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ABSTRACT

Atmosphere-only and ocean-only variational data assimilation (DA) schemes are able to use window
lengths that are optimal for the error growth rate, nonlinearity, and observation density of the respective
systems. Typical window lengths are 6-12 h for the atmosphere and 2-10 days for the ocean. However, in the
implementation of coupled DA schemes it has been necessary to match the window length of the ocean to that
of the atmosphere, which may potentially sacrifice the accuracy of the ocean analysis in order to provide a
more balanced coupled state. This paper investigates how extending the window length in the presence of
model error affects both the analysis of the coupled state and the initialized forecast when using coupled DA
with differing degrees of coupling.

Results are illustrated using an idealized single-column model of the coupled atmosphere—ocean system. It
is found that the analysis error from an uncoupled DA scheme can be smaller than that from a coupled
analysis at the initial time, due to faster error growth in the coupled system. However, this does not necessarily
lead to a more accurate forecast due to imbalances in the coupled state. Instead coupled DA is more able to
update the initial state to reduce the impact of the model error on the accuracy of the forecast. The effect of
model error is potentially most detrimental in the weakly coupled formulation due to the inconsistency be-
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tween the coupled model used in the outer loop and uncoupled models used in the inner loop.

1. Introduction

Coupling processes between the atmosphere and
ocean are known to be important for seasonal and cli-
mate prediction, for example, for the accurate predic-
tion of El Nifio—Southern Oscillation (Barnett et al. 1993;
Jin et al. 2008). In addition to this, there is increasing evi-
dence to suggest the importance of atmosphere—ocean
interaction at the weather time scales, for example for the
prediction of the Madden—Julian oscillation (Shelly et al.
2014), coastal fog, and extratropical cyclones (Siddorn
et al. 2014; Vitart et al. 2008).

Until recently the initialization of coupled models for
the prediction of the Earth system has been performed
using uncoupled atmosphere and ocean states, produced
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from separate data assimilation (DA) systems (e.g.,
Saha et al. 2006; Molteni et al. 2011; Arribas et al. 2011;
MacLachlan et al. 2015). These uncoupled states are
then effectively “‘stitched” together to create an initial
state for the coupled forecast. There are a variety of
known problems with using uncoupled initial conditions.
These include the following:

« the generation of imbalances between the atmosphere
and ocean systems leading to an unrealistic and
sudden adjustment to balanced conditions in the
first part of the forecast (Balmaseda and Anderson
2009; Mullholland et al. 2015); and

» a suboptimal use of observations, particularly those
close to the air-sea interface, which depend on the
physics of both the ocean and atmosphere.

In an attempt to overcome many of these issues, coupled
DA methods, in which the atmosphere and ocean are
treated simultaneously, are being developed at operational
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centers worldwide (Saha et al. 2010; Lea et al. 2015;
Alves et al. 2014; Laloyaux et al. 2016). As well as for
the initialization of coupled models, coupled DA will
be used for reanalyses, in which it is necessary to provide a
consistent global transport of mass, water, and energy on
the relevant time scales (Dee et al. 2014).

Coupled DA is arelatively new field of research. Early
studies include those by Galanti et al. (2003), Zhang
et al. (2007), and Sugiura et al. (2008). Despite the
techniques proposed in these early studies not estimat-
ing the full atmosphere and ocean states simultaneously,
results showed that using a coupled atmosphere—ocean
model during the assimilation significantly improved the
accuracy of reanalyses and forecasts of seasonal to
interannual climate variations (such as El Nifio). An-
other early study is that of Lu and Hsieh (1998), who
used a simple five-dimensional coupled equatorial
model to investigate the use of coupled DA for both
state and parameter estimation. Within this study we
focus on the use of coupled DA for short- to medium-
range weather forecasting, which can be sensitive to the
interaction between the atmospheric boundary layer
and the oceanic mixed layer.

Implementing a fully coupled DA scheme in practice
faces many challenges. An immediate practical consid-
eration is the increase in the size of the state that needs
to be estimated, which makes the problem much more
computationally expensive. There are also more scien-
tific challenges that are invariably related to the very
different nature of the two fluids. The atmosphere is
much less dense than the ocean and also much more
unstable. There are also fundamental differences in the
available observations of the atmosphere and ocean.
The atmosphere is relatively densely observed, while the
ocean by its very nature is difficult to observe and sub-
surface observations generally only come from a sparse
array of in situ observations. These differences impact
on essential aspects of the implementation of coupled
DA, such as the specification of cross covariances be-
tween errors in the atmosphere and ocean systems (Han
et al. 2013).

In previous work, we used an idealized single-column
model to investigate different approximations to cou-
pled DA in the 4D-Var framework when no model error
is present (Smith et al. 2015). It was found that when
using a short window length of 12 h (consistent with that
used operationally for atmosphere only DA), a strongly
coupled formulation was able to provide the best anal-
ysis of the coupled initial state, having both a smaller
error and being more balanced than an uncoupled for-
mulation. A weakly coupled approximation was seen
to display some of these same benefits as the strongly
coupled formulation but was more sensitive to the
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resolution of the observations. In this paper we continue
this study, by investigating how the different approxi-
mations to coupled DA compare as the window length is
extended and model error becomes a greater issue.

Because of the different nature of the two fluids,
model error in the atmosphere has a much faster growth
rate than in the ocean. The growth rate of the model
error and the linearity assumption restricts the length of
the window in which observations can be assimilated in
4D-Var, and is an important factor in why a short win-
dow length of 6-12h is typically used in atmosphere-
only data assimilation (Rawlins et al. 2007), and a long
window length of 2-10 days is typically used in ocean-
only data assimilation (Weaver et al. 2003). Coupling
the two systems allows for the model error to interact
and may introduce a faster model error growth rate in
the upper ocean than in an uncoupled simulation.
Therefore, the model error in the coupled system re-
stricts the assimilation window to something shorter
than the optimal window length for an uncoupled ocean
DA scheme (Lea et al. 2015; Laloyaux et al. 2016). As
the ocean is poorly observed, this severely limits the
number of observations that can be assimilated and has
the effect of potentially sacrificing the accuracy of the
ocean initial state in order to provide a more balanced
coupled initial state. Even with the use of a shortened
window length, the ECMWF have found it necessary
to constrain the sea surface temperature to a gridded
analysis product in order to avoid the rapidly growing
bias in the model (Laloyaux et al. 2016). There is,
therefore, motivation to understand the effect of ex-
tending the window length, in the presence of increasing
model error, within the coupled DA framework.

The model error in the coupled system was studied by
both Magnusson et al. (2013) and Smith et al. (2013)
using the ECMWF Integrated Forecast System (IFS)
model coupled to the NEMO ocean model (Madec
2008) and the HadCM3 model, respectively. Both found
cold biases in surface temperatures. Magnusson et al.
(2013) believed this is due to imbalances in the energy
flux at the top of the atmosphere and a strong uptake of
heat in the ocean. Magnusson et al. (2013) also looked at
the bias in the 10-m wind speed and found it to be large
within the western tropical Pacific. They concluded that
this is due to a positive coupled feedback between wind
and SST: too strong winds lead to excessive upwelling,
which produces a colder sea surface temperature (SST)
that in turn produces stronger zonal winds.

Here we examine how model errors in the coupled
system affect the analysis and subsequent forecast in
coupled DA. The structure of the paper is as follows. In
section 2, the different approximations to coupled DA
that we consider are given. This is largely an overview of
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Outer loop "
Compute linearization state (2), Xg.,
Compute innovations (3), &y

A 4

Inner loop
Minimise linear approximation to cost
function (4), to obtain x,

Update estimate of initial state, X :=X{ + X,

Output analysis, X; = X}

FIG. 1. (left) Schematic of the incremental 4D-Var algorithm. (right) Illustration of the nonlinear
cost function (blue) and the linear approximations made on each inner loop (green).

results recently presented in Smith et al. (2015). In sec-
tion 3, the theoretical impact of model error is presented
with discussion of how the different coupling strategies
may be affected. In section 4, the design of the idealized
experiments is presented and an illustration of the
model error for a case study is shown. In section 5, re-
sults are shown for a series of assimilation experiments
applied to this case study in which the effect of model
error on the accuracy of the analysis and initialized
forecast are given. Finally, conclusions that can be
drawn from these experiments are detailed in section 6
along with a discussion of the insight provided on how to
account for model error in coupled 4D-Var.

2. Strategies for coupled DA

This present study will focus on incremental 4D-Var
methods (Courtier et al. 1994) in line with those being
developed at ECMWF and the Met Office (Laloyaux
et al. 2016; Lea et al. 2015). We note that methods based
on the ensemble Kalman filter are also being developed
with interesting results (e.g., Frolov et al. 2016; Zhang
et al. 2007) but will not be included in the comparison of
methods presented here. We consider three different
strengths of coupling within the 4D-Var scheme:

1) strongly coupled, in which the ocean and atmosphere
are updated together. This is the epitome of what
coupled DA schemes are trying to achieve, but is
currently not practical for operational sized models;

2) weakly coupled, an approximation to strongly cou-
pled, which makes use of the inner-loop structure of
incremental 4D-Var to simplify the algorithm. This
makes it feasible to implement in current operational
settings, particularly when different assimilation
schemes have been implemented in the atmosphere
and ocean; and

3) uncoupled, in which the atmosphere and ocean are
updated independently of each other.

An in-depth description and study of these different
coupling strategies in the case of no model error is given
in Smith et al. (2015). Here a brief summary of the dif-
ferent algorithms is given.

As stated above, each method is based on incremental
4D-Var, which minimizes iteratively a series of linear
approximations to the full 4D-Var cost function given by

T05) = 50% ~ X0 B %, = x0)
+ %[y — xRy - 7(x)]. (1)

The two sources of information about the initial state
are given by x}, the background state (or first guess,
usually provided by a previous forecast valid for the
time of interest), and y, a vector of all observations
throughout the assimilation window. The operator
J/(x,) is the generalized observation operator, a map-
ping from the initial state to all the observation variables
and times. This differs from the observation operator
77( ), which maps the model state at time #; to obser-
vation variables at time ¢;. The variable B is the back-
ground error covariance matrix and R is the observation
error covariance matrix.

The incremental 4D-Var algorithm can be expressed
in terms of a series of outer and inner loops, illustrated in
Fig. 1. In the outer loop, the linearization state x;,, over
the time window [fo, ,], and the innovations 8y are
evaluated. The linearization state is given by

Xg
MG, 15,1)

@)

LX)

where 7 is the number of time steps in the assimilation
window and .Z(xo, l, t;) is the propagation of the
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model state at time ¢, to time ¢;. The vector x§ refers to
the current estimate of the initial state; initially this will
be the background, but it will then be updated on each
outer loop. The innovations are then given by the dif-
ference between the observations and the estimate of
the initial state mapped to observation space:

8y =§ — H(x5). 3)

The computation of the initial state mapped to obser-
vation space, .7 (x3), utilizes the linearization state in
the following way:

[(x§)], =7, [ (5. 1,1)] = T (x). (4

In the inner loop a linear approximation to the full
cost function (1) is then minimized with respect to
8xp = Xp — X§:

Jox) = 5lo%,~ (4= XITB [3x, ~ (5 — x5
+ 2oy~ Hox) R Gy —Hox,).  (9)

where HSx is a tangent linear (TL) approximation to
T (xo) — . 77(x8), linearized about x§ . This can be sep-
arated out in terms of the TL approximation to the ob-
servation operator H and the dynamical model M:

HO
Hl MO:l

H M

n o 0n
where

_ &//Z(XO, tys ti)
0 X :

M ™)

0
Once the minimization of J(6x) has met a given cri-
terion, the estimate of the initial state is updated:
x5 =X + 8xo. The ‘“‘analysis,” which is used to initialize
the forecast, is then given by xj once the outer loop has
converged, or a maximum number of iterations has been
performed (Courtier et al. 1994; Lawless 2013).

a. Strongly coupled

In strongly coupled DA the state vector x, includes
both the atmospheric and oceanic variables. The non-
linear (NL) model . Z used to calculate (2) is the fully
coupled model, and the exact TL approximation to
T (xo) — T (x3) is used in (5). Within this formulation,
the covariance matrix B may include cross covariances
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between errors in the atmosphere and ocean and the
observation operator may account for the sensitivity of
observations to both the atmosphere and ocean. Exactly
how to derive the background error cross covariances
between the atmosphere and ocean is an area of active
research (e.g., Han et al. 2013).

A benefit of 4D-Var over 3D-Var is that the inclusion
of the model dynamics allows for some flow dependence
to develop in the background error covariances
(Thépaut et al. 1996). In Smith et al. (2015) strongly
coupled DA was found to be able to generate implicit
correlations between the atmosphere and ocean states
and, hence, observations of the atmosphere were able to
influence the analysis of the ocean and vice versa, even
when no explicit correlations in the background errors
were specified. This provided a more balanced analysis
and allowed for more information to be extracted from
the observations.

b. Weakly coupled

In weakly coupled DA the coupling between the at-
mosphere and ocean is only accounted for in the outer
loop. In practice, this means that the state vector xj still
includes both the atmospheric and oceanic variables and
the NL coupled model is still used to calculate (2).
However, instead of using the exact TL approximation
as in strongly coupled DA, an uncoupled approximation
is used. Therefore, (5) can be split into two cost func-
tions: one corresponding to finding the increment to the
atmospheric state 8x3™, and the other corresponding
to finding the increment to the oceanic state 6x;°*". This
means that although it is possible for the observation
operator to account for the sensitivity of observations
simultaneously to both the atmosphere and ocean in (3),
the calculation of 6x3"™° and 6x3°*" in the minimization
of (5) does not account for this. Similarly, it is not pos-
sible to include cross covariances between background
errors in the atmosphere and ocean.

As suggested by the name, this formulation reduces
the strength of the coupling. Since the innovations in (3)
are computed in observation space and .7 is able to
contain contributions from both the updated ocean and
atmosphere, the strength of the coupling can be seen to
be related to the density of the observations, particularly
those that are sensitive to the coupling of the ocean and
atmosphere. However, as B, H, and M are not coupled,
atmospheric observations cannot update the ocean state
directly, and vice versa. Therefore, even if cross corre-
lations between the atmosphere and background errors
were not included in strongly coupled DA, it is not
simply a case of the weakly coupled scheme converging
to the strongly coupled scheme as more outer loop it-
erations are performed. This means that compared to
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strongly coupled DA the risk of initialization shock is
increased and weakly coupled DA is particularly sensi-
tive to the frequency and density of observations (Smith
et al. 2015).

This approach is the essence of that currently being
investigated by the ECMWF (Laloyaux et al. 2016) and
Met Office (Lea et al. 2015). However, in the initial
implementation at these centers there are some differ-
ences to the clean form we present here. Most notably,
both the ECMWF and Met Office only use 4D-Var for
the atmosphere and instead use 3D-Var first guess at
appropriate time (FGAT) for the ocean. Another im-
portant point is that the Met Office currently only per-
forms one outer loop while the ECMWF perform two,
increasing the strength of the coupling.

¢. Uncoupled

In uncoupled DA the state vector is separated be-
tween the atmosphere and ocean components. The
uncoupled nonlinear models are used to compute (2),
with the boundary conditions at the interface specified
externally, and the exact TL approximation of each
uncoupled model is used in the minimization of (5) to
approximate the nonlinear models used. There is,
therefore, no exchange in information between the at-
mosphere and ocean and the analysis increments §x§™°
and 6x(°“" may be inconsistent. It is this inconsistency
that can lead to initialization shocks.

To conclude this section, we state that our aim is to
understand how each of these coupling strategies (sec-
tions 2a—c) reacts to errors in the coupled model equa-
tions. In particular, we examine whether there may be
benefit to using the uncoupled and weakly coupled for-
mulations if the error growth rate is larger in the coupled
model compared with the uncoupled model. In the next
section, a brief summary of the theory of model error in
4D-Var is given along with an examination of how model
error may enter into the different coupling strategies.

3. Model error in 4D-Var

There are many different potential sources of model
error in coupled atmosphere—ocean models. In practice
it is rare to be able to identify (and correct) a single
cause of model error within the model itself. Neverthe-
less, attempts have been made. For example Vanniere
et al. (2014) demonstrated a systematic approach for
identifying sources of error in tropical SSTs. This in-
volved performing seven separate simulations using
coupled and uncoupled models, with different coupling,
forcing, and initialization strategies. Such a method
shows promise for aiding model development to reduce
model error but it cannot eradicate it.

FOWLER AND LAWLESS
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In 4D-Var, model error can be seen to manifest itself
through the calculation of the innovations (3), in which it
is assumed that .77 (xp) provides the exact mapping be-
tween state and observation space. In the presence of
model error this no longer holds. Instead, under the
assumption of additive model error, we have the fol-
lowing relationship between the truth in state space x|,
and the truth in observation space y’:

§' = () = A () + 7 | (®)

where .7/' is the exact mapping but .77 is the mapping
used within the assimilation. The error in the general-
ized observation operator ¢” has the same dimensions
as the observation vector and incorporates error in the
model equations described in (2). Within this current
work it is assumed that the error arises from the dy-
namical equations rather than the observation operator
77 . Errors may also be present in the observation oper-
ator, which are often considered to be errors of repre-
sentativity. This is a vast error of research (e.g., Waller
et al. 2014; van Leeuwen 2015; Bormann et al. 2014), but
will not be considered further in this current work; that is,
we will assume the observation operator .7 to be perfect.

If model error is unaccounted for then B, ﬁ, and H
remain unchanged in the 4D-Var algorithm. Therefore,
the computation of the analysis x* can still be given by
the theoretical linear approximation:

x‘=x’+ Kly - 7Z(xb)} , )

where K is known as the Kalman gain matrix given by
BHT(R + HBH")'. With multiple outer loops x” in (9)
would be replaced by the current outer-loop iterate, and
K computed with a H linearized around the current
outer-loop trajectory. However, as the generalized ob-
servation operator is no longer optimal the error co-
variance of the analysis will be inflated, with covariance
equal to
P+ KE[(¢” — E[¢”])(e” — E[”])"IK",  (10)
where E[ ] is the mathematical expectation and P? is the
analysis error covariance if Vi (x) were correct. In de-
riving (10), it is assumed that the model error is un-
correlated with the observation and background error.
In addition to this, if the random variable ¢” is biased
then the analysis will be biased, that is
E[e'] = KE[e”], (11)
where ¢’ =x“ — x| (the analysis minus the true initial
state). The derivations of (10) and (11) can be found in
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the appendix. In a similar way, it can be shown that the
expected value of the cost function evaluated at the
analysis will also be increased, as it becomes impossible
to fit to both the background and the observations in a
way that is consistent with the prescribed error co-
variances (Dee 1995).

From (10) and (11) we see that the impact that the
model error has on the analysis error depends on the
Kalman gain matrix. The larger the elements of K are,
the greater the impact of model error, or in other words
the more dominant the observations are (due to either
their number or their accuracy) in computing the anal-
ysis, the greater the impact of model error.

In addition to the nonlinear model error present in the
outer loop, an error in the TL approximation to the NL
model used in the assimilation is also present in the inner
loop of incremental 4D-Var. Let

b = 7 (x, + 8x,) — H(x,) — Hox, (12)
be the tangent linear model error in observation space.
For each of the coupling strategies the choices of 7 and
H differ and so the error in the generalized observation
operator and the TL model error is different in each
case:

Strongly coupled:
7 = (%) = T(xt) (13a)
et = 778+ 5x,) — 7 (x8) — |:|°5X0- (13b)
Weakly coupled:
€7 = TX) = (X)) (142)

b = 77°(x§ + x,) — 7°(x) — H*6x,.  (14b)

Uncoupled:
7 = (%) — T (x) (15a)
L = 7 (x§ + 8x,) — 77" (x5) — H™x,. (15b)

The superscripts “‘c’” and ““uc” refer to the coupled
and uncoupled assimilation models. We note that the
truth, j//’(xf)), is always coupled by definition. From
these equations it is clear that ¢” is the same for the
weakly and strongly coupled formulations due to the
outer-loop calculations being the same. For the strongly
coupled and uncoupled methods the exact tangent linear
of the erroneous nonlinear model is used in the inner
loop. In these cases the incremental 4D-Var scheme is
equivalent to a truncated Gauss—Newton iteration and,
provided that the inner loop is solved to sufficient
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accuracy, the outer-loop iterates should converge to a
minimum of the corresponding discrete cost function
and the TL error should tend to zero. On the other hand,
for the weakly coupled assimilation the uncoupled tan-
gent linear models only provide an approximation to the
true linearization of the coupled model used in the outer
loop. In this case the incremental 4D-Var scheme is a
perturbed Gauss—Newton method and, under certain
conditions, will converge to a solution close to the
minimum of the discrete nonlinear cost function, but not
equal to it (Lawless et al. 2005; Gratton et al. 2007). In
practice, however, the tangent linear model always
contains some approximations, since it is usually run at a
lower resolution than the outer-loop nonlinear model
and may not include the linearization of all physical
parameterizations.

There are also differences in the way the linearization
trajectory is defined. For the weakly coupled case, H™ is
linearized about the coupled trajectory given by J?C(xﬁ)
and the boundary conditions at the air-sea interface
(BCs) used to force H* are calculated using the NL
coupled model. For the uncoupled case, H* is linearized
about .77"(x$). The BCs for the uncoupled model runs,
_,72/“°(xﬁ) and H™, are prescribed externally.

4. Experimental design

Following on from Smith et al. (2015) we make use
of a single-column model of the coupled atmosphere—
ocean. We aim to create an experimental setup in which
we believe the model error to have characteristics of the
error seen in an operational coupled atmosphere—ocean
model. That is, we wish for the growth rates of the model
error in the atmosphere to be much larger than in the
ocean and to be complex in nature. Below details of
the “true” and erroneous model are given. We assume
the error to originate from missing physics, erroneous
parameter values, and errors in the large-scale forcing.

a. “Truth” model

The model that represents the truth in our idealized
experiments comprises the ECMWF single-column
model (SCM), which originates from an early cycle of
the IFS code, coupled to a single-column ocean mixed
layer model. A brief description of the key features of
the model follows. A more complete description of the
dynamical core equations and discretization is given in
Smith et al. (2015).

1) THE ATMOSPHERE

The atmospheric component of the coupled model
solves the primitive equations for prognostic variables:
temperature 7, specific humidity g, and ageostrophic
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TABLE 1. Locations of the reduced observations in the atmo-
sphere used in experiments in section 5d. Pressure level values are
based on a surface pressure of 1018.5 hPa.

Model level Model full pressure level (hPa)

17 18.815
22 54.624
25 95.980
30 202.230
33 288.093
39 501.637
49 861.497
56 995.055

zonal u and meridional v wind. The model is forced ex-
ternally by horizontal advection for each of the prog-
nostic variables and by the geostrophic component of the
winds. Tendencies due to subgrid-scale physical processes
are also included to represent the effect of radiation,
turbulent mixing, moist convection, and clouds.

The vertical discretization of the equations for the
atmosphere component uses the hybrid vertical co-
ordinate scheme developed by Simmons and Burridge
(1981) to describe the atmosphere on 60 model levels.
This allows for greater resolution in the planetary
boundary layer (maximum resolution is ~15m), with
decreasing resolution toward the top of the model do-
main (minimum resolution is ~4 km) at 0.1 hPa.

2) THE OCEAN

The ocean mixed layer model is based on the K-profile
parameterization (KPP) vertical mixing scheme of Large
et al. (1994). The code was originally developed by the
National Centre for Atmospheric Science (NCAS) Cen-
tre for Global Atmospheric Modeling at the University of
Reading (Woolnough et al. 2007) and incorporated into
the ECMWF SCM code by Takaya et al. (2010).

The prognostic variables in the ocean are the mean
values of temperature 6, salinity s, and zonal u, and
meridional v, currents. The KPP model describes mix-
ing in the boundary layer near the surface and mixing in
the interior ocean. This includes the effects of shear in-
stability, internal wave breaking in the interior of the
ocean, and double diffusion. The model is forced by
solar irradiance at the upper boundary and by externally
specified geostrophic currents.

The ocean model uses a stretched vertical grid of
Takaya et al. (2010) with 35 levels from the surface to a
depth of 250 m. The resolution is increased in the upper
layers in order to simulate the diurnal SST variability;
the top model layer is chosen to be 1 m thick and there
are 19 levels in the top 25m. Some examples of the
model level heights/pressures for the atmosphere and
ocean are given in Tables 1 and 2, respectively.
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4013

TABLE 2. Reduced observation locations in the ocean used in ex-
periments in section 5d.

Model level Depth (m)
1 1.000
5 5.277

10 11.406
16 20.173
20 28.100
23 37.366
25 46.985
27 61.498
29 83.818
31 118.214
33 170.778
35 250.00

3) ATMOSPHERE-OCEAN COUPLING

Coupling of the atmosphere and ocean components of
the model occurs at every time step (15min) via the
exchange of latent and sensible heat fluxes and surface
momentum flux from the atmosphere to the ocean. The
updated ocean model sea surface temperature is passed
back to the atmosphere where it is then used in the
computation of the atmosphere lower boundary condi-
tions for the next step. Fluxes are estimated from bulk
formulas, with the method of Louis et al. (1981) used to
calculate the transfer coefficients.

b. Assimilation and forecast models

The coupled model used for the coupled DA experi-
ments and to produce the coupled forecasts is similar to
that used in Smith et al. (2015). In comparison with the
truth model this has missing physics in the atmosphere,
representing just advection, vertical diffusion, and tur-
bulent mixing. It also has a positive bias in the large-
scale forcing of the horizontal advection terms for the
atmosphere. In the ocean, perturbed parameters for the
diffusion parameters are used (details of which are given
in Table 3) and there is no nonlocal mixing. The pa-
rameters that are perturbed each affect the mixing in the
erroneous model. However, their combined effect is
minimal compared to the errors propagating down from
the air-sea interface.

The uncoupled models used by the uncoupled DA ex-
periments are the same as those used for the coupled
forecast with the exception that there is no exchange in
information between the two components. Instead the
surface fluxes needed to force the ocean component and the
SSTs needed to force the atmosphere component are pre-
scribed externally. In this study we consider two options:

1) poor BCs: BCs given by ERA-Interim (Dee et al.
2011) and Mercator (Lellouche et al. 2013) reanalyses
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TABLE 3. Parameters modified to create model error in the ocean component of the coupled model.

Name Description True value Value used in assimilation and forecast
RRINFTY Critical Richardson number for shear instability 0.8 0.7
RDIFMw Background/internal waves viscosity(m”s ') 1.5x107* 1.0 X 107°
RDIFSw Background/internal waves diffusivity(m?s 1) 1.5 x107° 1.0 X 1073
RDIFMpax Max viscosity due to shear instability (m*s ') 5x107? 1.0 X 1072
RDIFSyax Max diffusivity due to shear instability (m?s™!) 5x107° 1.0 X 1073

products. These products are inevitably inconsistent
with the idealized model used in these experiments. In
addition to this, the SSTs obtained from the Mercator
product have no diurnal cycle, with only a daily
averaged value provided.

2) good BCs: BCs given by output from the truth model,
7' (x). The output is prescribed at every 6 h with linear
interpolation to provide BCs at intermediate times.

c¢. Illustration of model error

The model error that results from this setup is illus-
trated for a case study relevant for July 2014 for a point
in the northwestern Pacific (25°N, 188.75°E). The initial
conditions are obtained by running the truth model for
1 day initialized by data taken from ERA-Interim re-
analysis for the atmosphere and Mercator ocean re-
analysis for the ocean valid at 0000 UTC 2 July 2014.
Obtaining the initial conditions in this way ensures that
they lie on the true model ““attractor.” Forcing fields are
also calculated from these reanalysis products, specified
6-hourly throughout the forecast period, with linear in-
terpolation between these times. The true evolution of
the atmospheric and oceanic temperature over an in-
tegration time of 4 days is shown in Fig. 2.

In Figs. 3-6 the NL and TL model error for tempera-
ture in the atmosphere and ocean are shown, computed
using (13)—(15). If we assume that the entire state is ob-
served at every time step then the NL model error is
equivalent to ¢” and the TL error is equivalent to '". In
this case the TL error has been computed for a pertur-
bation equal to the truth minus the background to be used
in the assimilation experiments presented in section 5.

In Figs. 3 and 4 we see that in the atmosphere the NL
and TL model error are fairly insensitive to the coupling
strategy above the boundary layer (level 50 and above)
and within the boundary layer only small differences can
be seen. This suggests that for our model setup the lower
boundary is not a great source of error. This could also be
expected in general as the ocean acts as a “‘slave” to the
atmosphere and so changes to the ocean will not have an
immediate effect on the atmosphere at short time scales.
In each case we see a large warm bias forming in the NL
model between levels 40 and 50, which corresponds to

approximately 1.2-4.7km. There is also a cool bias de-
veloping at level 30, which corresponds to approximately
12 km, roughly the top of the troposphere. Compared to
the NL model error the TL model error is small (ap-
proximately 20% of its value) and should reduce
throughout the minimization procedure.

Figures 5 and 6 show that the behavior of the model
error in the ocean is much more sensitive to the upper
boundary, suggesting that the atmosphere is a large
source of error over the 2-day forecast window. For the
coupled NL model (used in the strongly and weakly
coupled scheme) we see that there is a cool bias at the
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FIG. 2. The simulated true evolution of temperature in the (top)
atmosphere and (bottom) ocean over an integration time 4 days.
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surface, peaking at the diurnal maximum (roughly 24
and 48h into the forecast), overlying a warm bias. This
suggests that in the coupled model the heat originating
from the atmosphere is being mixed down too quickly.
This is seen to result in a large warm bias at level 20
(approximately 25m) after 1 day, corresponding to the
thermocline being deepened too quickly. This hypoth-
esis is consistent with the error in the lower winds, which
are also seen to have a positive bias (not shown) and are,
therefore, causing too much momentum to be passed to
the ocean and, hence, too much mixing in the upper
ocean. Experiments (not shown) in which the uncoupled
ocean model is run with the true heat fluxes but erro-
neous momentum fluxes (either computed from the
coupled erroneous model or prescribed externally from
the ERA-Interim product) show that the errors in the
momentum fluxes explain a large part of the errors in the
NL ocean model component seen in Fig. 5.

For the uncoupled model, Figs. 5 and 6 show the error in
the ocean to be very sensitive to the prescribed BCs. In
particular, we note that when the error in the BCs is neg-
ligible (last panel) the NL and TL model error is

substantially reduced. When poor BCs are used, the error
in the oceanic temperature may be larger than in the
coupled model, but because the errors are not dynamically
coupled to the atmosphere they are of a completely dif-
ferent nature to the errors in the ocean component of the
coupled model. Most notably there is an underestimation
of the mixing of the heat into the ocean caused by an un-
derestimation of the prescribed surface momentum flux
(not shown), whereas in the coupled model there is an
overestimation of the mixing as discussed above.

In contrast to the atmosphere, the TL error in the
ocean (Fig. 6) is of comparable magnitude to the error in
the NL model (Fig. 5). However, both are substantially
smaller than the errors seen in the atmosphere.

In both the atmosphere and ocean it is interesting to
note that the error in the approximate TL used by the
weakly coupled formulation is only slightly larger than
using the exact TL in the strongly coupled formulation.
The main difference in the atmosphere occurs in the
lowest 10 levels (corresponding to the BL) where the
errors are seen to be maintained longer into the simu-
lation. In the ocean the greatest differences are at
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around level 20 (corresponding to the thermocline).
Although these differences are small, we will see in
section 5d that in some circumstances they can lead to
differences in the balance between the ocean and at-
mosphere analyses.

d. Assimilation experiment design

Within this section the details of the assimilation ex-
periments setup are given. The aim of the experiments is
to study the effect of the model error on the assimilation
of observations. We concentrate on the case study pre-
sented above so that the link between the resulting
analysis and the realization of the model error is explicit.
Experiments using data from a June 2013 case study for
the same location gave qualitatively similar results so
are not included but give us the confidence that our re-
sults are robust.

The experimental design is essentially a biased twin
experiment, in which the truth is known (see section 4a)
and observations are made directly from this known
truth. A biased model (see section 4b) is then used to
assimilate these observations.

In the following experiments the background error co-
variance matrix B is assumed to be diagonal. This s a large
simplification but allows for a clean comparison between

the three different coupling strategies introduced in
section 2. The variances of the background error are
estimated from the variance in a time series of model
output as described in Smith et al. (2015). The back-
ground is then computed by generating white noise
with the background error variances, adding it to the
true profile at 24 h prior to the initial time of interest
and running the coupled forecast model forward 24 h.
This ensures that the background profile lies on the
coupled model attractor. As the errors in the back-
ground will have grown throughout the forecast the
background error variances are then inflated so that
they are consistent with the errors in the background
profile. The background error standard deviations are
shown in Fig. 7.

In the following experiments observations are made
of the truth at every model level at 3-hourly intervals in
the atmosphere and at 6-hourly intervals in the ocean.
The spatial density of the observations has been chosen
to accentuate the effect of the model error, which as seen
in (10) and (11) is greatest when the observations play a
dominant role in calculating the analysis, implying that
the effect of model error will be greater with denser
observations, especially when coinciding with the region
of large model error. The frequency of the observations
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FIG. 5. As in Fig. 3, but for nonlinear model error ¢” for oceanic temperature (K).

has been chosen to mimic the reduced availability of
observations in the ocean compared to the atmosphere.

The observations, simulated from the truth model, are
consistent with a prescribed error variance that is as-
sumed to be known exactly in the assimilation. The
observation error standard deviations, the values of
which are plotted in Fig. 7, are constant for each variable
and independent of height. We note that humidity is not
observed.

The inner loop is stopped when the relative change in
the gradient is less than 0.001. The number of iterations
needed depends on the assimilation scheme used and the
window length. In general, more iterations are neces-
sary with the strongly coupled scheme. To improve
convergence a simple preconditioning of the control vector
is used. Instead of minimizing (5) with respect to 6x it is
instead minimized with respect to a transformed variable
equal to B !”25x). Such a transformation is commonly
used in operational data assimilation [see, e.g., Bannister
(2008) and references therein]. In additional tests (not
shown) it has been found that for all DA strategies three
outer loop iterations are sufficient for convergence; how-
ever, results will also be shown for the weakly coupled
scheme in which only one outer loop is performed.

5. Assimilation results
a. Sensitivity to window length

It can be expected that the assimilation results will be
sensitive to the assimilation window length. If no model
error is present and the TL error remains small then
increasing the window length can be expected to reduce
the analysis error as more observations become available
for assimilation. However, in the presence of model error
the analysis error will increase in accordance with (10)
and (11) as the model error grows throughout the window
and the greater number of observations accentuates its
effect. In Figs. 8 and 9 the absolute analysis errors
(computed from the difference from the true state) at the
initial time for the different coupling strategies are given
for assimilation window lengths of 6 and 48h.

In Fig. 8 we see an increase in the analysis error of
atmospheric temperature for all coupling strategies
as the window length increases (note the change in the
x-axis scale). This is most noticeable at levels 45 and
25-30 where the analysis becomes significantly poorer
than the background (gray line). These levels coincide
with the large biases seen in the assimilation model that
develop after approximately 12 h (see Fig. 3).
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In Fig. 9 we see that for the analysis of oceanic tem-
perature the error does not increase in the same way as the
window length is increased. Instead it appears in places
that the analysis error reduces, particularly between levels
6 and 10, with the uncoupled DA schemes (red lines)
showing the greatest reduction in error. This is consistent
with the longer window length allowing for the observa-
tions to provide more information about the true ICs and
the diurnal cycle of the evolution of the mixed layer. The
fact that the uncoupled analyses (especially with the good
BCs) outperform the coupled analyses was expected from
Fig. 5. The opposite is true closer to the surface at around
level 2 despite the improvement in temperature at level 1.
This could be indicative of the inability of the uncoupled
methods to utilize information from the atmospheric ob-
servations to constrain the ocean analysis.

It is interesting to note the difference between the an-
alyses using the weakly coupled scheme when one and
three outer loops are performed (green dashed-dotted
and green dashed lines, respectively). We see that for both
window lengths an improved analysis is given when only
one outer loop is performed around levels 6-9. The reason
for this could be due to the fact that the model error due to
the coupling is only experienced in the weakly coupled
scheme during the outer-loop update, and so more outer

loops implies that the coupled model has a greater influ-
ence on the analysis [see Smith et al. (2015)]. Therefore,
performing fewer outer loops reduces the effect of the
model error allowing for a more accurate analysis.

We also observe differences between the coupled and
uncoupled analyses at level 18, just above the thermocline,
where the coupled analyses are more accurate than the
uncoupled. From Fig. 5 we see that the model error in this
region propagates down from the surface. Therefore, the
larger analysis error seen in the coupled analyses at the
surface down to level 10, for a 48-h window, may in fact be
correcting for the error deeper down and, hence, allowing
for the model prediction in this region to become more
consistent with the observations and the information in
the observations to be interpreted correctly. No scheme is
able to correct the large error at the thermocline due to
the relatively small background error variances in this
region (caused by the fact that there was little variation in
this feature in the forecast used to estimate the back-
ground error variances, see section 4d).

b. Forecast error when initialized from the analyses

The potential for the coupled DA scheme to produce
a poorer ocean analysis in the presence of model error
has been demonstrated. However, often the aim of data
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assimilation is not to produce the most accurate initial
conditions but the most accurate forecast. In this section
we look at the error in the forecast produced using the
coupled erroneous model when initialized by the differ-
ent analyses computed with the 48-h assimilation window
in the previous section. Figure 10 shows the error in the
forecast of atmospheric temperature. The top two panels
show the error in the forecast using the erroneous model
when initialized with the true ICs (left) and the back-
ground (right). The other panels show the error in the
forecast when initialized with the different coupling DA
strategies (due to the similarity between the weakly
coupled results when one and three outer loops are per-
formed, only the results with three outer loops are
shown). It can be seen that the error in the analysis at the
initial time (seen in Fig. 8 in which the error in the ana-
lyses was larger than for the background between levels
25 and 30 and at level 45 in the case of a 48-h window
length) has helped to restrict the growth of the warm bias
around level 45 and the cool bias around level 30 in the
forecast initialized by the analyses at later times, com-
pared with using the true ICs. This is because, in order to
minimize the cost function an analysis was found that
gave a good fit to the observations throughout the 48-h
assimilation window and not just at the beginning of the

window. This effect of model error in variational data
assimilation has been noted previously in the work of
Wergen (1992) and Griffith and Nichols (2000).

In Fig. 11 the forecast error for the atmospheric var-
iables is summarized by the root-mean-square error
(RMSE) averaged over all atmospheric levels, plotted
as a function of time. The reduction in the forecast error
for temperature initialized using the analyses (colored
lines) compared to the true ICs (black line) is clear after
12h into the assimilation window and is maintained
throughout the 48-h assimilation window and the fol-
lowing 2-day forecast. The forecast error is also seen to
be mostly reduced for the wind fields, which displays an
inertial oscillation in magnitude. Note that humidity is
unobserved, which explains why the forecast error is not
reduced when initialized with the analyses compared to
initialing with the truth.

In Fig. 12 the error in the forecast of oceanic tem-
perature when initialized by the different states is
shown. The reduction in the forecast error when ini-
tialized using the different analyses compared with ini-
tialization from the truth is not as clear as for the
atmosphere. However, the forecasts initialized using the
coupled DA strategies (middle row) do result in an
improved forecast in the region of the thermocline
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compared to the forecast initialized with the true state,
which is particularly noticeable beyond 2 days. This is
because, although using the coupled nonlinear model in
the assimilation resulted in a larger analysis error in
some regions of the ocean, it is consistent with the
coupled model used to produce the forecast. Therefore,
as in Fig. 10, errors at the initial time have helped to
restrict the growth of the errors due to the imperfect

window length 6hr

window length 48hr

model. It is interesting to note that this is also the case
for the weakly coupled analysis with only one outer loop
that was seen to give a more accurate analysis of the
ocean temperature than when more outer loops were
performed (see Fig. 9). We can, therefore, speculate that
in this case even with just one outer loop the weakly
coupled scheme, by linearizing around the coupled tra-
jectory, has allowed for an analysis consistent with the
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FIG. 9. As in Fig. 8, but for ocean temperature.
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coupled model. The improvement seen in the error in
the thermocline suggests that the assimilation has re-
duced the amount of heat being mixed down from the
surface. From Fig. 13 we can see that this is not due to a
substantial improvement in the momentum fluxes. In
fact the fluxes initialized by the strongly coupled analysis
are worse in many places, and may support the idea that
surface heat fluxes are compensating for errors else-
where in the coupled model, as found in the studies of de
Szoeke and Xie (2008) and Zheng et al. (2011).

The results presented in Fig. 12 clearly demonstrate
the advantage of using the coupled scheme over the
uncoupled scheme in reducing the error in the ocean

forecast. Despite the model error it is important that the
assimilation and the forecast models are consistent with
one another. In the next section we show that this is
particularly true when forecasting using the coupled
system, as it is essential not only that the analysis allows
for a good fit to the observations but also that the at-
mosphere and ocean analyses are in balance with one
another.

c. Initialization shock

A benefit of coupled DA in the absence of model
error is its ability to reduce the occurrence of initiali-
zation shock by updating the atmosphere and ocean as a
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coherent system, and in turn find an analysis that lies on
the forecast model attractor. In previous work (Smith
et al. 2015) initialization shock was found to be evident
in the first few hours of forecast of SST. We now ex-
amine whether coupled assimilation can still reduce the
shock when model error is present and so the true at-
tractor and model attractor differ.

In Fig. 14, 72- and 3-h forecasts of the SST are given
using the coupled model initialized using the different
assimilation schemes with a 48-h assimilation window. It
is clear that although the uncoupled analyses are closer
to the true SST at the initial time they quickly deviate
from the truth and have a much less realistic forecast
during the first hour than the coupled analyses. Beyond
the first few hours the forecasts initialized using the
uncoupled analyses continue to be poorer than the
forecasts initialized using the coupled analyses. We can,
therefore, conclude that, in this case, the presence of
model error at the atmosphere—ocean interface does not
adversely affect the ability of the coupled DA to
produce a state consistent with the coupled forecast
model. The fact that the forecasts initialized with the
coupled analyses still have a large cool bias in the SST,
comparative to the bias when initialized by the un-
coupled analyses, is most likely related to the reduction
in the warm bias seen in the thermocline (see Fig. 12).

d. Effect of strength of coupling in “weakly
coupled” DA

The strength of the coupling in weakly coupled DA is
controlled by the number of outer loops performed and
the resolution of the observations (Smith et al. 2015). In
the previous experiment (using three outer loops and
dense observations), the weakly coupled scheme is seen to
perform in a similar way to the strongly coupled scheme.

Within this section we wish to understand how the
model error affects the analysis when the strength of
coupling in weakly coupled DA is reduced. Unfortu-
nately the number of outer loops and the resolution of
the observations also have a significant impact on the
analysis in other ways, too, making it difficult to perform a
clean experiment showing just the effect of the reduced
coupling. For example, reducing the number of outer
loops reduces the ability to find the minimum of the cost
function and reducing the number of observations means
that the effect of the observations and model error on the
analysis is reduced [see (10) and (11)], so that there will be
less deviation from the background no matter which as-
similation scheme is used.

Given these caveats the assimilation experiments are
now repeated using sparser observation (both tempo-
rally and spatially). In the atmosphere the frequency of
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FIG. 12. As in Fig. 10, but for ocean temperature.

the observations is matched to the 6-h frequency of the
oceans (the frequency of the ocean observations remains
at 6-hourly) and in both systems the vertical resolution of
the observations is reduced to the levels given in Tables 1
and 2. With this setup little difference was seen in the
results between using one or three outer loops in the
weakly coupled formulation. This is because reducing
the observations means that the effect of the outer-loop
update of the innovations is reduced. Therefore, all the
results that follow use three outer loops.

In Figs. 15 and 16 we see that the analysis error is more
comparable to the denser observation case with a 48-h
window (see Figs. 8 and 9) if we increase the window
length to 96h. In particular, we see that we still get a
large spike in the analysis error at level 45 in the atmo-
spheric temperature and we see a reduction in the
analysis error (cf. the background error) when the un-
coupled methods are used around levels 5-10 in the

oceanic temperature. This is because we are still
assimilating a similar number of observations so that the
effect of the observations and model error is still sig-
nificant allowing for the analysis to divert from the
background.

We expect this setup to reduce the strength of the
coupling within the weakly coupled scheme because,
although observations are available for a longer period
of time, the spatial and temporal frequency of the ob-
servations is reduced, and so there is less information in
observation space about the coupling between the at-
mosphere and ocean. In Fig. 17 this is illustrated by
again looking at the initialized forecast of SST. Com-
pared to Fig. 14, we see that the initialization shock has
increased for both the strongly and weakly coupled
schemes, but the difference is much greater for the
weakly coupled scheme, with the effect of the initial
imbalance seen beyond the first hour of the forecast.
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FI1G. 13. Forecasts of the surface fluxes when initialized using the different analyses (colored lines as in Fig. 8). These
can be compared to the truth (thick black line).

These experiments illustrate the potential risks of the
weakly coupled scheme in the presence of significant
model error. As it is in the outer loop that the obser-
vations and model are compared, the discrepancy due to
the coupled model error will be similar for both the
strongly and weakly coupled formulations. However,
because the uncoupled TL models used in the inner loop
are inconsistent with the coupled NL model used in the
outer loop, the weakly coupled scheme is unable to find
an analysis increment that allows for an agreement be-
tween the observations and the model as successfully as
the strongly coupled scheme if there is not enough in-
formation about the coupling from the observations.
This means that not only can we expect a poorer analysis
with the weakly coupled scheme but also a larger fore-
cast error and a greater initialization shock.

6. Conclusions and discussion

There is strong motivation for the development of
coupled DA methods, namely, their ability to produce a

more balanced coupled analysis state and to make better
use of near-surface observations. However, a limiting
factor in the implementation of coupled DA is the
model error in the atmosphere, which restricts the
length of the assimilation window that can be used to
something shorter than in an uncoupled ocean-only
scheme. Within this study we have aimed to give in-
sight into the effect of lengthening the window when
model error is present to see if the benefits of coupled
DA are still evident. A summary of our key findings
follows.

The effect of the model error in coupled DA depends
not only on the nature of the error in the coupled model,
but also on the coupling strategy used within the DA
scheme. It is possible for errors in the coupled system to
introduce an error in the ocean component near to the
surface, which has faster time scales than in the uncou-
pled ocean model (as seen in Fig. 5 comparing the
coupled model error to the uncoupled model error with
good BCs). This new source of error means that the
accuracy of the ocean analysis may be degraded using a
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FIG. 14. Forecasts of SST initialized using the different coupling
DA strategies (colored lines as in Fig. 8). These can be compared to
the truth (thick black line). The inset shows just the first three hours
to highlight any initialization shock.

coupled scheme compared to using an uncoupled DA
scheme that (in the absence of this fast error growth) is
able to utilize a longer window length. This was shown to
be evident for a case study in which we found the errors

window length 48hr
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in the analysis of the ocean to be smaller in some regions
when using an uncoupled scheme and a 48-h window
(Fig. 9).

The clear problem with an uncoupled scheme,
however, is that despite allowing a smaller error in the
analysis of the ocean, the atmospheric and oceanic
analyses are inconsistent with the forecast model. This
means that the error growth rate in the coupled model
forecast may actually be larger when initialized using
the uncoupled analyses and an initialization shock
may become apparent in the forecast of the SSTs (see
Fig. 14).

With dense observations and three outer loops, the
weakly coupled scheme was seen to perform in a very
similar manner to the strongly coupled scheme,
responding in a similar way as the assimilation window
was increased (Fig. 9) and reducing the error in the
forecast by a similar degree (Fig. 12). When the number
of outer loops was reduced to one and observations were
dense, it was seen that weakly coupled scheme gave a
better analysis than the strongly coupled scheme in some
regions due to the reduction of the impact of the coupled
error in the outer-loop calculation of the innovations,
although the coupling was still strong enough to allow
for the analysis to be consistent with the coupled model.
Hence, the forecast was better than that initialized from
the uncoupled analyses. For example, the error in the

window length 96hr

15 15

e / T
oy
P> o

level
level

background

strongly coupled

uncoupled (poor BCs)

= = = uncoupled (good BCs)
weakly coupled

4 50 L 4
4 55 4
|
L 60 l L L L L
3 0 2 4 6 8
atmos t (K) atmos t (K)

FIG. 15. Analysis error for atmospheric temperature using reduced observations with a 48- and 96-h
assimilation window.
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FIG. 16. As in Fig. 15, but for ocean temperature.

thermocline was reduced (Fig. 12) and initialization
shock was smaller (Fig. 14). However, if the density of
the observations is reduced then the strength of coupling
is also seen to reduce, but instead of tending toward the
uncoupled scheme [as is the case when no model error is
present (Smith et al. 2015)] it can give a much poorer
analysis and forecast than both the uncoupled and
strongly coupled schemes. This is because, although the
information in the observations about the coupling is
reduced, the inconsistency between the observations
and the NL coupled model seen in the outer loop re-
mains. Therefore, unlike with the strongly coupled
scheme that used the coupled model within both the
inner and outer loop, the weakly coupled scheme is
unable to find an update to the background state that
allows for the initialized model to become more con-
sistent with the observations. Therefore, the problem of
model error is likely to be much more problematic in the
weakly coupled schemes, which are currently being
implemented at centers such as the Met Office and
ECMWEF, than in a strongly coupled scheme. To address
this issue, the implementation of coupled DA has been
forced to use a short assimilation window length (6 h at
the Met Office and 24 h at the ECMWEF).

To conclude, the benefits of a coupled DA scheme
are still evident even in the presence of model error.
However, if the aim is to find the best analysis then it is
important to choose an assimilation window length in

which the model error remains negligible. In practice
this means choosing a window length consistent with an
atmosphere-only assimilation that will severely limit
the number of ocean observations available for assim-
ilation. If the purpose is to give an improved forecast
then using a longer window length may help to reduce
the model error growth (particularly in the observed
fields) by finding the initial conditions that limit it.
However, in order to use coupled 4D-Var to its full
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FIG. 17. As in Fig. 14, but for a reduced observation resolution and
a 96-h assimilation window.



OCTOBER 2016

potential it is necessary to take into account model
error in the assimilation, allowing for the window
length and number of ocean observations available for
assimilation to be increased and theoretically a more
accurate analysis to be found. Allowing for model error
in variational data assimilation greatly increases the
complexity of the data assimilation problem and is an
active area of research (e.g., Fisher et al. 2011; Moore
et al. 2011).

One method, known as weak constraint 4D-Var, aims
to estimate the model error along with the initial con-
ditions (Griffith and Nichols 2000; Trémolet 2006). In
theory this allows for the model to be corrected using the
observations. However, in practice it is very difficult to
obtain accurate results from weak constraint 4D-Var, as
it is necessary to have a good understanding of the elu-
sive model error statistics [see Todling (2015) and ref-
erences therein]. This is particularly challenging in
coupled data assimilation as the model error statistics do
not only need to be specified for the ocean and atmo-
sphere but an understanding of the cross correlations is
also needed for strongly coupled DA. One possibility is
to only estimate the error in the atmospheric component
assuming that the error in the ocean is comparatively
negligible and has its origins in the atmosphere for the
time scale of the assimilation window.

An alternative method is to use parameter estima-
tion as well as initial state estimation, essentially tuning
the model parameters to give a better fit to the obser-
vations via the assimilation. Kondrashov et al. (2008)
argue that systematic errors in many tropical ocean—
atmosphere general circulation models are caused by
incorrect parameter values. Even if the model error is
not entirely due to erroneous parameter values, pa-
rameter estimation can be used to reduce model error
if the model is sensitive to the parameters and the
observations are sufficient (Navon 1998). This idea
was used by Liu et al. (2014) with the Fast Ocean
Atmosphere Model (FOAM) and a coupled ensemble
adjustment Kalman filter (Anderson 2001). They suc-
cessfully estimated the solar penetration depth (SPD)
in twin experiments. SPD is thought to be a parameter
that may have significant impact on the surface climate
[see Liu et al. (2014) for references]. They also tried to
estimate two additional parameters related to the mo-
mentum and latent heat fluxes. This was less successful
because of the nonlinear relationships between the
parameters and state variables weakening the corre-
lations between forecast error and parameter un-
certainty. Estimation of the bulk adjustment factors
was also performed by Mochizuki et al. (2009) using a
4D-Var technique. This was found to reduce model
biases in climatological fields.
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With both the weak constraint and parameter esti-
mation methods it is unclear if the estimates of re-
spective model error and the parameter values should be
used in the subsequent forecast. If they are not used,
then the models used in the assimilation and the forecast
will be inconsistent, so, in a similar way to the uncoupled
DA scheme, the analyses will not lie on the forecast
model attractor. Hence, the forecast error growth may
be large even if the analysis error is small.
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APPENDIX

Derivation of Analysis Error Covariance and Bias in
the Presence of Model Error

The analysis was given in (9) in terms of the back-
ground x’, the observations over the assimilation win-
dow ¥, the generalized nonlinear observation operator
7, and the Kalman gain matrix K. In the presence of
model error the mapping 7 is erroneous as described
by (8). The Kalman gain matrix is, therefore, no longer
optimal and this has an impact on the analysis error. Let
€" be the analysis error when there is no error present in
T (ie., % =77") and € be the analysis error when
there is error present:

e’ =x"— x|
=x" —x{ + K[y = 7(x")]
=x" = x + K[y = 7' (x)) + 7" (x;)
= AG) + T ) = F ()]
=+ K<60 + 6,72 _ H6b>
=& +Ke” .

(A1)
If we assume that €” and €° are unbiased then é is also
unbiased and the expected value of €* is

E[e"] = KE[¢”], (A2)

as stated in (11).
Similarly if we assume that ¢’ and € are uncorrelated
with €”, we can compute the analysis error covariance as
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E[(e* — E['])(e* — E['])'] = E[(&" + Ke” — KE[¢”])(&" + Ke” — KE[¢”])"]

= E[e(&)"] + KE[(¢” -
=P* + KE[(EJ? _ E[e];])(e'/? _ E[e,/\i’])T]KT’

where P? is the analysis error covariance if no model
error were present, as stated in (10).
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