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Dynamic Contact Angle at Nano-Scale: a Unified

View.
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School of Mathematical and Physical Sciences, University of Reading, Reading RG6 6AX,
UK

E-mail: a.lukyanov@reading.ac.uk

Abstract

Generation of dynamic contact angle in the course of wetting is a fundamental
phenomenon of nature. Dynamic wetting processes have a direct impact on flows at
nano-scale, and therefore their understanding is exceptionally important to emerging
technologies. Here, we reveal the microscopic mechanism of dynamic contact angle
generation. It has been demonstrated using large-scale molecular dynamics simulations
of bead-spring model fluids that the main cause of local contact angle variations is the
distribution of microscopic force acting at the contact line region. We were able to
retrieve this elusive force with high accuracy. It has been directly established that
the force distribution can be solely predicted on the basis of a general friction law
for liquid flow at solid surfaces by Thompson & Troian. The relationship with the
friction law provides both an explanation of the phenomenon of dynamic contact angle
and a methodology for future predictions. The mechanism is intrinsically microscopic,
universal and irreducible, and is applicable to a wide range of problems associated with

wetting phenomena.

Keywords: wetting, nano-scale, dynamic contact angle, non-linear friction, molecular dy-

namics simulations.



Modelling capillary flows is a general problem in science and industry.'# It requires the
knowledge of the dynamic contact angle, which is the boundary condition for flows with
moving contact lines.>® At the moment, simulation of capillary flows and interpretation of
dynamic contact angle measurements are based on several, quite different phenomenological
models and various numerical techniques involving different assumptions about the physical
mechanisms and the length scales of the effect.*2® Macroscopic models appeal to hydro-
dynamic mechanisms to explain the observed dynamic contact angles, such as free surface
viscous bending, hydrodynamic stresses developed in the proximity of the contact line or

1,5,6:8,16.22.27 T particular, Cox-Voinov model,®® which is

non-equilibrium surface tensions .
basically an asymptotic solution to the Navier-Stokes equations, attributes observed, ap-
parent dynamic contact angles to the free surface bending accompanied by variations of
the true, microscopic contact angle with the velocity of the contact line. The formulation
is equivalent to modelling the Navier-Stokes equations with a slip condition on the solid
boundary and with the true contact angle set as the boundary condition to determine the
free surface shape. Experiments have confirmed that the asymptotic solution can accurately
reproduce the interface shape in dynamic conditions provided that the microscopic contact
angle or/and another material parameter of the model are velocity dependent.!? From an-
other perspective, in the interface formation theory,'® the actual dynamic contact angle is
part of the entire hydrodynamic solution through the Young-Dupré equation and the vari-
able surface tensions acting on the contact line. The formulation utilizes a modified, different
from Cox-Voinov model, set of boundary conditions, which include surface tension gradients
as macroscopic hydrodynamic variables. Microscopic molecular-kinetic theory (MKT), on
the other hand, postulates concentrated an out-of-balance force of non-hydrodynamic ori-
gin, which acts on the three-phase contact line and generates out-of-equilibrium molecular
displacements, which are interpreted in terms of the contact line velocity. %192

At the moment, it is difficult to pick up any particular model of dynamic wetting for ap-

plications using only macroscopic observations of dynamic contact angles. All models found



reasonable agreement with macroscopic experiments.'® 172! Moreover, even high-resolution
measurements at nano-scale?® have proven difficult to single out any particular theoretical
model and to establish the fundamental mechanism of the effect. The best overall perfor-
mance in matching experimental data has been demonstrated by a combined model, where
the microscopic contact angle was set according to the MKT and the interfacial shape was
calculated from Cox-Voinov model. 1% This was an indication that the microscopic events
in the immediate vicinity of the contact line and macroscopic effects due to hydrodynamic
stresses do co-exist, can be separated and regarded as complementary. The microscopic
contact angle variations with the velocity have been clearly observed in molecular dynamics
simulations (MDS) and in the experiments at nano-scale.%1972126.28 Ty the same study,?® it
has been implied that there is an additional, unusual convex interface bending, as opposed
to the concave bending predicted by Cox-Voinov model, in the region of tens of nanometres
at the contact line. Whether or not this additional bending exists and can be accommo-
dated within the framework of the standard hydrodynamic theory is to be seen and verified
independently. Apparently, irrespective of that, the main factor of uncertainty now is the
generation mechanism of the microscopic dynamic contact angle, which has not been estab-
lished. What is really happening at the contact line and in what length scale? Is this all due
to non-equilibrium surface tensions or the concentrated friction force postulated in the MKT
or both or may be something else? Clearly, once the contact line region is fully understood,
one can properly address the macroscopic events.

The lack of understanding the fundamental processes involved in the formation of dy-
namic contact angle makes any new predictions practically very difficult and calls for the
use of microscopic modelling. Here we examine the three-phase contact line region in non-
equilibrium with MDS where the contact line zone can be clearly resolved and separated from
the bulk flow. In our simulations a large cylindrical liquid droplet consisting of 60000 —90000
particles of mass my is forced to move with constant velocity between two identical solid

substrates, Fig. 1. Each substrate (see Methods for details) consists of three [0,0, 1] face-



centered cubic (fcc) lattice layers of particles of mass m,, = 10m;. Both substrate and liquid

particles interact via the Lennard-Jones (LJ) potentials ®%7,(r) = 4e; <(U7fj)12 - (%)6)
with the cut-off distance 2.5 0;;. Here r is the distance between the particles, ¢;; and o;; are
characteristic energy and length scales.

The geometry of our nano-scale simulations (see Methods for details) is periodic in the
x-direction with reflective boundary conditions at the simulation box ends in the z-direction,
Fig. 1. The layer thickness in the periodic z-direction (droplet depth) was set at Az >~ 18 o
for the simulations with short chain molecules N, < 5 and at Az ~ 280y for those ones
involving longer chains. The solid wall particles were moving with velocity U in the z-
direction ([1,0,0] crystallographic direction) where the reflective wall acted as a piston to
mimic forced wetting regime. After initial equilibration during At., = 100007, with the
time integration step At, = 0.01 7 (10 = oy \/T:ﬁf), which was used in the study, we reached
a steady state and measured dynamic contact angle and interfacial parameters.

The contact angle in our study has been inferred from the free-surface profiles defined as
the locus of equimolar points and averaged during 5000 75. The profiles were developed by
means of a three-parameter (R, yo, 29) circular fit (y —yo)? + (2 — 20)? = R% The circular fit
has been applied to a part of the free-surface profile of length ~ 20 o5 excluding 4 o layer
adjacent to the substrate corresponding to the liquid-solid interface, Fig. 2. One may notice

that the interface shape is very well described by the fit, Fig. 1.

Results and Discussion

The dynamic contact angle collective set of data in the range of Reynolds numbers 0.005 <
Re < 6 (Re = % was based on half the distance between the substrates H/2, the bulk
particle density p, and the zero shear rate viscosity p, Table 1) for fluids with different chain
length Np obtained at different temperatures 7', liquid-solid interactions €, and substrate

densities IIg is shown in Fig. 1 with the parameters summarized in Table 1. The data are

represented in terms of the out-of-balance surface tension force F' = vgs — vrs — Yoy cosf



using the static values of surface tensions vrv, vrs and vgs, Table 1, and normalized using

parameters (F*,U*) of a two-parameter fit F, = F*( /o Fig. 1. Here, # is non-

equilibrium dynamic contact angle, y.v, vrs and vgs are equilibrium liquid-gas, liquid-solid
of the liquid and gas-solid of the gas (in the approximation of undeformable solid substrate)
surface tensions respectively (see Methods for details). We note that the characteristic
values of the dynamic contact angle found in our simulations are in accord with the previous
observations of dynamic contact angle in droplet relaxation MDS experiments in. %

As is seen in Fig. 1, after normalization the data nicely collapse on a single master curve
indicating that there is a universal mechanism operating in all those cases. The velocity
dependence of the out-off-balance force demonstrates the standard trend routinely observed
in experiments on dynamic contact angle - monotonic increase with velocity increases. 121517
Given that surface tension relaxation time in simple interfaces of our LJ liquids is practically
zero,? all surface tensions of the liquid are expected to be at equilibrium values. This
implies that the out-of-balance surface tension force F' can only be balanced by a friction
force from the substrate. Using the steady state conditions achieved in our simulations and
averaging over five independent runs, it was possible to accurately measure distribution of
the friction force acting on the first liquid mono-layer adjacent to the substrate, as is shown
in Fig. 2. Typical profile of the friction force tangential to the substrate component 6 F' and
corresponding distributions of surface density and tangential surface velocity (quantities
averaged over the observation layer Ay = 1.10y) are shown in Fig. 2.

One can observe that the friction force distribution has a characteristic maximum at z ~
3 og, counting from the surface density equimolar point. Further away from the equimolar
point, after z. = 120y, the friction force drops to a constant value f in the bulk where, at
the same time, both surface density and surface velocity distributions attain constant values
Poo and V5. One can assume that this point z. defines the boundary and the characteristic

size of the contact line region in non-equilibrium. Indeed, to account for the observed

dynamic contact angle 6 according to the modified Young-Dupré equation vy cos = —vyr5+



Table 1: Parameters of the simulations in the moving droplet problem at H = 60 o4, Fig. 1.
Fluid temperature T', number of monomers per chain Ng, the bulk fluid monomer density
Py, bulk shear viscosity p, wall-fluid interaction energy €,y, wall density II, liquid-vapour,
liquid-solid and solid-vapour surface tensions vy, vrs and vgs (in the approximation of un-
deformable solid substrate), static contact angle 6y (calculated via the Young-Dupré equation

and measured geometrically), and parameters F* and U* of the fit F, = F *MWI%J%

Here, velocity U* was normalized by uy = \/€g/my, densities p, and Il by py = Jj}?’, Vis-
cosity pu by po = \/egmy/ UJ%;, surface tensions and F™*, which is the force per unit length,
by 70 = €g/0%. T The shear viscosity was obtained as in ref*” under bulk conditions in the
limit of zero shear rates. "The static contact angle 6, here is inferred from the Young-Dupré
equation vz cosfy = —yrs + Yas- ‘The static contact angle 6y here is obtained from the
free-surface profiles of cylindrical drops.

Run T’f—; Ne | po | pf | ew/eg | s TLv YIS Yas GST 05 F* U*
(a) 0.8 5 1091 10.5 0.9 4 10.924+0.04 | —0.66 £ 0.03 0 44 4+4° | 39+£3° | 1.14+£0.02 | 0.02 £0.001
(b) 0.8 5 10911105 0.65 4 10.924+0.04 | —0.02 £0.05 0 894+3° | 92+4° | 0.67+0.02 | 0.034 £ 0.003
(c) 0.8 5 10911 10.5 0.5 1.41092+0.04 | 0.254+0.04 0 106 +=4° | 108 £5° | 0.59£0.04 | 0.07 +0.02
(d) 0.8 5 10911 10.5 1.2 1.410924+0.04 | —2.34£0.07 0 0° 0° 2.294+0.02 | 0.009 £ 0.001
(8) 0.8 1 0.73 | 1.2 0.65 4 10.36+0.02| —0.22+0.02 | —0.08+0.01 | 67 £ 4° 64 +3° | 0.43+0.01 0.11 £ 0.01
(f) 0.8 15 1093 | 30 0.9 4 [ 1.054+0.04 | —0.63 £ 0.05 0 53 +£4° | 49+5° | 1.08 £0.05 | 0.007 & 0.001
(2) 1 15 | 0.88 | 18 0.8 4 10.834+0.04 | —0.21 £0.04 0 75+ 3° 75+ 3° | 0.74£0.02 | 0.027 £ 0.002
(h) 1 30 | 0.89 | 34 0.8 4 10.894+0.04 | —0.19 £0.04 0 78 + 3° 79+ 4° | 0.734+0.02 | 0.014 £ 0.002

vas — F, it is sufficient to integrate the friction force distribution §F'(z) within this zone to
obtain the necessary total force F. For example, in case (a) from Table 1 at U = 0.1 uy,
uy = \/W, the dynamic contact angle is § = 136°, Table 2, the total force per unit
length ' = 1.32~, and the distribution should be integrated F' = ff; 0F dz to z. = 7.50p.
In general, the size of the contact line region defined through the integration interval —oo <
z <z varied between the cases in the range 6.505 < 2. < 14.3 0g, see Table 2.

Consider now distributions of surface density and surface velocity, as they play a crucial
role in the behaviour of the friction force and the effect of the dynamic contact angle.
The surface density distribution is found to have one characteristic length scale A, and
can be accurately approximated by a hyperbolic tangent two parameter fit, see Fig. 2(d),
Ps(2) = Poo Ps(2) = poo Yo(2, Ay, 20), Yo(2) = % (1 -+ tanh (%)), where z is the equimolar
point, which is taken as the reference point in this study, that is zg = 0. The length scale
A, is relatively short in comparison with the contact line zone defined by z., Table 2, and

is basically the apparent (widened by capillary waves®’) width of the liquid-gas interface.



Table 2: Parameters of the simulations in the moving droplet. The droplet width H, sub-
strate velocity U, dynamic contact angle 6, parameters of the friction force-velocity distri-
bution (1), f* and v*, the length scale of surface density distribution A,, parameters of
surface velocity v, distribution 21, 2o and A,y obtained at A,y = A, the integration lengths
to calculate the total force F' from the force distribution z. in the MDS simulations and
22° in macroscopic limit, slip lengths L and Lj, in the linear regime (vs < v*) and at
vs = U obtained from the friction law through L*(v,) = =, and the ratio of self-diffusion
approximation coefficients B* = p.,B;/By. Here, all the length scales were normalized by

og, velocities by ug, ug = \/€g/my, and parameter f*, which is the force per unit area, by
fo=eg/o.

Run| H | U 0 f* v* - 10% A, 2 2 Ao 2 | 22 | Ly | Ly B*

((),) 45 0.1 | 135£5°(0314+0.01 | 1.2+0.1 | 1.4+£0.01 —0.8+0.1 —14+0.1 [39+0.1] 6.8 85 04| 1.4 | —0.94+£0.01
(a) 60 | 0.1 |136+5°|0.314+0.01| 1.2£0.1 | 1.54+0.01 —0.9+0.1 —14+0.1 |414+£01] 75 | 85 |04 | 1.4 | —0.94+£0.01
(a) 100 | 0.1 | 1454+5° 1 0.314+£0.01 | 1.2+0.1 | 1.9+£0.01 —-1.3+0.1 —0.7£0.1 [ 3.8+0.1| 9.2 98 {04 1.4 | —0.944+0.01
(a) 60 | 0.05]124+5°|0314+0.01| 1.2£0.1 |1.34+£001| —0.14+0.04 | -054+0.1|4.2£0.1|11.6| 95 |04 1]0.95| —0.94+0.01
(a) 60 | 0.03]|113+4°|0.314+0.01| 1.2+0.1 |1.24+0.01| —-0.01£0.03 | —1.14+0.1 |55£0.2|13.2|10.5|04]0.73 | —0.94+0.01
(b) 60 0.1 | 138+£5°| 0.3+£0.01 46+03 |1.6+001| —1.1+0.04 | -1.8+0.2|50+£02]| 6.5 8 16| 2.6 | —0.894+0.01
(d) | 60 |0.06|123+5°|0.28+0.02 | 0.34+0.05| 1.34+0.01 0.6 £ 0.05 —03+£0.2|43+0.2]14.3 9 0.1]0.66 | —0.95 £ 0.03
(g) 60 | 0.09 | 141 +5° | 0.37 = 0.01 5+04 1.8 +0.02 —1.4+0.1 —1.3+£0.1 43+0.1| 7.6 85 | 27| 7.3 | —0.89 £0.01

Some variations of A, observed between the cases were likely due to different contact angles.
Corrected quantity A; = A, cos(f —m/2), taking into account the effect of inclination angle,
showed no such variations 1 og < A;, < 1l.1og, and was close to our direct measurements of
liquid-gas interface width A; =0.820f at T'= 0.8 and A;, =1logatT =1.

The surface velocity distribution has two characteristic length scales A,; and A, and
can be approximated by a five parameter fitting function, Fig 2(e), vs(2) = voo fo(2), fo(2) =
Po(z, A1, 21)P0(2, Aya, 22). The first length scale A,; was found to be very close to A, and
was apparently driven by the density variations. Therefore, it was possible to set A, = A,
and reduce the number of fitting parameters. The second length scale A, was of the order
of the contact line zone defined by z.. Remarkably, it showed no dramatic variations between
the cases, Table 2. We note, that variations of the tangential surface velocity component
were accompanied by variations of the normal surface velocity component v,, (normal vector
pointing into the surface layer), Fig. 2(d). That is there was strong mass exchange in the
contact line region, with the mass conservation pgv,, = psAy%, Ay = 1.1 0y, being perfectly

observed in our MDS; insert in Fig. 2(e).

Away from the contact line region, the flow is rectilinear Hagen-Poiseuille flow where both



velocity v, and the friction force f,, are defined by the shear rate in the bulk. Changing
the distance between the substrates H, one can vary the shear rate and the force value f.,
Fig. 2(a). We note that the maximum value of the friction force f), is also affected by the
value of the bulk shear rate but to a much lesser extent. Using the inverse distance H ! as
a parameter, one can extrapolate the values of f,, and fj; in the macroscopic limit H — oo.
Functions fy(H ') and fo(H ') were found to be linear, fy; = 0.14 fo + 4.1H ! foop and
foo =5 x 107 fo + 7.3H " foo, fo = €g/0}. So that in the macroscopic limit (H — oo
at a fixed substrate velocity U) the bulk value goes to zero I}l—r>noo foo = 0, as expected, while
the force maximum remains finite I}linm far = 0.14 fo. This is a clear indication that in the
macroscopic limit the friction force will be finite and strictly localized in the small region
at the contact line. At the same time, it is also obvious that in nano-flows, in contrast
to macroscopic systems, there is no very clear separation between the bulk region and the
contact line zone. Therefore in nano-systems the dynamic contact angle may be influenced
by entire flow conditions. To understand the behaviour of the friction force quantitatively,
we will apply friction laws revealed in MDS studies of the slip phenomena using uniform
rectilinear flows. 3173

For LJ liquids the non-linear friction force-velocity dependence can be described in a

range of velocities by a two-parameter relationship

vs /v

fs= f*(l T (’US/U*)2)>‘ (1>

with parameter A found to be A ~ 0.35.3173% Here f, is the solid to liquid tangential to
the substrate friction force per unit area, v, is the slip velocity with respect to a stationary
substrate, f* is a coefficient of sliding friction and v* is a characteristic velocity. Measure-
ments of the friction force on our substrates in the velocity range relevant to our dynamic
angle simulations have revealed similar dependence with A =~ 0.3, Fig. 4, with parameters

listed in Table 2. Outside that range, at higher velocities (larger external force) the friction



force quickly reaches its maximum, and the system gets into a runaway regime. MD simula-
tions were performed in a steady flow passing in between two substrates (lateral dimensions
20 x 20 04) in plane geometry with liquid layer thickness ~ 16 oy with periodic boundary
conditions. The pressure in the liquid without the applied external force was set to a small
level p = 0.01ep /J% to mimic atmospheric pressure, as it would be in most experiments
with open chambers.

To apply this friction law to our problem, one needs to identify the factors influenced
by the distribution of density. In previous studies, the coefficient of sliding friction f* was
found to depend on several parameters, such as contact density in the first fluid mono-layer
Pe, In-line structure factor S, probed by the first reciprocal lattice vector g = 2oy /O Of
the wall in the direction of shear and the collective self-diffusion coefficient Dy, deduced from
Sqy» that is f* oc %.3235 Note, the collective diffusion coefficient for long-chain molecules
reflects internal rearrangements of the chains and not the centre of mass of the molecule.3?

It is not straightforward to transfer the results obtained in homogeneous flows to our
situation given the size of the contact line zone of a few particle diameters where the density
and velocity exhibited rapid changes. So, in the current model we will only include major
trends. It was assumed that the friction force should be directly proportional to the surface
density ps(z), as the linear dependence of f* on p. suggests, and inversely proportional to

a linearised self-diffusion coefficient D, o< By + Byps. The later approximation takes into

l
account a substantial increase in the particle mobility in the low density contact line region.
At the same time, due to the presence of surface potentials no divergence is expected as
ps — 0, as it would be usually the case in the bulk conditions, where the self-diffusion
coefficient D diverges with the bulk density p — 0 as D o< p—1.3¢

Taking this friction law, equation (1), as a model, one can form an analytical expression

to calculate the friction force distribution in the coordinate system moving with the contact



line

U —vs(2)
(2) v* 9

(2) (1 . <U - Q:S(z))2>0'3‘

Here, §F), is the solid to liquid tangential to the substrate friction force per unit area,

0F(2) = f*

ol

U — vs(2) is the slip velocity with respect to the moving substrate, and f* and v* are
parameters of the friction law (1) away from the contact line region. Distributions of density
and the self-diffusion coefficient were introduced to account for the variations of the coefficient

of sliding friction f* in the contact line region. The distributions were normalized in such

a way, ps(2) = ps(2)/pse and D(z) = %@, B* = po,B1/ By, that in the bulk p; = 1 and

D=1.

Comparison Between the Model and MDS. To compare our model force distribu-
tion, equation (2), with simulations, we fix parameters of the friction law f* and v* and
the substrate velocity U, parameters of the surface density and surface velocity distribu-
tions 21, 22, Ay, Aye and ve, (though allowing parameter z; to vary within the length of the
measurement interval Az =~ 0.704) leaving only one unknown fitting parameter B*, Table
2. The result is shown in Fig. 3(a)-(c) with the obtained values of B* listed in Table 2.
Corresponding distributions of density ps(z) and velocity vs(z), approximated in the model
by ¥o(z) and f,(z), are shown in Fig. 3(d,e). One can see, that the model distribution 0 F},
correctly identifies the position of the maximum, the shape of the distribution in general and
the value in the bulk f,,. Several representative cases with the parameters listed in Table
2 were processed. It was found that the model accurately reproduces the trends observed
with variations of shear rates in the bulk (different H, Fig. 3(a)), variations of the surface
potential €, (Fig. 3(c)) and liquid viscosity p, and with variations of the substrate velocity
U, Fig. 3(a,b).

Macroscopic Limit of the Model. One can now turn to a more practical question of

the macroscopic limit in the model, when the system size is large H > 1 while velocity is

10



still at the level of normal hydrodynamic velocities. In this limit, the shear rates and the slip
velocity are relatively small, that is v, & U. Accordingly, one can now set v, = U in the
distribution of velocity approximated by f,, vs(z) = U f,(2), to calculate distribution of the
friction force §F,, using equation (2). To demonstrate the friction force distribution in the
macroscopic limit, we will take all parameters of the case (a) from Table 1 at H = 1000y
and U = 0.1 ug (ug = \/W) with parameter B* set to the value providing the best fit
shown in Fig. 3(a). The result is shown in Fig. 3(a) for comparison, the shaded area. It is
seen that the force is now strictly located within the finite region inside the contact line zone
defined by z.. The point where the force value is at 10% of the maximum value fy;, z°, can
now be used as the definition of the contact line zone in macroscopic limit. Values of 22° are
listed in Table 2. Remarkably, they show little variations between the cases. We also note
that the maximum value of the friction force given by equation (2), max(dF,,) =~ 0.16 fo, is
close to the value found by the linear extrapolation fy; ~ 0.14 fy.

Mechanism of Dynamic Contact Angle Generation. The obtained distribution
of the localized friction force by means of the relationship (2) and in MDS is the main
result of our paper. It provides insights into the fundamental mechanisms of the dynamic
wetting phenomena and a methodology for theoretical predictions of the dynamic contact
angle effect. Our analysis demonstrates in detail, from the first microscopic principles, how
the localized contact line force is generated. In macroscopic modeling this force distribution
should be regarded as a ”delta” force acting on the contact line. That is, integral of §F,
F= f 0 F'dz directly contributes into the Young-Dupré equation vyry cos = —vyrs+vas— F'.

The revealed mechanism is inherently microscopic. It suggests that the contact line force
distribution can be accurately determined solely from the knowledge of non-linear friction
law, and the distributions of density and velocity in the contact line region. Non-linear
friction law can be obtained from experiments or from MDS of simple bead spring models
such as those studied here or even atomistic models using simple geometries with no contact

lines involved, for example.?® Distribution of density and its length scale A, can be also

11



inferred from experiments and MDS only involving liquid-gas interfaces. Mobility of the
particles only affects the friction force distribution in the relatively small part of the contact
line zone of the order of A, and can be approximated without substantial loss of accuracy.
The most intricate part in the methodology is determination of velocity distribution and its
characteristic length scale Ao, which in turn defines the contact line zone. We argue that this
parameter is directly related to the length scale of the interaction potentials. This explains
its weak variations between the cases analyzed in this study and lack of any correlations
with linear (vs < v*) and non-linear (vs ~ v*) slip lengths L§ and Lj;, Table 2. One can, of
course, determine A, directly from MDS and then use it for macroscopic predictions, but
how does this length scale appear exactly and how can we approximate it without engaging
MDS? Consider distribution of the total tangential force acting on the first liquid mono-layer
adjacent to the substrate, that is the friction force § F' and the force from the rest of the liquid
frr, Fig. 3(f). One can see that apart from a region of the order of A, around the equimolar
point z = 0 corresponding to the liquid-gas interface, the total force acting on the particles
in the layer is practically zero, 0 F + fr; ~ 0. This is always the case at equilibrium, when
according to the Young-Dupré equation yry costy = —vyrs + vgs the surface tension forces
are balanced. At non-equilibrium, this implies that in a steady state, when the contact line
is already moving with constant velocity, unbalanced molecular forces created as a result of
dynamic contact angle, different from the static angle, will be balanced by the friction force.
That is the velocity distribution is tuned according to f4(vs(2))+ fr(z) = 0. This interplay
between the molecular and surface friction forces defines the length scale of the contact line
zone and its invariance, if the nature and the length scale of the molecular forces are the
same.

Once the friction force distribution §F,,(z) is determined, it can be directly used to
predict dynamic contact angle via the Young-Dupré equation v,y cos = —yrs + Yas — F,
where F' = ffooo 0F,,dz. Since 0 F,, is strictly localized, the integral of d F;,, quickly converges

and can be conveniently taken from —oo to co. That is, assuming that friction law has a

12



form similar to equation (1) with some power A,

F = f*AyQU ~ ﬁ_s( ) Q(Z)

0 D(2) (1 + U%0%(2)) = 9

where Q(z) = (1 — f,(2)) with the new variable Z = 2 /A, defined according to the contact
line length scale and U = U/v*. U defines the non-linear behavior of the contact line force
F with the contact line velocity. At low velocities, U < 1 or small capillary numbers
Ca < 1 (Ca = pU/yry) the dependence becomes linear F oc f*AU, cos® — cosfy x Ca,
the trend which is commonly observed in experiments.*!%20 An extrapolated dependence
of the dynamic contact angle € on the capillary number in the macroscopic limit H > 1
using relationship (3) is illustrated in Fig. 5 at A = 0.3. The data in the plot have been
extrapolated by variations of the substrate velocity U from two particular cases at a given
velocity U = 0.1uy, but different values of H (H = 10004 and H = 60 o) presented in Fig.
3(a). The obtained dependencies, while generally consistent, demonstrate that the behaviour
of the dynamic contact angle is sensitive to the details of microscopic distributions. The key
parameter here turns out to be A,s. Indeed, if the value of A, is set in both cases to
Ayo = 3.8 04, while keeping the other parameters as they were in Table 2, the dependencies
become almost identical.

What are the implications of our findings for the developed theories? Apparently, the mi-
croscopic contact angle, which may be calculated using (3), provides the necessary boundary
condition for macroscopic modelling, either in the form of numerical simulations or asymp-
totic solutions, such as Cox-Voinov model. The length scales of the friction force distribution
and its characteristic amplitudes suggest that other macroscopic effects at the contact line
either do not exist or may only serve as corrections to the main effect. In particularly, hydro-
dynamic stresses were seen to give negligible contribution into the force acting on the contact
line in the macroscopic limit. They become only important when the system size tends to

nano-scale. One can also rule out contributions from non-equilibrium surface tensions, in
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particular considering very short relaxation times of the surface phase.?® At the same time,
the MKT hypothesis about concentrated force of microscopic origin acting on the contact
line is fully consistent with our results. 5192

Comparison with the MKT. At its core, the MKT is based on the Eyring’s phe-
nomenological theory of rate processes®® applied on average to some region at the contact
line. The out-of-balance surface tension force 7yry (cosfly — cosf) is related with the un-
balanced rate of molecular jumps in the region. The molecular jumps are described by a

frequency ko and a displacement Ag of the order of the atomic distance. The two parameters

define a characteristic velocity V. = 2Agk¢ and a characteristic friction force per unit length

of the contact line xo = 2

kfg . The net macroscopic result is a quite distinctive contact line
0

force-velocity dependence,

Frygr = xoln(U/Ve+ /14 (U/Ve)?). (4)

While the friction force law (4) looks different from the friction force functional forms (1)

31,3235 it is possible to

providing the best fits in our simulations and in the previous works,
conjoin them by variation of parameters yo and V.. Application of fit (4) to the normalized
friction force-velocity dependence data obtained in homogeneous conditions of the thin film
flows is illustrated in Fig. 4, the dashed line. However, the same fit (4) does not match the
contact line force-velocity dependence data, the dashed line in Fig. 1. This might be actually
expected, given the expression for the total contact line force (3). Apparently, the same
functional form seemed very unlikely to simultaneously provide the best description to the
friction force-velocity dependence in homogeneous conditions, (1), and to the convolution of
the force with velocity and density distributions in inhomogeneous conditions at the contact
line, (3).

Here lies the principle difference between the MKT approach and our methodology. The

MKT provides a phenomenological treatment, an approximation to the integrated friction
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force (3), using the supposition of homogeneity of the contact line zone, while our analysis
suggests that particular distributions of surface density and velocity should matter.

From the fit, shown in Fig. 4, one can compare parametric dependencies of xo and V,
with our MDS in homogeneous conditions of the thin film flows. According to the MKT,?°
the two parameters scale as yo, = 2’“}5—; and V. = 2AngBMT exp <,£B—3T (vos — ’yLV)>, where p
is the zero shear viscosity, C = % is the molecular volume of the liquid and p, is the
bulk particle density, Table 1. It has been also established that for the LJ liquids Aq is
approximately constant and is equal to Ag ~ 1.20p.%° At the same time, from the fit shown
in Fig. 4, xo = f*YA. (x = 0.8) and V, = v*V (V = 0.9) , where A, is some effective length
scale of the contact line zone. The size of the contact line zone is not specified in the MKT,
so for comparison one can use half the integration distance 22°, Table 2, that is A, = 4.5 0.

The first parametric dependence of yq is consistent with our observations of f*, Table
2. The value of f* linearly increases with temperature T', otherwise being constant, giving
approximately Ay ~ 1.204. The second parametric dependence of V. allows to compare
variations of v*. For example, consider the cases (a), (b), (d) and (g), Table 1 and Table
2. Using the expression for V., its relationship with v* and parameters from Tables 1 and
2, one can obtain v} ~ 2 x 1073 fo, vy = 7 x 1073 fo, vj = 107 fo and v} = 2 x 1072 fo, as
it follows from the MKT scaling, fo = €5/ a%. One can see that the calculated values are
about one order of magnitude off the values measured in the MDS, Table 2. The cause of the
discrepancy is not clear at the moment. This could be due to the limitations of the Eyring’s
phenomenological approach, especially its approximate character for long-chain molecules.
The theory is best applied when spherically symmetric molecules spend sufficiently long time
in the potential wells formed by the substrate atoms, so that their motion indeed consists of
a series of jumps, rather than of continuous trajectories.3® This may not be the case here.
At the same time, one can not rule out the effects of shear thinning.3? Apparently, more

studies of the friction force laws are required.
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Conclusions

To conclude, it has been shown that the main contribution to the effect of dynamic wetting
at nano-scale is due to the local variations of microscopic contact angle. The variations of
the microscopic contact angle have been directly observed in experiments at nano-scale.?®
Though no substantial effects of nano-bending reported there were found in our MDS. The
interface was of a circular shape and the only unusual ’interfacial” distortions were observed
within a few atomic distances from the solid substrate, that is in a range of ~ 1 nm, which
is within the interfacial layer itself. One needs to note though that the bending observed
in2® was convex and was detected within the length scales of tens of nanometres. It may
be ’hidden’, if it does exists, in the circular, convex free surface profiles observed in our
MDS given the effective system size of the same order - tens of nanometres. Secondly, it
has been directly established that the main mechanism of these contact angle variations is
non-linear friction force distribution acting on the first monolayer at the solid substrate on
the length scale induced by the interaction potential of constituent molecules. The observed
length scale defines the size of the contact line zone. The combined effect of the friction
force distribution is the integrated total force F', (3), which manifests itself in macroscopic

descriptions as a singular point force acting directly on the contact line and leading to a

modified Young-Dupré equation vy cos = —yrs + vgs — F.

Methods

Molecular Dynamics Simulations. We distinguish between liquid (index 7, j = f) and

solid wall (index i,j = w) particles. The liquid particles interacting via LJ potentials are

connected into linear chains of Ng = 5 to 30 beads by the finitely extensible non-linear

elastic (FENE) springs, and the strength of the springs is adjusted so that the chains cannot
Ro

2
cross each other, ®Pppyp(z) = —%Rg In <1 — (i> > Here z is the distance between the

beads, Ry = 1.5 0 is the spring maximum extension and k& = 30 eﬁcagﬁ is the spring constant
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- parameters of the Kremer-Grest model.

The solid wall particles are attached to anchor points forming fcc lattice layers via har-
monic potential ®, = £x?, with the strength ¢ = 800 2—% chosen such that the root-mean-
square displacement of the wall atoms was small enough to satisfy the Lindemann criterion
for melting V< 6r2> < 0.150,,. The strength of the harmonic potential was sufficient to
guarantee rigidity of the solid wall, so that elasto-capillarity effects can be neglected, that is
(vov /€)% < 1 (ypy is equilibrium liquid-gas surface tension).*’ The anchor points in the
layer of the solid wall facing the liquid molecules have been slightly randomized in the verti-
cal y direction, with the amplitude m = 0.3 0g. This small roughness allowed us to
avoid undesirably large slip lengths observed in MDS?? and any bias towards ideal substrates
in this study. The state of the liquid, its temperature 0.8 ex/kp < T < leg/kp (kp is the
Boltzmann constant) was controlled by means of a DPD thermostat with the cut-off distance
of 2.504 and friction ¢4,q = 0.57; L = o \/?:f; , to have minimal side effects on particle
dynamics. The substrate density 1Ig was controlled by the minimal distance between the
solid wall particles ., IIg = 4.1 033 (Oww = 0.70g) and IIg = 1.41 053 (0ww = og). The
liquid-solid interaction length scale was set to the minimal distance between solid particles
Owf = Oy

Calculation of the Surface Tensions of the Liquid and Verification of the
Young-Dupré Equation in Static Conditions. Before conducting simulations with a
moving contact line, a set of measurements in static conditions were done to obtain equilib-
rium parameters and compare them with the Young-Dupré equation vy cos 0y = —yrs+vas
by placing a cylindrical drop (40000 particles) on the substrate. Here 6, is the static contact
angle and ~yry, vrs and 7gs are equilibrium liquid-gas, liquid-solid and gas-solid (in the
approximation of undeformable solid substrate) surface tensions respectively. The Young-
Dupré equation then was probed by evaluating independently surface tensions 7y, vrs and
Yas from microscopic stress tensor disregarding solid-to-solid interactions?” and by directly

measuring 6y from equilibrium free-surface profiles.
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Surface tensions were evaluated using different geometrical set-ups with the duration of
the averaging varied from 1000 75 to 5000 7y depending on the signal-to-noise ratio. Liquid-
solid surface tension of the liquid s was calculated using a plane film of thickness ranging
from 1604 to 2504 set on the substrate with lateral dimensions 20 x 2005. We used
periodic boundary conditions in the tangential to the substrate directions and averaging
over five statistically independent observations with randomly generated surface roughness.
Liquid-gas surface tension yy was obtained in levitating, radius & 30 o, spherical drops.*!
At the same time, gas-solid surface tension of the gas ygs was evaluated directly in the
static simulations of droplets on the bandwidth of Az = 1004 of the substrate away from
the contact line using five independent measurements. One needs to note that the gas
phase was practically absent, and the surface tension v4g was zero in all cases but one with
monatomic particles, run (e), Table 1. The difference between two static contact angles
(measured geometrically and calculated wvia the Young-Dupré equation) was found not to

exceed the accuracy of the contact angle evaluations, Table 1.
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Figure 1: Snapshot of the moving cylindrical droplet (periodic in the z-direction) simulation
set-up, developed free surface profile with dynamic contact angle § = 134° (at the parameters
of run (a), Table 1, at H = 600y and U = 0.07 ug, ug = /€g/mys) and a cumulative set of
data, Table 1, represented as normalized contact line force F'//F* as a function of normalized
substrate velocity U/U*. The error bar shows the maximum deviation. The solid line is the fit

F./F* = (H(U(%J% The dashed line is the best fit F./F* = xIn (v/f/ +1/1+ (v/f/)Q),

v =U/U*, x = 0.25, V = 0.1. The total number of liquid particles in the simulations
was varied between 60,000 to 90,000. The solid wall was moving along the z-direction in
the set-up aligned in the [1,0,0] crystallographic direction of the face-centred cubic lattice
comprising the solid substrate. The free surface profiles were obtained using time averaging

over 5,000 7y following an equilibration period of 10,000 7y (79 = oy, /T—;) to reach a steady

state.
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Figure 2: Distribution of the density at the contact line region of a moving droplet, Fig. 1,
averaged over the droplet depth Az ~ 18 o and a time period At = 5,000 7, at parameters
of run (a) in Table 1, at H =600y and U = 0.1ug, ug = \/€5/my. Distance z is measured
along the substrate from the equimolar point of the surface density distribution ps(z), Fig.
3(d), and distance y is measured in the perpendicular to the substrate direction from the
equimolar point of the substrate particle distribution. The dark region corresponds to the
liquid phase. The dashed lines designate cut-off of the liquid-solid interface at y = 4oy (red
line) and the observation region of the friction force, surface density and surface velocity
distributions at y = 1.1 04 (blue line).
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Figure 3: Distribution of the tangential friction force d F', surface density pg, tangential and
normal components of surface velocity, v, and v, and the total force acting on the boundary
layer Ay = 1.1 adjacent to the substrate dF + f;; as functions of the distance z from the
equimolar point at the parameters from Table 1. All distributions were obtained after initial
equilibration for 10, 000 7y and averaging over five independent simulations each for 10, 000 7

(10 = op i”—];) (a) 0F(z), run (a) at different droplet widths H = 100, 60 and 45 o4, and

U = 0.1ug, ug = y/€g/mys. Symbols are direct MD simulations and the solid lines are the
distributions d F;,,(z) calculated by means of equation (2). The shaded area is the distribution
dF,, in macroscopic limit v, = U at U = 0.1ug, H = 10004 and B* = —0.94. (b) 6F(2),
run (a) at H = 600g, but at lower velocities U = 0.05up and U = 0.03ug. Symbols
are direct MD simulations and the solid lines are the distributions dF,,(z) calculated by
means of equation (2). (c¢) dF(z), run (d) at H = 600y and U = 0.06ug. Symbols are
direct MD simulations and the solid line is the distribution §F,,(z) calculated by means of
equation (2). (d) ps(z), run (a) at H = 600y and U = 0.1uy. Symbols are for direct MD
simulations and the dashed line is the fit p,(2). (e) vs(z) and v,(2), run (a) at H = 60 oy
and U = 0.1ug. Symbols are direct MD simulations and the dashed line through the v,
profile is v f,(2). Inset illustrates conservation of mass in the the boundary layer Ay = 1.1,
PsUp = pSAy%%, that is normal flux p,v,, shown by symbols and p;Ay %”; shown by the solid
line. (f) 0F (%) + frr(2), run (a) at H = 600 and U = 0.1 u.
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Figure 4: Surface friction force per unit area f; as a function of surface velocity vs. The
data (symbols) were obtained in rectilinear Hagen-Poiseuille flow driven by external force
applied to each liquid particle for the parameters listed in Table 1 after initial equilibration

for 5,000 7y and averaging over 5,000 7 (7o = o /%) in two different intervals of the width
Az = 100g. The flow direction to the solid wall lattice was the same as in the droplets
simulations, Fig. 1. The solid line is the function f; = f*md)j/% The dashed line is

the function f/f* = ¥In(v/V 4+ /1 + (v/V)2), v = v, /v*, ¥ = 0.8, V = 0.9.
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Figure 5: Dynamic contact angle # as a function of capillary number Ca = pU/~py in the
macroscopic limit H > 1, v, = U calculated from the modified Young-Dupré equation
yov cosf = —yrs + vgs — F by means of relationship (3) at A = 0.3. There were used
parameters of run (a) from Table 2 giving the best fit to the distribution of the force in Fig.
3(a) at H = 1000y and H = 600y, and U = 0.1ug. Symbols are the calculated values
of the contact angle 6 and the solid lines are the fit § = 6y + ACa + BCa? + C Ca® at
A~T8,B~ —35,C~9for H=1000F and A~ 91,B ~ —42,C =~ 11 for H = 600y. The
dashed line is the guide for eyes in the case H = 600y, but with A, = 3.8 0.
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