect of including clouds is small, and does not change  
5 the clear-sky forcing substantially. Finally, in CESM1, including clouds considerably amplifies  
6 an otherwise weak clear-sky radiative flux change. We note though that clear-sky diagnostics  
7 will be influenced by choices within the models of how aerosol water uptake is determined  
8 under the artificial assumption of clear-sky conditions. The all-sky SW flux change, which  
9 drives the final climate response, is regionally still the most directly comparable quantity,  
10 reflecting the total radiative effect of the aerosol change in the different models.

11

### 12 **4.3 Differences in aerosol forcing efficiency**

13 An additional source of discrepancy between the models lies in differences in the aerosol  
14 radiative forcing efficiency – the direct forcing that results from a given aerosol optical depth  
15 or burden (e.g. Samset et al, 2013). A previous model intercomparison looking at radiative  
16 forcing as part of the AeroCom Phase II study found that, on a global scale, there was a large  
17 variation in the radiative forcing due to aerosol-radiation interactions per unit AOD between  
18 different participating models (Myhre et al., 2013a). As a result, whether a model simulates  
19 AOD changes correctly, for instance, may not particularly constrain the resultant direct forcing  
20 even, let alone the indirect forcing or eventual climate response.

21 Globally-averaged, the changes in radiative flux and AOD are too small in our experiments to  
22 calculate an accurate ratio, but instead we calculate here a regional radiative efficiency by  
23 taking the change in clear-sky SW flux over the 100-120E, 20-40N E. China region, and  
24 dividing by the AOD change over the same region (Table 2). This is not directly comparable  
25 with previous studies like Myhre et al. (2013a), as we use a regionally-averaged number instead  
26 of globally-averaged, and for the numerator we use the change in clear-sky TOA SW flux as  
27 the best available measure of aerosol direct radiative effect, rather than the direct radiative  
28 forcing diagnosed either from double radiation calls or simulations with fixed meteorology.  
29 Consequently, we use this metric here mainly to qualitatively highlight differences between the  
30 models.

1 As noted in Sect. 4.1 and 4.2, over the eastern China region HadGEM3-GA4 has a 6-fold larger  
2 mean AOD reduction (-0.29) compared with GISS-E2 (-0.047), but only slightly larger clear-  
3 sky SW change ( $5.1 \text{ W m}^{-2}$  compared with  $4.1 \text{ W m}^{-2}$ ). As a result, the regional radiative  
4 efficiency for HadGEM3-GA4 is much smaller than that of GISS-E2:  $-17.6 \text{ W m}^{-2}$  compared  
5 with  $-87.2 \text{ W m}^{-2}$  per unit AOD change (Table 2). If instead of AOD we normalise by the  
6 change in sulfate burden integrated over the same region, we find a similar relationship:  
7 HadGEM3-GA4 has a smaller regional mean change in clear-sky SW flux per Tg sulfate than  
8 GISS-E2:  $-145 \text{ W m}^{-2} \text{ Tg}^{-1}$  compared with  $-256 \text{ W m}^{-2} \text{ Tg}^{-1}$ . Proportionally though, the  
9 discrepancy is not as great when normalising by change in sulfate burden, due to the much  
10 larger AOD per unit mass of sulfate simulated in HadGEM3-GA4. Curiously Myhre et al.  
11 (2013a) reported results that were qualitatively the inverse of what we show here, finding that  
12 the atmospheric component of GISS ModelE has a smaller sulfate radiative forcing than that of  
13 HadGEM2 (HadGEM3's predecessor, with a very similar aerosol scheme) when normalised by  
14 AOD, although still larger when normalised by column-integrated sulfate burden. The reason  
15 for the discrepancy is not clear, though the aforementioned fact that we calculate our numbers  
16 for a specific region means that there may be important local factors. The sulfate-specific  
17 forcing efficiencies in Myhre et al. (2013) are calculated relative to all-sky direct radiative  
18 effect, and so local differences in vertical profiles and cloud screening may therefore change  
19 the relationship – however they also evaluated clear-sky forcing normalised by AOD for all  
20 aerosol species combined, and again found HadGEM2 to be higher than GISS ModelE.

21 CESM1 seems to sit in the middle of the range, with a regional radiative efficiency of  $-28.4 \text{ W}$   
22  $\text{m}^{-2}$  per unit AOD change (Table 2) – though again with the caveat that for CESM1, the AOD  
23 is an all-sky quantity, whereas the values given for HadGEM3-GA4 and GISS-E2 ( $-17.6 \text{ W m}^{-2}$   
24 and  $-87.2 \text{ W m}^{-2}$  respectively) were calculated using clear-sky AOD. GISS-E2 provided both  
25 clear-sky and all-sky AOD diagnostics, and using instead the all-sky AOD change from GISS-  
26 E2 gives a smaller value of  $-22.4 \text{ W m}^{-2}$  per unit AOD, which suggests that when compared  
27 like-for-like, CESM1 (with  $-28.4 \text{ W m}^{-2}$ ) may in fact have the greater regional radiative  
28 efficiency. More directly comparable between all three models is the regional clear-sky flux  
29 change normalised by regional change in sulfate burden, which for CESM1 is  $-55.4 \text{ W m}^{-2} \text{ Tg}^{-1}$ . This is considerably lower than either HadGEM3-GA4 or GISS-E2, and indicates that despite  
30 having at least average radiative efficiency per unit AOD, the very small translation of sulfate  
31 burden to AOD in CESM1 is a dominant factor which prevents this model from simulating a  
32 larger SW flux change and climate response than it already does. As noted in the previous

1 Section though, this small clear-sky flux change per unit sulfate change is compensated by a  
2 large indirect effect as well as favourable regional cloud changes, meaning that the all-sky flux  
3 change per unit AOD is by far the largest in CESM1 (Table 2), and the all-sky flux change per  
4 sulfate burden change is then average in CESM1 (not shown, but readily calculated from Table  
5 2). Similarly, the exceptional reduction in aerosol radiative effects due to clouds in GISS-E2  
6 means that its all-sky flux change per unit AOD is almost exactly the same as that of HadGEM3-  
7 GA4 (Table 2), despite the clear-sky regional radiative efficiency being so much larger.

8 The Myhre et al. (2013a) AeroCom intercomparison found that globally, the atmospheric  
9 component of CESM1 (CAM5.1) had a much higher sulfate radiative efficiency than the  
10 atmosphere-only version of GISS-E2. In their case, they found CAM5.1 to have approximately  
11 2.25 times higher all-sky direct radiative forcing per unit AOD than GISS-E2. However, the  
12 study also found that, globally, the atmospheric component of HadGEM2 had a slightly larger  
13 forcing efficiency than CAM5.1 both for sulfate (all-sky) and all aerosols (clear-sky), unlike  
14 the somewhat smaller regional efficiencies found here for HadGEM3-GA4 compared with  
15 CESM1. Given that our regional values from GISS-E2 and HadGEM3-GA4 also seem to  
16 conflict qualitatively with the global values from the AeroCom study, this would suggest that  
17 either the global comparison is not relevant on regional scales, or else the radiative efficiency  
18 is very sensitive to changes in model configuration and version..

19

## 20 **4.4 Differences in climate sensitivity**

21 So far we have discussed mainly factors which influence the translation of a change in aerosol  
22 precursor emissions to a radiative heating, and these varied strongly between the models. There  
23 is a final step in arriving at the climate response, which is the translation of a given radiative  
24 heating into a surface temperature change. The climate sensitivity – the amount of warming  
25 simulated per unit radiative forcing – is also well known to vary considerably between models,  
26 globally (Flato et al., 2013) and regionally (Voulgarakis and Shindell, 2010), and this will  
27 additionally impact the strength of the final response. Climate sensitivity is typically estimated  
28 from a 2x or 4x global CO<sub>2</sub> simulation, giving a large response and a large forcing from which  
29 to calculate the ratio. For GISS-E2, a climate sensitivity value of 0.6 K (W m<sup>-2</sup>)<sup>-1</sup> was found in  
30 the IPCC AR5 report from a 4x CO<sub>2</sub> simulation (Flato et al., 2013) using the regression method  
31 of Gregory et al. (2004) to estimate radiative forcing. For CESM1, a value of 1.1 K (W m<sup>-2</sup>)<sup>-1</sup>

1 is obtained from values from a 2x CO<sub>2</sub> simulation (Meehl et al., 2013), noting that in this case  
2 the radiative forcing was calculated using the stratospheric adjustment method (Hansen et al.,  
3 2005). For HadGEM3-GA4, we use a 100-year 2x CO<sub>2</sub> simulation that was performed  
4 separately as part of the Precipitation Driver Response Model Intercomparison Project (Samset  
5 et al., 2016), which gives a value of 1.1 K (W m<sup>-2</sup>)<sup>-1</sup> based on the Gregory method.

6 While CESM1 and HadGEM3-GA4 both have very similar climate sensitivities, we see that  
7 GISS-E2 has a particularly small sensitivity – in fact, the smallest value of all the CMIP5  
8 models reported in the AR5 report (Flato et al., 2013). This presumably compounds the fact  
9 that GISS-E2 simulates the smallest SW flux change of the three models, ensuring that the  
10 resulting surface temperature response is comparatively smaller still. Differences in climate  
11 sensitivity do not seem to explain any of the variation in the magnitude of the response between  
12 CESM1 and HadGEM3-GA4, at least based on these values. However, it is worth noting that  
13 the climate sensitivity values that we report are derived from global CO<sub>2</sub> forcings, whereas in  
14 our case we are looking at the translation of a very regional forcing into a global response. It  
15 is not trivial that the global-mean temperature response to a regionally localised forcing is a  
16 function only of the resulting globally-averaged forcing, and in particular it may be that  
17 different models are more or less sensitive to forcings in specific regions. Unfortunately we  
18 know of no study that has calculated climate sensitivity to regional forcings in single or multi-  
19 model frameworks. Shindell (2012) calculated climate sensitivities to forcings imposed in  
20 different latitudinal bands for the GISS-E2 model, finding that there is considerable variation  
21 relative to the global climate sensitivity. In that study, estimates of the response to forcings at  
22 different latitudes in three other global climate models, based on the GISS-E2 sensitivities, are  
23 found to largely agree to within +/- 20% with the full simulations however, suggesting that  
24 regional sensitivities (relative to a model's global sensitivity) may not vary that much between  
25 models.

26

## 27 **5 Conclusions**

28 By applying an identical regional perturbation to anthropogenic SO<sub>2</sub> emissions in three different  
29 climate models, we observe three markedly different resulting climate responses, ranging from  
30 virtually no coherent surface air temperature response in one model (GISS-E2), to pronounced  
31 surface warming all across most of the northern hemisphere in another (HadGEM3-GA4). The

1 third model (CESM1) sits in the middle in terms of both magnitude and spatial extent of the  
2 temperature response. This huge variation in climate response corresponds to a similarly large  
3 variation in the SW radiative flux change following the reduction in sulfate aerosol. All three  
4 models show a fairly localised increase in net downwards SW radiation over China as a result  
5 of reduced SO<sub>2</sub> emissions from this region, however the magnitude of this radiative heating is  
6 substantially greater in HadGEM3-GA4 than in CESM1, which is substantially greater still than  
7 in GISS-E2. The response in GISS-E2 is so weak that temperature changes are largely not  
8 detectable above the internal variability of the model. The stronger heating in CESM1 and  
9 HadGEM3-GA4 produces much more pronounced temperature changes, and even though the  
10 radiative heating is localised over China, the temperature responses in these two models are  
11 much more spread out, particularly in the zonal direction. This is consistent with the findings  
12 of Shindell et al. (2010), who found that the temperature response to inhomogeneous aerosol  
13 forcings is more uniform and extends much further from the forcing location in the zonal  
14 direction than in the meridional direction.

15 Comparing the models, we find different SO<sub>4</sub> mass changes due to removing SO<sub>2</sub> emissions  
16 from China, very different ratios of AOD change per mass of sulfate, and very different  
17 radiative flux changes per unit AOD change. These differences are compounded further by  
18 very large variations in cloud interactions, as well as variations in climate sensitivity, and  
19 feedbacks on other aerosol species such as nitrate, which diversify the response further.

20 Specifically, we find that CESM1 simulates the largest reduction in sulfate burden both globally  
21 and locally. HadGEM3-GA4 has the smallest reduction in sulfate burden globally and the  
22 second largest reduction regionally, yet it produces by far the largest reduction in AOD both  
23 globally and regionally over E. China. Though GISS-E2 and CESM1 both simulate much  
24 smaller changes in AOD than HadGEM3-GA4, still the SW flux changes and temperature  
25 responses produced are very different between these two models. An inferred larger aerosol-  
26 cloud interaction means that CESM1 simulates a particularly large change in all-sky SW flux  
27 relative to its fairly small AOD change, so although having a smaller response than HadGEM3-  
28 GA4, it is still much closer to it than GISS-E2. In GISS-E2 the clear-sky radiative forcing  
29 efficiency of sulfate is very large, but this is almost perfectly compensated for by large  
30 reductions in the direct radiative effect of sulfate when clouds are factored in. The absolute  
31 AOD change is also much smaller than HadGEM3-GA4 in this model. This then combines  
32 with compensating increases in nitrate aerosol globally to reduce the radiative response yet

1 further, and finally a smaller global climate sensitivity than the other two models results in this  
2 being translated into a largely negligible temperature response.

3 In addition to differences in the total changes in sulfate and AOD, we find there are also  
4 substantial differences in the spatial distribution of the changes, attributed to differences in the  
5 rate of chemical conversion of  $\text{SO}_2$  to  $\text{SO}_4$  which influences how concentrated the aerosol  
6 changes are around the emission region. This implies that even if both the AOD per sulfate  
7 burden and the forcing per unit AOD were identical among the three models, they would still  
8 have different distributions of radiative forcing.

9 There are no direct observations of sulfate radiative forcing, nor of sulfate optical depth or  
10 vertically-integrated burden, and so we have tried validating the aerosol component of the  
11 models with a range of surface and satellite-based measurements of total aerosol optical depth,  
12 surface sulfate concentration, column  $\text{SO}_2$ , and sulfate wet deposition. All the models have  
13 biases, and no model performs best against all the observational datasets used. Tentatively  
14 HadGEM3-GA4 seems to perform best over China against observations of both total AOD and  
15 sulfate wet deposition, though over some other parts of the world this model performed slightly  
16 poorer, e.g. for global AOD and US surface sulfate concentrations. However, the main  
17 conclusion is that comparison against all existing observational measures is unable to  
18 satisfactorily constrain which model response is more realistic, given that the ratios of both  
19 AOD change per sulfate burden change and SW flux change per AOD (Table 2) are found to  
20 vary so substantially between the models. The model with the largest sulfate mass change  
21 (CESM1) did not have the largest radiative or climate response, and two models with a similar  
22 AOD change (CESM1 and GISS-E2) had markedly different radiative and climate responses.  
23 Given the range of discrepancies that we find in all steps along the conversion of  $\text{SO}_2$  change  
24 to  $\text{SO}_4$  change to AOD change to radiative forcing to temperature response, it seems that  
25 knowing how accurate a model is with respect to either sulfate concentrations or total AOD is  
26 far from sufficient to determine whether the climate response to a regional aerosol perturbation  
27 is similarly accurate.

28 There are several possible avenues for future work to isolate the particular processes that lead  
29 to this model diversity in more detail; for instance studies imposing the aerosol field from one  
30 model into others would remove the diversity introduced by translating emissions into aerosol  
31 concentrations, while imposing surface temperatures and meteorology from one model into  
32 others could remove the diversity introduced by different background climatologies and climate

1 sensitivities, although this may be difficult practically in complex climate models. A thorough  
2 assay of the range of parameter choices and formulae used in the aerosol schemes of various  
3 models could also help reveal where assumed aerosol properties diverge. However, without  
4 stronger observational constraints on aerosol radiative forcing, it is not clear that this alone  
5 could help make models more realistic. In particular, it seems that being able to better constrain  
6 not only the column-integrated sulfate burden, but also the AOD per sulfate burden, and the  
7 radiative forcing per AOD, would all also be needed. This represents a considerable  
8 observational challenge, and until it is possible, the considerable current diversity may be  
9 irreducible.

10 We have only looked here at surface temperature, which is a particularly direct measure of the  
11 climate response. The response of other, less well-constrained, climate variables such as  
12 precipitation might be expected to show even greater variation. Our results show that there  
13 remains a very large uncertainty in current climate models in the translation of aerosol precursor  
14 emissions into a climate response, and imply that care must be taken not to over-interpret studies  
15 of aerosol-climate interaction if the robustness of results across diverse models cannot be  
16 demonstrated.

17 On a more optimistic note, we remark that in the two models which showed the more substantial  
18 change in SW radiative flux (CESM1 and HadGEM3-GA4), both also show a remarkably  
19 strong remote temperature response to a relatively localised northern-midlatitude heat source,  
20 with qualitatively similar temperature change patterns that extend across much of the  
21 hemisphere, indicating that there may be some agreement on the response to a given regional  
22 forcing, if not on the forcing itself.

23

## 24 **Data availability**

25 Model output data from all simulations described here is available upon request from the  
26 corresponding author.

27

## 28 **Acknowledgements**

29 MK and AV are supported by the Natural Environment Research Council under grant number  
30 NE/K500872/1. Also, we wish to thank the European Commission's Marie Curie Actions

1 International Research Staff Exchange Scheme (IRSES) for funding MK's placement at NASA  
2 GISS and Columbia University and facilitating interactions on this work with the US  
3 colleagues, as part of the Regional Climate-Air Quality Interactions (REQUA) project.  
4 Simulations with GISS-E2 used resources provided by the NASA High-End Computing (HEC)  
5 Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight  
6 Center. Simulations with HadGEM3-GA4 were performed using the MONSooN system, a  
7 collaborative facility supplied under the Joint Weather and Climate Research Programme,  
8 which is a strategic partnership between the Met Office and the Natural Environment Research  
9 Council. We specifically thank Dr. Fiona O'Connor, Dr. Jeremy Walton, and Mr. Mohit Dalvi  
10 from the Met Office for their support with using the HadGEM3-GA4 model.

1 **References**

2 Andreae, M. O. and Crutzen, P. J.: Atmospheric Aerosols: Biogeochemical Sources and Role  
3 in Atmospheric Chemistry, *Science*, 276, 1052-1058, 1997.

4 Andres, R. J. and Kasgnoc, A. D.: A time-averaged inventory of subaerial volcanic sulfur  
5 emissions, *J. Geophys. Res.*, 103, D19, 25251-25261, 1998.

6 Andrews, T., Forster, P. M., Boucher, O., Bellouin, N., and Jones, A.: Precipitation, radiative  
7 forcing and global temperature change, *Geophys. Res. Lett.*, 37, L14701,  
8 doi:10.1029/2010GL043991, 2010.

9 Bauer, S. E., Bausch, A., Nazarenko, L., Tsigaridis, K., Xu, B., Edwards, R., Bisiaux, M., and  
10 McConnell, J.: Historical and future black carbon deposition on the three ice caps: Ice core  
11 measurements and model simulations from 1850 to 2100, *J. Geophys. Res. Atmos.*, 118, 7948–  
12 7961, doi:10.1002/jgrd.50612, 2013.

13 Bellouin, N., Boucher, O., Haywood, J., Johnson, C., Jones, A., Rae, J., and Woodward, S.:  
14 Improved representation of aerosols for HadGEM2, Technical Note 73, Hadley Centre, Met  
15 Office, Exeter, UK, 2007.

16 Bellouin, N., Rae, J., Jones, A., Johnson, C., Haywood, J., and Boucher, O.: Aerosol forcing in  
17 the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the  
18 role of ammonium nitrate, *J. Geophys. Res.*, 116, D20206, doi:10.1029/2011JD016074, 2011.

19 Bollasina, A. M., Ming, Y., and Ramaswamy, V.: Anthropogenic Aerosols and the Weakening  
20 of the South Asian Summer Monsoon, *Science*, 334, 502-505, 2011.

21 Booth, B., Dunstone, N. J., Halloran, P. R., Andrews, T., and Bellouin, N.: Aerosols implicated  
22 as a prime driver of twentieth-century North Atlantic climate variability, *Nature*, 484, 228-232,  
23 doi:10.1038/nature10946, 2012.

24 Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-  
25 M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B.,  
26 and Zhang, X. Y.: Clouds and Aerosols. In: *Climate Change 2013: The Physical Science Basis.*  
27 Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental  
28 Panel on Climate Change [Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,

1 Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (eds.)], Cambridge University  
2 Press, Cambridge, United Kingdom and New York, NY, USA, 2013.

3 Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A., Forster, P. M., Mann, G.  
4 W., Spracklen, D. V., Woodhouse, M. T., Regayre, L. A., and Pierce, J. R.: Large contribution  
5 of natural aerosols to uncertainty in indirect forcing, *Nature*, 503, 67-71, 10.1038/nature12674,  
6 2013.

7 Chand, D., Wood, R., Anderson, T. L., Satheesh, S. K., and Charlson, R. J.: Satellite derived  
8 direct radiative effect of aerosols dependent on cloud cover, *Nature Geosci.*, 2, 181–184, 2009.

9 Chýlek, P. and Coakley, J. A. Jr.: Aerosol and climate, *Science*, 183, 75-77, 1974.

10 Cionni, I., Eyring, V., Lamarque, J. F., Randel, W. J., Stevenson, D. S., Wu, F., Bodeker, G.  
11 E., Shepherd, T. G., Shindell, D. T., and Waugh, D. W.: Ozone database in support of CMIP5  
12 simulations: results and corresponding radiative forcing, *Atmos. Chem. Phys.*, 11, 11267-  
13 11292, doi:10.5194/acp-11-11267-2011, 2011.

14 Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira,  
15 K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of  
16 the AER codes, *J. Quant. Spectrosc. Radiat. Transfer*, 91, 233–244, 2005.

17 Derwent, R. G., Collins, W. J., Jenkin, M. E., Johnson, C. E., and Stevenson, D. S.: The global  
18 distribution of secondary particulate matter in a 3D Lagrangian chemistry transport model, *J.*  
19 *Atmos. Chem.*, 44, 57–95, 2003.

20 Dong, B., Sutton, R. T., Highwood, E., and Wilcox, L.: The Impacts of European and Asian  
21 Anthropogenic Sulfur Dioxide Emissions on Sahel Rainfall, *J. Climate*, 27, 7000–7017,  
22 doi:10.1175/JCLI-D-13-00769.1, 2014.

23 Edwards, J. M. and Slingo, A.: Studies with a flexible new radiation code, I: Choosing a  
24 configuration for a large-scale model, *Q. J. Roy. Meteorol. Soc.*, 122, 689–719, 1996.

25 Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech,  
26 F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason,  
27 C., and Rummukainen, M.: Evaluation of Climate Models. In: *Climate Change 2013: The*  
28 *Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the*  
29 *Intergovernmental Panel on Climate Change* [Stocker, T. F., Qin, D., Plattner, G.-K., Tignor,

1 M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (eds.)],  
2 Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.

3 Goto, D., Nakajima, T., Dai, T., Takemura, T., Kajino, M., Matsui, H., Takami, A.,  
4 Hatakeyama, S., Sugimoto, N., Shimizu, A., and Ohara, T.: An evaluation of simulated  
5 particulate sulfate over East Asia through global model intercomparison, *J. Geophys. Res.*  
6 *Atmos.*, 120, doi:10.1002/2014JD021693, 2015.

7 Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A., Thorpe, R. B., Lowe, J.  
8 A., Johns, T. C., and Williams, K. D.: A new method for diagnosing radiative forcing and  
9 climate sensitivity, *Geophys. Res. Lett.*, 31, L03205, doi:10.1029/2003GL018747, 2004.

10 Hansen, J. E., Russell, G. L., Rind, D., Stone, P., Lacis, A., Ruedy, R., and Travis, L.: Efficient  
11 three-dimensional models for climatic studies. *Mon. Wea. Rev.*, 111, 609–662, 1983.

12 Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A., Russell, G., Aleinov,  
13 I., Bauer, M., Bauer, S., Bell, N., Cairns, B., Canuto, V., Chandler, M., Cheng, Y., Del Genio,  
14 A., Faluvegi, G., Fleming, E., Friend, A., Hall, T., Jackman, C., Kelley, M., Kiang, N., Koch,  
15 D., Lean, J., Lerner, J., Lo, K., Menon, S., Miller, R., Minnis, P., Novakov, T., Oinas, V.,  
16 Perlitz, J., Perlitz, J., Rind, D., Romanou, A., Shindell, D., Stone, P., Sun, S., Tausnev,  
17 N., Thresher, D., Wielicki, B., Wong, T., Yao, M., and Zhang, S.: Efficacy of climate forcings,  
18 *J. Geophys. Res.*, 110, D18104, doi:10.1029/2005JD005776, 2005.

19 Hemispheric Transport of Air Pollution (HTAP): Hemispheric Transport of Air Pollution 2010.  
20 Part A: Ozone and Particulate Matter, Air Pollution Studies No. 17, [Dentener, F., Keating, T.,  
21 and Akimoto, H. (eds.)], United Nations, New York, 2010.

22 Holben, B. N., Tanré, D., Smirnov, A., Eck, T. F., Slutsker, I., Abuhassan, N., Newcomb, W.  
23 W., Schafer, J. S., Chatenet, B., Lavenu, F., Kaufman, Y. J., Vande Castle, J., Setzer, A.,  
24 Markham, B., Clark, D., Frouin, R., Halthore, R., Karneli, A., O'Neill, N. T., Pietras, C., Pinker,  
25 R. T., Voss, K., and Zibordi, G.: An emerging ground-based aerosol climatology: Aerosol  
26 optical depth from AERONET, *J. Geophys. Res.*, 106(D11), 12067–12097,  
27 doi:10.1029/2001JD900014, 2001.

28 Hunke, E. C. and Lipscombe, W. H.: CICE: the Los Alamos sea ice model documentation and  
29 software user's manual, Version 4.0, LA-CC-06-012, Los Alamos National Laboratory, New  
30 Mexico, 2008.

1 Hwang, Y.-T., Frierson, D. M. W., and Kang, S. M.: Anthropogenic sulfate aerosol and the  
2 southward shift of tropical precipitation in the late 20th century, *Geophys. Res. Lett.*, 40,  
3 doi:10.1002/grl.50502, 2013.

4 Jones, A., Roberts, D. L., Woodage, M. J., and Johnson, C. E.: Indirect sulphate aerosol forcing  
5 in a climate model with an interactive sulphur cycle, *J. Geophys. Res.*, 106, 20293–20310, 2001.

6 Kahn, R. A., Gaitley, B. J., Garay, M. J., Diner, D. J., Eck, T. F., Smirnov, A., and Holben, B.  
7 N.: Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison  
8 with the Aerosol Robotic Network, *J. Geophys. Res.*, 115, D23209,  
9 doi:10.1029/2010JD014601, 2010.

10 Keil, A., and Haywood, J. M.: Solar radiative forcing by biomass burning aerosol particles  
11 during SAFARI 2000: A case study based on measured aerosol and cloud properties, *J.*  
12 *Geophys. Res.*, 108(D13), 8467, doi:10.1029/2002JD002315, 2003.

13 Kinne, S., Schulz, M., Textor, C., Guibert, S., Balkanski, Y., Bauer, S. E., Berntsen, T.,  
14 Berglen, T. F., Boucher, O., Chin, M., Collins, W., Dentener, F., Diehl, T., Easter, R.,  
15 Feichter, J., Fillmore, D., Ghan, S., Ginoux, P., Gong, S., Grini, A., Hendricks, J., Herzog, M.,  
16 Horowitz, L., Isaksen, I., Iversen, T., Kirkevåg, A., Kloster, S., Koch, D., Kristjansson, J. E.,  
17 Krol, M., Lauer, A., Lamarque, J. F., Lesins, G., Liu, X., Lohmann, U., Montanaro, V.,  
18 Myhre, G., Penner, J., Pitari, G., Reddy, S., Seland, O., Stier, P., Takemura, T., and Tie, X.: An  
19 AeroCom initial assessment – optical properties in aerosol component modules of global  
20 models, *Atmos. Chem. Phys.*, 6, 1815-1834, doi:10.5194/acp-6-1815-2006, 2006.

21 Koch, D., Schmidt, G. A., and Field, C. V.: Sulfur, sea salt and radionuclide aerosols in GISS  
22 ModelE, *J. Geophys. Res.*, 111, doi:10.1029/2004JD005550, 2006.

23 Koch, D., Bauer, S., Del Genio, A., Faluvegi, G., McConnell, J. R., Menon, S., Miller, R. L.,  
24 Rind, D., Ruedy, R., Schmidt, G. A., and Shindell, D.: Coupled aerosol-chemistry-climate  
25 twentieth century transient model investigation: Trends in short-lived species and climate  
26 responses, *J. Climate*, 24, 2693–2714, doi:10.1175/2011JCLI3582.1, 2011.

27 Krotkov, N. A., McClure, B., Dickerson, R. R., Carn, S. A., Li, C., Bhartia, P. K., Yang, K.,  
28 Krueger, A. J., Li, Z., Levelt, P. F., Chen, H., Wang, P., and Lu, D.: Validation of SO<sub>2</sub> retrievals  
29 from the Ozone Monitoring Instrument over NE China, *J. Geophys. Res.*, 113, D16S40,  
30 doi:10.1029/2007JD008818, 2008.

1 Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D.,  
2 Lioussse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E.,  
3 Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V.,  
4 Riahi, K., and van Vuuren, D. P.: Historical (1850–2000) gridded anthropogenic and biomass  
5 burning emissions of reactive gases and aerosols: methodology and application, *Atmos. Chem.*  
6 *Phys.*, 10, 7017–7039, doi:10.5194/acp-10-7017-2010, 2010.

7 Lawrence, D.M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S. C., Lawrence,  
8 P. J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K., Bonan, G. B., and Slater, A.  
9 G.: Parameterization improvements and functional and structural advances in version 4 of the  
10 Community Land Model, *J. Adv. Model. Earth Sys.*, 3, DOI: 10.1029/2011MS000045, 2011.

11 Lee, Y.-H., and Adams, P. J.: A fast and efficient version of the Two-Moment Aerosol  
12 Sectional (TOMAS) global aerosol microphysics model, *Aerosol. Sci. Technol.*, 46, 678–689,  
13 doi:10.1080/02786826.2011.643259, 2012.

14 Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and Hsu, N.  
15 C.: The Collection 6 MODIS aerosol products over land and ocean, *Atmos. Meas. Tech.*, 6,  
16 2989–3034, doi:10.5194/amt-6-2989-2013, 2013.

17 Liu, X., Easter, R. C., Ghan, S., Zaveri, R., Rasch, P., Shi, X., Lamarque, J.-F., Gettelman, A.,  
18 Morrison, H., Vitt, F., Conley, A., Park, S., Neale, R., Hannay, C., Ekman, A. M. L., Hess, P.,  
19 Mahowald, N., Collins, W., Iacono, M. J., Bretherton, C. S., Flanner, M. G., and Mitchell, D.,  
20 Toward a Minimal Representation of Aerosol Direct and Indirect Effects: Model Description  
21 and Evaluation, *GeoSci. Mod. Dev.*, 5, 709–739, doi:10.5194/gmd-5-709-2012, 2012.

22 Madec, G.: NEMO ocean engine, Institut Pierre-Simon Laplace (IPSL), France, No. 27, ISSN  
23 No. 1288–1619, 2008.

24 Malm, W. C., Sisler, J. F., Huffman, D., Eldred, R. A., and Cahill, T. A.: Spatial and seasonal  
25 trends in particle concentration and optical extinction in the United States, *J. Geophys. Res.*,  
26 99, 1347–1370, 1994.

27 Mann, G. W., Carslaw, K. S., Spracklen, D. V., Ridley, D. A., Manktelow, P. T., Chipperfield,  
28 M. P., Pickering, S. J., and Johnson, C. E.: Description and evaluation of GLOMAP-mode: a  
29 modal global aerosol microphysics model for the UKCA composition-climate model, *Geosci.*  
30 *Model Dev.*, 3, 519–551, doi:10.5194/gmd-3-519-2010, 2010.

1 Meehl, G. A., Washington, W. M., Arblaster, J. M., Hu, A., Teng, H., Kay, J. E., Gettleman, 2 Lawrence, D. M., Sanderson, B. M., and Strand, W. G.: Climate Change Projections in 3 CESM1(CAM5) Compared to CCMS4, *Journal of Climate*, 26, 6287-6308, 2013.

4 Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J. F., 5 Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., and 6 van Vuuren, D. P. P.: The RCP greenhouse gas concentrations and their extensions from 1765 7 to 2300, *Climatic Change*, 109, 213-241, 10.1007/s10584-011-0156-z, 2011.

8 Menon, S., Koch, D., Beig, G., Sahu, S., Fasullo, J., and Orlikowski, D.: Black carbon aerosols 9 and the third polar ice cap, *Atmos. Chem. Phys.*, 10, 4559–4571, 2010.

10 Miller, R. L., Schmidt, G. A., Nazarenko, L. S., Tausnev, N., Bauer, S. E., Del Genio, A. D., 11 Kelley, M., Lo, K. K., Ruedy, R., Shindell, D. T., Aleinov, I., Bauer, M., Bleck, R., Canuto, V., 12 Chen, Y.-H., Cheng, Y., Clune, T. L., Faluvegi, G., Hansen, J. E., Healy, R. J., Kiang, N. Y., 13 Koch, D., Lacis, A. A., LeGrande, A. N., Lerner, J., Menon, S., Oinas, V., Pérez García-Pando, 14 Perlitz, J. P., Puma, M. J., Rind, D., Romanou, A., Russell, G. L., Sato, M., Sun, S., 15 Tsigaridis, K., Unger, N., Voulgarakis, A., Yao, M.-S., and Zhang, J.: CMIP5 historical 16 simulations (1850-2012) with GISS ModelE2, *J. Adv. Model. Earth Syst.*, 6, no. 2, 441-477, 17 doi:10.1002/2013MS000266, 2014.

18 Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., 19 Bellouin, N., Chin, M., Diehl, T., Easter, R. C., Feichter, J., Ghan, S. J., Hauglustaine, D., 20 Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Lund, M. T., Luo, G., 21 Ma, X., van Noije, T., Penner, J. E., Rasch, P. J., Ruiz, A., Seland, Ø., Skeie, R. B., Stier, P., 22 Takemura, T., Tsigaridis, K., Wang, P., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon, J.-H., 23 Zhang, K., Zhang, H., and Zhou, C.: Radiative forcing of the direct aerosol effect from 24 AeroCom Phase II simulations, *Atmos. Chem. Phys.*, 13, 1853-1877, doi:10.5194/acp-13- 25 1853-2013, 2013a.

26 Myhre, G., Shindell, D., Breon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., 27 Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., 28 and Zhang, H.: Anthropogenic and Natural Radiative Forcing. In: *Climate Change 2013: The* 29 *Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the* 30 *Intergovernmental Panel on Climate Change* [Stocker, T. F., Qin, D., Plattner, G.-K., Tignor,

1 M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (eds.)],  
2 Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013b.

3 Neale, R. B., Chen, C.-C., Gettleman, A., Lauritzen, P. H., Park, S., Williamson, D. L., Conley,  
4 A. J., Garcia, R., Kinnison, D., Lamarque, J.-F., Marsh, D., Mills, M., Smith, A. K., Tilmes, S.,  
5 Vitt, F., Morrison, H., Cameron-Smith, P., Collins, W. D., Iacono, M. J., Easter, R. C., Ghan,  
6 S. J., Liu, X., Rasch, P. J., and Taylor, M. A.: Description of the NCAR Community  
7 Atmosphere Model (CAM 5.0), NCAR Technical Note TN-486+STR, National Center for  
8 Atmospheric Research, Boulder, Colorado, USA, 2012.

9 Pan, X., Chin, M., Gautam, R., Bian, H., Kim, D., Colarco, P. R., Diehl, T. L., Takemura, T.,  
10 Pozzoli, L., Tsigaridis, K., Bauer, S., and Bellouin, N.: A multi-model evaluation of aerosols  
11 over South Asia: common problems and possible causes, *Atmos. Chem. Phys.*, 15, 5903-5928,  
12 doi:10.5194/acp-15-5903-2015, 2015.

13 Polson, D., Bollasina, M., Hegerl, G. C., and Wilcox, L. J.: Decreased monsoon precipitation  
14 in the Northern Hemisphere due to anthropogenic aerosols, *Geophys. Res. Lett.*, 41,  
15 doi:10.1002/2014GL060811, 2014.

16 Reddy, S., Seland, O., Stier, P., Takemura, T., and Tie, X.: An AeroCom initial assessment –  
17 optical properties in aerosol component modules of global models, *Atmos. Chem. Phys.*, 6,  
18 1815-1834, doi:10.5194/acp-6-1815-2006, 2006.

19 Russell, G. L., Miller, J. R., and Rind, D.: A coupled atmosphere-ocean model for transient  
20 climate change, *Atmosphere-Ocean*, 33(4), 683–730, 1995.

21 Samset, B. H., Myhre, G., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H.,  
22 Bellouin, N., Diehl, T., Easter, R. C., Ghan, S. J., Iversen, T., Kinne, S., Kirkevåg, A.,  
23 Lamarque, J.-F., Lin, G., Liu, X., Penner, J. E., Seland, Ø., Skeie, R. B., Stier, P., Takemura,  
24 T., Tsigaridis, K., and Zhang, K.: Black carbon vertical profiles strongly affect its radiative  
25 forcing uncertainty, *Atmos. Chem. Phys.*, 13, 2423-2434, doi:10.5194/acp-13-2423-2013,  
26 2013.

27 Samset, B. H., Myhre, G., Forster, P. M., Hodnebrog, Ø., Andrews, T., Faluvegi, G., Fläschner,  
28 D., Kasoar, M., Kharin, V., Kirkevåg, A., Lamarque, J.-F., Olivié, D., Richardson, T., Shindell,  
29 D., Shine, K. P., Takemura, T., and Voulgarakis, A: Fast and slow precipitation responses to

1 individual climate forcers: A PDRMIP multimodel study, *Geophys. Res. Lett.*, 43,  
2 doi:10.1002/2016GL068064, 2016.

3 Schmidt, G.A., Kelley, M., Nazarenko, L., Ruedy, R., Russell, G. L., Aleinov, I., Bauer, M.,  
4 Bauer, S. E., Bhat, M. K., Bleck, R., Canuto, V., Chen, Y.-H., Cheng, Y., Clune, T. L., Del  
5 Genio, A., de Fainchtein, R., Faluvegi, G., Hansen, J. E., Healy, R. J., Kiang, N. Y., Koch, D.,  
6 Lacis, A. A., LeGrande, A. N., Lerner, J., Lo, K. K., Matthews, E. E., Menon, S., Miller, R. L.,  
7 Oinas, V., Oloso, A. O., Perlitz, J. P., Puma, M. J., Putman, W. M., Rind, D., Romanou, A.,  
8 Sato, M., Shindell, D. T., Sun, S., Syed, R. A., Tausnev, N., Tsigaridis, K., Unger, N.,  
9 Voulgarakis, A., Yao, M.-S., and Zhang, J.: Configuration and assessment of the GISS  
10 ModelE2 contributions to the CMIP5 archive, *J. Adv. Model. Earth Syst.*, 6, no. 1, 141-184,  
11 doi:10.1002/2013MS000265, 2014.

12 Schulz, M., Textor, C., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T.,  
13 Boucher, O., Dentener, F., Guibert, S., Isaksen, I. S. A., Iversen, T., Koch, D., Kirkevåg, A.,  
14 Liu, X., Montanaro, V., Myhre, G., Penner, J. E., Pitari, G., Reddy, S., Seland, Ø., Stier, P., and  
15 Takemura, T.: Radiative forcing by aerosols as derived from the AeroCom present-day and pre-  
16 industrial simulations, *Atmos. Chem. Phys.*, 6, 5225-5246, doi:10.5194/acp-6-5225-2006,  
17 2006.

18 Shindell, D. T.: Evaluation of the absolute regional temperature potential, *Atmospheric  
19 Chemistry and Physics*, 12, 7955-7960, doi:10.5194/acp-12-7955-2012, 2012.

20 Shindell, D. and Faluvegi, G.: Climate response to regional radiative forcing during the 20th  
21 century, *Nat. Geosci.*, 2, 294-300, 2009.

22 Shindell, D., Schulz, M., Ming, Y., Takemura, T., Faluvegi, G., and Ramaswamy, V.: Spatial  
23 scales of climate response to inhomogeneous radiative forcing, *J. Geophys. Res.*, 115, D19110,  
24 doi:10.1029/2010JD014108, 2010.

25 Shindell, D. T., Voulgarakis, A., Faluvegi, G., and Milly, G.: Precipitation response to regional  
26 radiative forcing, *Atmos. Chem. Phys.*, 12, 6969–6982, 2012.

27 Shindell, D. T., Lamarque, J.-F., Schulz, M., Flanner, M., Jiao, C., Chin, M., Young, P. J.,  
28 Lee, Y. H., Rotstayn, L., Mahowald, N., Milly, G., Faluvegi, G., Balkanski, Y., Collins, W. J.,  
29 Conley, A. J., Dalsoren, S., Easter, R., Ghan, S., Horowitz, L., Liu, X., Myhre, G.,  
30 Nagashima, T., Naik, V., Rumbold, S. T., Skeie, R., Sudo, K., Szopa, S., Takemura, T.,

1 Voulgarakis, A., Yoon, J.-H., and Lo, F.: Radiative forcing in the ACCMIP historical and  
2 future climate simulations, *Atmos. Chem. Phys.*, 13, 2939-2974, doi:10.5194/acp-13-2939-  
3 2013, 2013a.

4 Shindell, D. T., Pechony, O., Voulgarakis, A., Faluvegi, G., Nazarenko, L., Lamarque, J.-F.,  
5 Bowman, K., Milly, G., Kovari, B., Ruedy, R., and Schmidt, G.: Interactive ozone and methane  
6 chemistry in GISS-E2 historical and future climate simulations, *Atmos. Chem. Phys.*, 13, 2653-  
7 2689, doi:10.5194/acp-13-2653-2013, 2013b.

8 Shindell, D. T., Faluvegi, G., Rotstayn, L., and Milly, G.: Spatial patterns of radiative forcing  
9 and surface temperature response, *J. Geophys. Res. Atmos.*, 120, doi:10.1002/2014JD022752,  
10 2015

11 Smith, S. J., van Aardenne, J., Klimont, Z., Andres, R. J., Volke, A., and Delgado Arias, S.:  
12 Anthropogenic sulfur dioxide emissions: 1850–2005, *Atmos. Chem. Phys.*, 11, 1101-1116,  
13 doi:10.5194/acp-11-1101-2011, 2011.

14 Stier, P., Schutgens, N. A. J., Bellouin, N., Bian, H., Boucher, O., Chin, M., Ghan, S., Huneeus,  
15 N., Kinne, S., Lin, G., Ma, X., Myhre, G., Penner, J. E., Randles, C. A., Samset, B., Schulz, M.,  
16 Takemura, T., Yu, F., Yu, H., and Zhou, C.: Host model uncertainties in aerosol radiative  
17 forcing estimates: results from the AeroCom Prescribed intercomparison study, *Atmos. Chem.*  
18 *Phys.*, 13, 3245-3270, doi:10.5194/acp-13-3245-2013, 2013.

19 Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment  
20 Design, *Bull. Amer. Meteor. Soc.*, 93, 485–498, doi:10.1175/BAMS-D-11-00094.1, 2012.

21 Teng, H., Washington, W. M., Branstator, G., Meehl, G. A., and Lamarque, J.-F.: Potential  
22 impacts of Asian carbon aerosols on future US warming, *Geophys. Res. Lett.*, 39, L11703,  
23 doi:10.1029/2012GL051723, 2012.

24 Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T.,  
25 Berglen, T., Boucher, O., Chin, M., Dentener, F., Diehl, T., Easter, R., Feichter, H.,  
26 Fillmore, D., Ghan, S., Ginoux, P., Gong, S., Grini, A., Hendricks, J., Horowitz, L., Huang, P.,  
27 Isaksen, I., Iversen, I., Kloster, S., Koch, D., Kirkevåg, A., Kristjansson, J. E., Krol, M.,  
28 Lauer, A., Lamarque, J. F., Liu, X., Montanaro, V., Myhre, G., Penner, J., Pitari, G., Reddy, S.,  
29 Seland, Ø., Stier, P., Takemura, T., and Tie, X.: Analysis and quantification of the diversities

1 of aerosol life cycles within AeroCom, *Atmos. Chem. Phys.*, 6, 1777-1813, doi:10.5194/acp-6-  
2 1777-2006, 2006.

3 Tilmes, S., Lamarque, J.-F., Emmons, L. K., Kinnison, D. E., Ma, P.-L., Liu, X., Ghan, S.,  
4 Bardeen, C., Arnold, S., Deeter, M., Vitt, F., Ryerson, T., Elkins, J. W., Moore, F., and  
5 Spackman, R.: Description and evaluation of tropospheric chemistry and aerosols in the  
6 Community Earth System Model (CESM1.2), *Geosci. Model Dev.*, 8, 1395-1426,  
7 doi:10.5194/gmd-8-1395-2015, 2015.

8 Verheggen, B., Cozic, J., Weingartner, E., Bower, K., Mertes, S., Connolly, P., Gallagher, M.,  
9 Flynn, M., Choularton, T., and Baltensperger, U.: Aerosol partitioning between the interstitial  
10 and the condensed phase in mixed-phase clouds, *J. Geophys. Res.*, 112, D23202,  
11 doi:10.1029/2007JD008714, 2007.

12 Vet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C.-U., Aas, W., Baker, A., Bowersox, V. C.,  
13 Dentener, F., Galy-Lacaux, C., Hou, A., Pienaar, J. J., Gillett, R., Forti, M. C., Gromov, S.,  
14 Hara, H., Khodzher, T., Mahowald, N. M., Nickovic, S., Rao, P. S. P., and Reid, N. W.: A  
15 global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base  
16 cations, organic acids, acidity and pH, and phosphorus, *Atmospheric Environment*, 93, 3-100,  
17 doi:10.1016/j.atmosenv.2013.10.060, 2014.

18 Voulgarakis, A., and Shindell, D. T., Constraining the sensitivity of regional climate with the  
19 use of historical observations. *J. Climate*, 23, 6068-6073, doi:10.1175/2010JCLI3623.1, 2010.

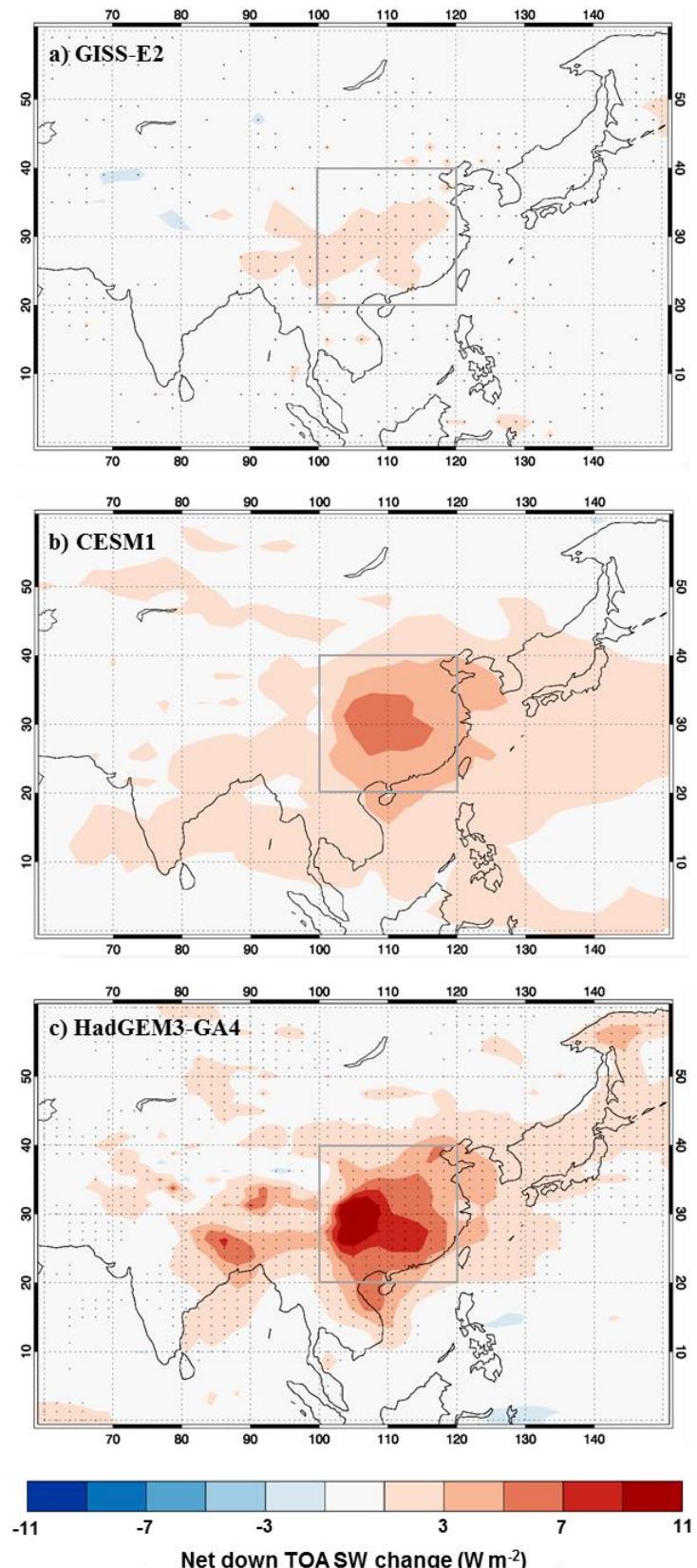
20 Walters, D. N., Williams, K. D., Boutle, I. A., Bushell, A. C., Edwards, J. M., Field, P. R.,  
21 Lock, A. P., Morcrette, C. J., Stratton, R. A., Wilkinson, J. M., Willett, M. R., Bellouin, N.,  
22 Bodas-Salcedo, A., Brooks, M. E., Copsey, D., Earnshaw, P. D., Hardiman, S. C.,  
23 Harris, C. M., Levine, R. C., MacLachlan, C., Manners, J. C., Martin, G. M., Milton, S. F.,  
24 Palmer, M. D., Roberts, M. J., Rodríguez, J. M., Tennant, W. J., and Vidale, P. L.: The Met  
25 Office Unified Model Global Atmosphere 4.0 and JULES Global Land 4.0 configurations,  
26 *Geosci. Model Dev.*, 7, 361-386, doi:10.5194/gmd-7-361-2014, 2014.

27 Wilcox, L. J., Highwood, E. J., and Dunstone, N. J.: The influence of anthropogenic aerosol on  
28 multi-decadal variations of historical global climate *Environ. Res. Lett.*, 8, 024033, 2013.

1 Wilcox, L. J., Highwood, E. J., Booth, B. B. B., and Carslaw, K. S.: Quantifying sources of  
2 inter-model diversity in the cloud albedo effect, *Geophys. Res. Lett.*, 42, 1568–1575,  
3 doi:10.1002/2015GL063301, 2015.

4 Yu, H., Chin, M., West, J. J., Atherton, C. S., Bellouin, N., Bergmann, D., Bey, I., Bian, H.,  
5 Diehl, T., Forberth, G., Hess, P., Schulz, M., Shindell, D., Takemura, T., and Tan, Q.: A  
6 multimodel assessment of the influence of regional anthropogenic emission reductions on  
7 aerosol direct radiative forcing and the role of intercontinental transport, *J. Geophys. Res.*, 118,  
8 700-720, doi:10.1029/2012JD018148, 2013.

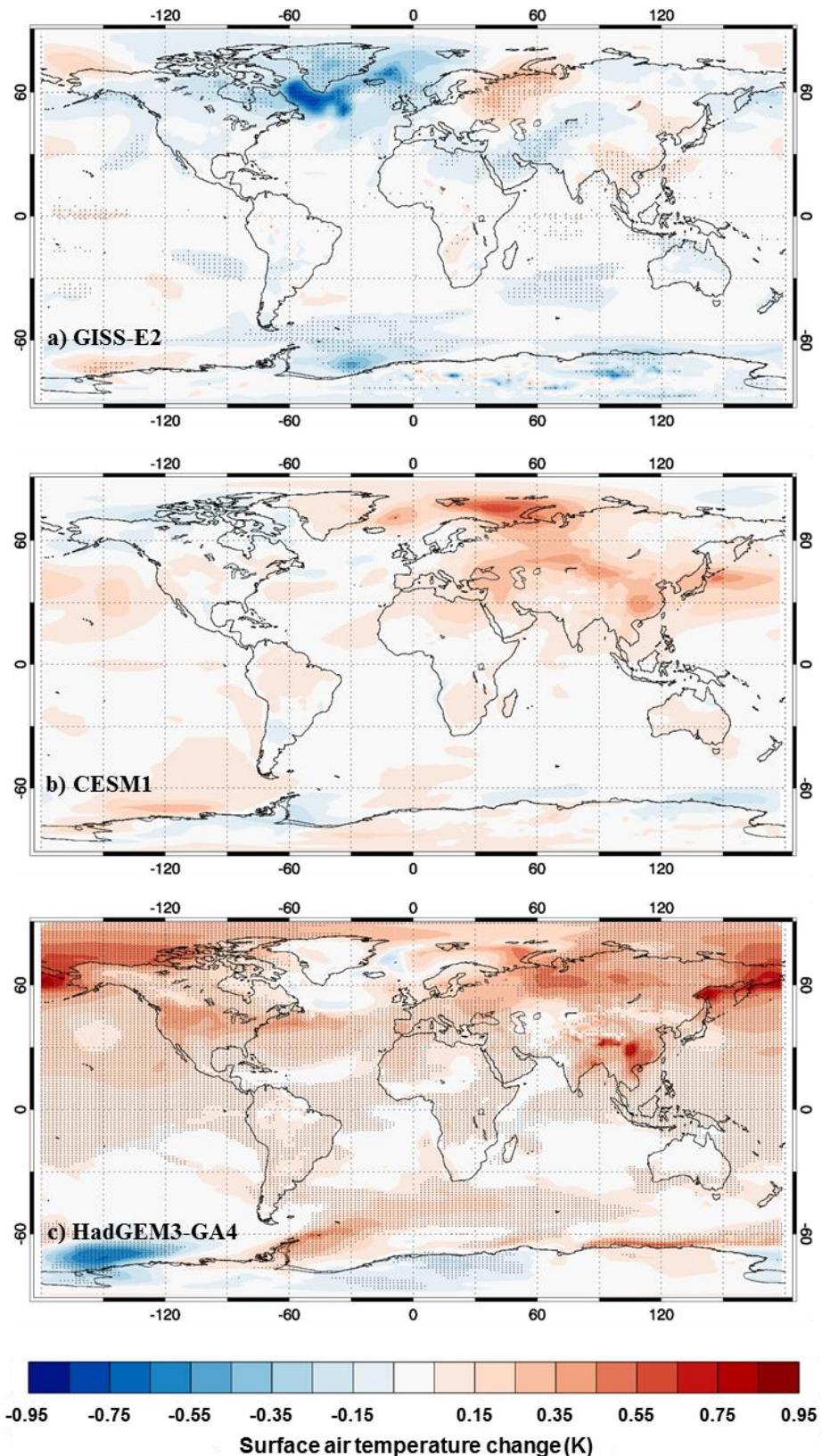
9 Zhang, X. Y., Wang, Y. Q., Niu, T., Zhang, X. C., Gong, S. L., Zhang, Y. M., and Sun, J. Y.:  
10 Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature,  
11 regional haze distribution and comparisons with global aerosols, *Atmos. Chem. Phys.*, 12, 779-  
12 799, doi:10.5194/acp-12-779-2012, 2012.


|                                                    | HadGEM3-GA4                                                                                    | CESM1                                                                                    | GISS-E2                                                                                   |
|----------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| <b>Primary model reference</b>                     | Walters et al. (2014)                                                                          | Tilmes et al. (2015)                                                                     | Schmidt et al. (2014)                                                                     |
| <b>Aerosol scheme references</b>                   | Bellouin et al. (2011)<br>Jones et al. (2001)                                                  | Liu et al. (2012)                                                                        | Koch et al. (2011)<br>Koch et al. (2006)                                                  |
| <b>Resolution (longitude x latitude)</b>           | 1.875° x 1.25°<br><br>85 vertical levels, model top at 85 km                                   | 2.5° x 1.875°<br><br>30 vertical levels, model top at 40 km                              | 2.5° x 2°<br><br>40 vertical levels, model top at 80km                                    |
| <b>Aerosol tracers</b>                             | Sulfate, fossil-fuel black carbon, fossil-fuel organic carbon, biomass-burning, dust, sea salt | Sulfate, black carbon, primary organic matter, secondary organic aerosol, dust, sea salt | Sulfate, nitrate, black carbon, organic carbon, secondary organic aerosol, dust, sea salt |
| <b>Indirect effects included</b>                   | Yes (1 <sup>st</sup> and 2 <sup>nd</sup> )                                                     | Yes (1 <sup>st</sup> and 2 <sup>nd</sup> )                                               | Yes (1 <sup>st</sup> and 2 <sup>nd</sup> )                                                |
| <b>SO<sub>2</sub> oxidation reactions included</b> | OH (gas phase)<br><br>H <sub>2</sub> O <sub>2</sub> , O <sub>3</sub> (aqueous phase)           | OH (gas phase)<br><br>H <sub>2</sub> O <sub>2</sub> , O <sub>3</sub> (aqueous phase)     | OH (gas phase)<br><br>H <sub>2</sub> O <sub>2</sub> (aqueous phase)                       |
| <b>Chemistry</b>                                   | Offline (prescribed 4D oxidant fields)                                                         | Online                                                                                   | Online                                                                                    |
| <b>Shortwave radiation</b>                         | Edwards and Slingo (1996)<br><br>6 spectral bands                                              | Clough et al. (2005)<br><br>14 spectral bands                                            | Hansen et al. (1983)<br><br>6 spectral bands                                              |

1

2 Table 1: Key references and features of the three models and their aerosol schemes used in  
3 this study

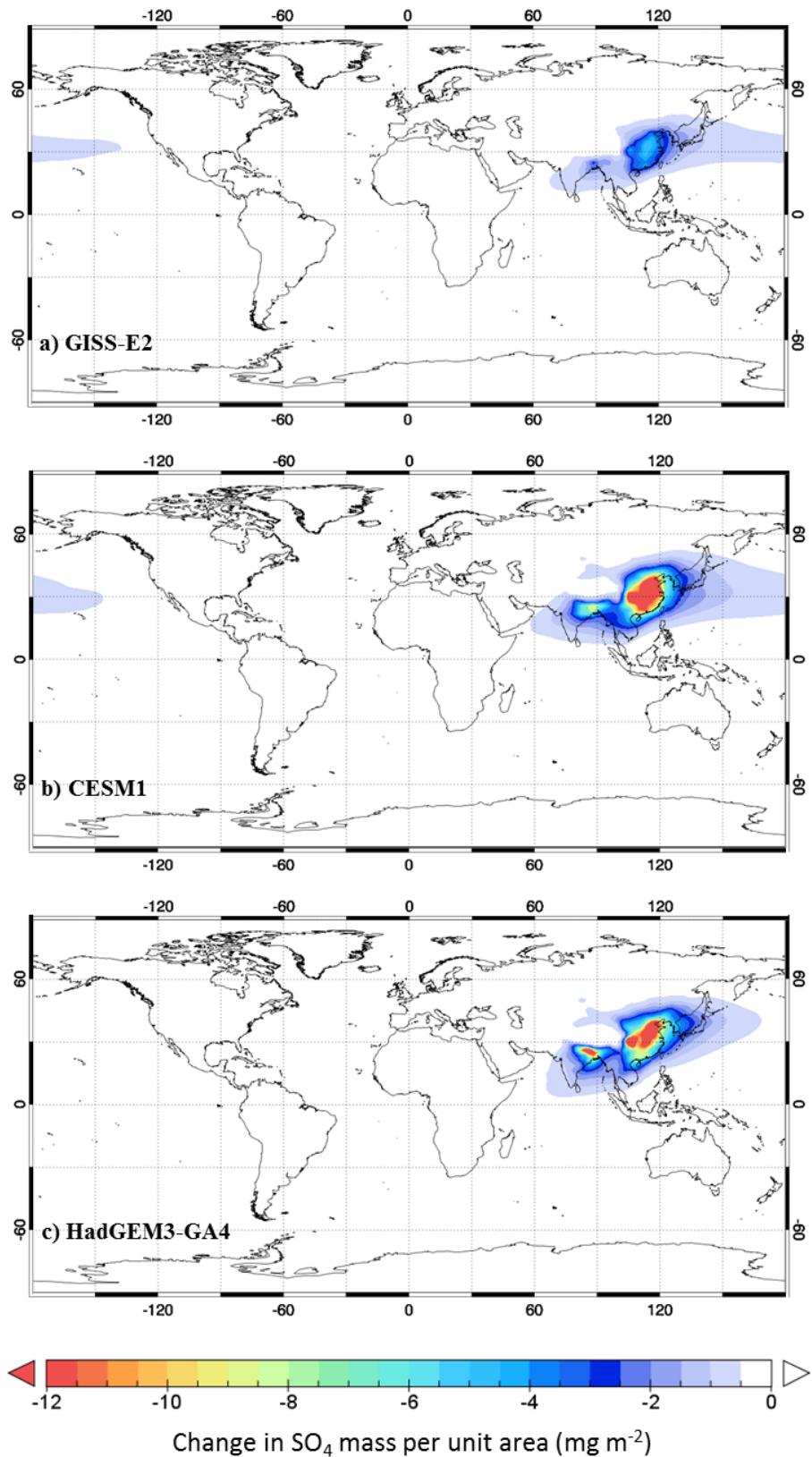
|                                                  |                                                                                     | HadGEM3-GA4 |       |                      | GISS-E2 |         |                   | CESM1   |         |               |
|--------------------------------------------------|-------------------------------------------------------------------------------------|-------------|-------|----------------------|---------|---------|-------------------|---------|---------|---------------|
|                                                  |                                                                                     | Con         | Ch0   | Ch0-Con              | Con     | Ch0     | Ch0-Con           | Con     | Ch0     | Ch0-Con       |
|                                                  | <b>Total <math>\text{SO}_2</math> (Tg)</b>                                          | 0.637       | 0.592 | $-0.045 \pm 0.001$   | 1.151   | 1.075   | $-0.076$          | 0.553   | 0.503   | $-0.050$      |
|                                                  | <b>Total <math>\text{SO}_4</math> (Tg)</b>                                          | 1.569       | 1.499 | $-0.070 \pm 0.004$   | 1.091   | 1.014   | $-0.077$          | 1.459   | 1.323   | $-0.136$      |
|                                                  | <b>Mean AOD</b>                                                                     | 0.217       | 0.213 | $-0.0042 \pm 0.0004$ | 0.131   | 0.131   | $-0.0003$         | 0.123   | 0.122   | $-0.0013$     |
|                                                  | <b>Clear-sky TOA SW flux (W m<sup>-2</sup>)</b>                                     | 286.0       | 286.2 | $0.184 \pm 0.06$     | 289.0   | 289.1   | $0.052$           | 288.7   | 288.8   | $0.076$       |
|                                                  | <b>All-sky TOA SW flux (W m<sup>-2</sup>)</b>                                       | 242.3       | 242.6 | $0.279 \pm 0.10$     | 241.0   | 241.0   | $-0.034 \pm 0.06$ | 236.7   | 236.9   | $0.186$       |
| <b>Global</b>                                    | <b>Mean temperature (K)</b>                                                         | 288.6       | 288.7 | $0.115 \pm 0.05$     | 289.0   | 289.0   | $-0.028 \pm 0.04$ | 288.0   | 288.1   | $0.054$       |
| <hr/>                                            |                                                                                     |             |       |                      |         |         |                   |         |         |               |
|                                                  | <b><math>\Delta \text{AOD}/\Delta \text{SO}_4</math> (Tg<sup>-1</sup>)</b>          |             |       | <b>0.0603</b>        |         |         | <b>0.0042</b>     |         |         | <b>0.0094</b> |
|                                                  | <b><math>\Delta \text{Clear-sky SW}/\Delta \text{AOD}</math> (W m<sup>-2</sup>)</b> |             |       | <b>-43.8</b>         |         |         | <b>-173</b>       |         |         | <b>-58.5</b>  |
|                                                  | <b><math>\Delta \text{All-sky SW}/\Delta \text{AOD}</math> (W m<sup>-2</sup>)</b>   |             |       | <b>-66.4</b>         |         |         | <b>106</b>        |         |         | <b>-145</b>   |
| <hr/>                                            |                                                                                     |             |       |                      |         |         |                   |         |         |               |
|                                                  | <b>Total <math>\text{SO}_2</math> (Tg)</b>                                          | 0.035       | 0.006 | $-0.029 \pm 0.0002$  | 0.033   | 0.005   | $-0.028$          | 0.030   | 0.001   | $-0.028$      |
|                                                  | <b>Total <math>\text{SO}_4</math> (Tg)</b>                                          | 0.050       | 0.015 | $-0.035 \pm 0.0003$  | 0.043   | 0.027   | $-0.016$          | 0.054   | 0.015   | $-0.039$      |
|                                                  | <b>Mean AOD</b>                                                                     | 0.576       | 0.289 | $-0.287 \pm 0.002$   | 0.232   | 0.185   | $-0.047$          | 0.227   | 0.151   | $-0.076$      |
|                                                  | <b>Clear-sky TOA SW flux (W m<sup>-2</sup>)</b>                                     | 296.3       | 301.4 | $5.06 \pm 0.08$      | 294.3   | 298.4   | <b>4.10</b>       | 305.35  | 307.51  | <b>2.16</b>   |
|                                                  | <b>All-sky TOA SW flux (W m<sup>-2</sup>)</b>                                       | 228.8       | 234.2 | $5.34 \pm 0.3$       | 233.32  | 234.22  | $0.90 \pm 0.3$    | 224.16  | 228.36  | <b>4.20</b>   |
| <b>E. China<br/>(100°E-120°E,<br/>20°N-40°N)</b> | <b>Mean temperature (K)</b>                                                         | 287.6       | 287.9 | $0.382 \pm 0.07$     | 288.965 | 289.014 | $0.049 \pm 0.07$  | 289.110 | 289.404 | $0.294$       |
| <hr/>                                            |                                                                                     |             |       |                      |         |         |                   |         |         |               |
|                                                  | <b><math>\Delta \text{AOD}/\Delta \text{SO}_4</math> (Tg<sup>-1</sup>)</b>          |             |       | <b>8.23</b>          |         |         | <b>2.94</b>       |         |         | <b>1.96</b>   |
|                                                  | <b><math>\Delta \text{Clear-sky SW}/\Delta \text{AOD}</math> (W m<sup>-2</sup>)</b> |             |       | <b>-17.6</b>         |         |         | <b>-87.2</b>      |         |         | <b>-28.4</b>  |
|                                                  | <b><math>\Delta \text{All-sky SW}/\Delta \text{AOD}</math> (W m<sup>-2</sup>)</b>   |             |       | <b>-18.6</b>         |         |         | <b>-19.3</b>      |         |         | <b>-55.0</b>  |


1 Table 2: Area-integrated SO<sub>2</sub> and SO<sub>4</sub> burdens, area-weighted annual means of AOD, net down  
2 clear-sky and all-sky TOA SW flux, and surface temperature, and ratios of the changes in AOD  
3 to change in SO<sub>4</sub> burden, and SW flux to change in AOD, for the globe and the E. China region  
4 100°E - 120°E, 20°N - 40°N. Values are shown for each model for the control simulation  
5 (Con), the simulation with no SO<sub>2</sub> emissions from China (Ch0), and the difference (Ch0 – Con).  
6 AOD is diagnosed for clear-sky conditions in HadGEM3-GA4 and GISS-E2, and for all-sky  
7 conditions in CESM1. For models and variables where data was available, error ranges are  
8 quoted for the Ch0-Con values and indicate  $\pm 2$  standard deviations, evaluated in HadGEM3-  
9 GA4 from an ensemble of six 150-year control runs with perturbed initial conditions, and in  
10 GISS-E2 from twelve 150-year segments of a long pre-industrial control run. Values quoted  
11 without error ranges indicate that uncertainty was not evaluated.



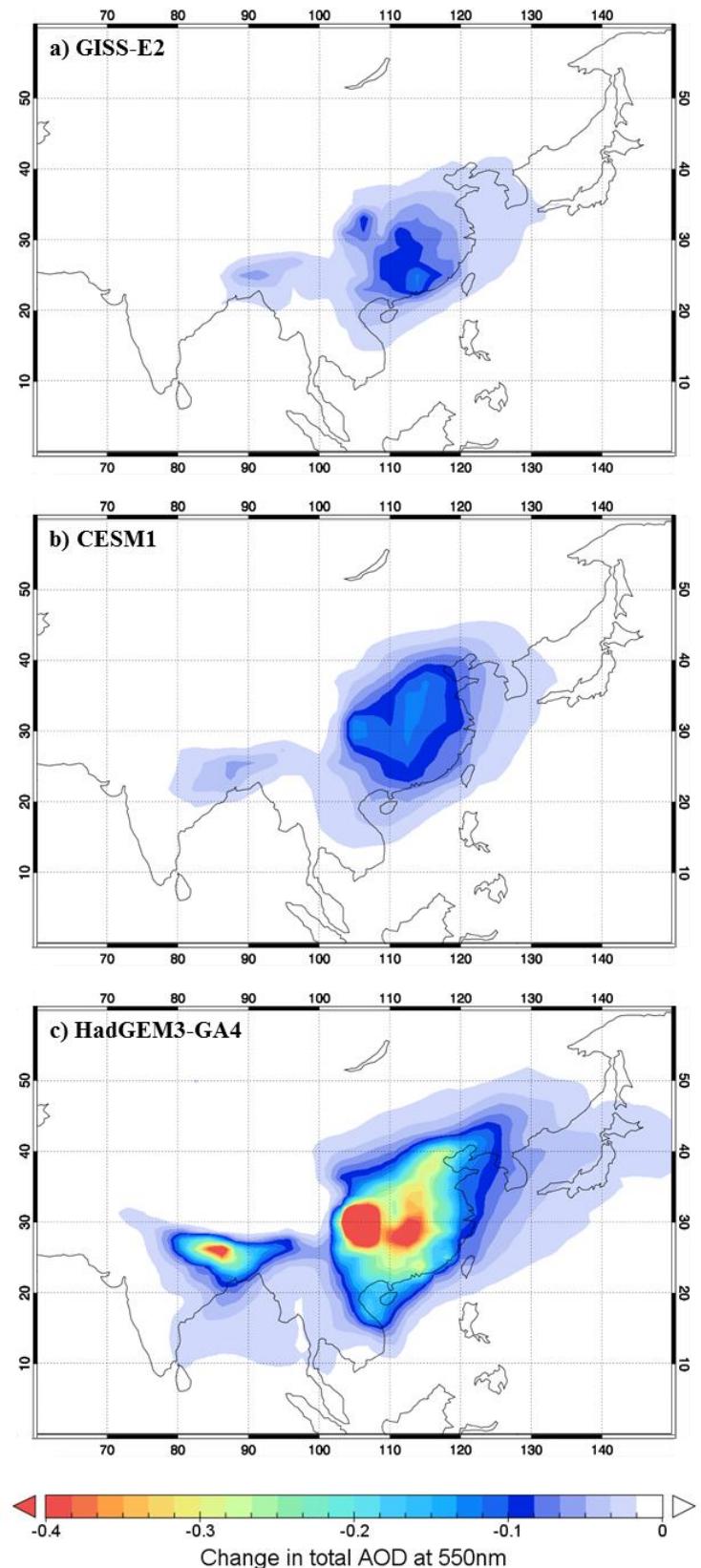
1

2 Figure 1: Change in net downward TOA SW flux due to removal of anthropogenic  $\text{SO}_2$   
3 emissions over China for a) GISS-E2, b) CESM1, and c) HadGEM3-GA4. Differences are


1 calculated as the 150-year annual mean of the perturbation simulation minus the 150-year  
2 annual mean of the control simulation. Plots focus on the Asian region as changes outside this  
3 domain were found to be minimal. Stippling for GISS-E2 and HadGEM3-GA4 indicates that  
4 the change in that grid-box exceeded two standard deviations. Significance was not evaluated  
5 for CESM1 as multiple 150-year control runs were not available to assess internal variability  
6 for this model. The grey box denotes the E. China (100°E - 120°E, 20°N - 40°N) region which  
7 is used in Table 2 and throughout the discussion.



1


2 Figure 2: Global changes in surface air temperature due to removing anthropogenic  $\text{SO}_2$   
3 emissions from China for a) GISS-E2, b) CESM1, and c) HadGEM3. Differences are for 150-

- 1 year annual means of perturbation simulation minus control simulation. Stippling for GISS-E2
- 2 and HadGEM3-GA4 indicates changes exceeded two standard deviations for that grid box.



1

2 Figure 3: Global changes in column-integrated  $\text{SO}_4$  burden due to removing anthropogenic  $\text{SO}_2$   
3 emissions from China, for a) GISS-E2, b) CESM1, and c) HadGEM3-GA4. Differences are  
4 calculated as perturbation simulation minus control simulation, averaged over 150 years.



1

2 Figure 4: Change in AOD at 550nm due to removing SO<sub>2</sub> emissions from China for a) GISS-  
 3 E2, b) CESM1, and c) HadGEM3-GA4. For HadGEM3-GA4 and GISS-E2, AOD is calculated  
 4 for clear-sky conditions, whereas for CESM1 AOD is calculated for all-sky conditions, which

1 will generally result in higher values within each simulation. Differences are calculated as  
2 perturbation run minus control run, averaged over 150 years. The plot region focuses on Asia  
3 as changes outside of this domain were minimal.