

Optimising mirid control on cocoa farms through complementary monitoring systems

Article

Accepted Version

Awudzi, G. K., Cudjoe, A. R., Hadley, P., Hatcher, P. E. and Daymond, A. J. ORCID: <https://orcid.org/0000-0002-7597-9423> (2017) Optimising mirid control on cocoa farms through complementary monitoring systems. *Journal of Applied Entomology*, 141 (4). pp. 247-255. ISSN 1439-0418 doi: 10.1111/jen.12332 Available at <https://centaur.reading.ac.uk/64585/>

It is advisable to refer to the publisher's version if you intend to cite from the work. See [Guidance on citing](#).

To link to this article DOI: <http://dx.doi.org/10.1111/jen.12332>

Publisher: Wiley-Blackwell

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the [End User Agreement](#).

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

1 **Optimising mirid control on cocoa farms through complementary monitoring systems**

2 ¹G.K. AWUDZI*, ¹A.R. Cudjoe, ²P. Hadley, ³P.E. Hatcher, ²A.J. Daymond.

3

4 ¹Cocoa Research Institute of Ghana, Box 8, New Tafo-Akim, Ghana. ²School of Agriculture
5 Policy and Development, University of Reading, Whiteknights, Reading, RG6 6AR, UK.

6 ³School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6AS.

7 Corresponding author * anthocyanin22@yahoo.com ; godfred.awudzi@crig.org.gh

8

9 **Abstract**

10 Mirids (*Sahlbergella singularis* and *Distantiella theobroma*) are the most important insect
11 pests affecting cocoa production across West Africa. Understanding the population dynamics
12 of mirids is key to their management, however, the current recommended hand-height
13 assessment method is labour intensive. The objective of the study was to compare recently
14 developed mirid sex pheromone trapping and visual hand-height assessment methods as
15 monitoring tools on cocoa farms and to consider implications for a decision support system.
16 Ten farms from the Eastern and Ashanti regions of Ghana were used for the study. Mirid
17 numbers and damage were assessed fortnightly on twenty trees per farm, using both methods,
18 from January 2012 to April 2013. The mirid population increased rapidly in June, reached a
19 peak in September and began to decline in October. There was a significant linear relationship
20 between numbers of mirids sampled to hand-height and mirid damage. High numbers of male
21 mirids were recorded in pheromone traps between January and April 2012 after which there
22 was a gradual decline. There was a significant inverse relationship between numbers of trapped
23 adult mirids and mirids sampled to hand-height (predominantly nymphs). Higher temperatures
24 and lower relative humidities in the first half of the year were associated with fewer mirids at
25 hand-height but larger numbers of adult males were caught in pheromone traps. The study
26 showed that relying solely on one method is not sufficient to provide accurate information on
27 mirid population dynamics and a combination of the two methods is necessary.

28 **Key words:** mirid, pheromone, population dynamics, *Sahlbergella singularis*, *Distantiella*
29 *theobroma*, timing

30 **Introduction**

31 Cocoa is an economically important crop in many parts of the humid tropics. In West Africa,
32 where over 70% of cocoa is produced (ICCO 2010/11), crop damage by mirid species (mainly

33 *Sahlbergella singularis* and *Distantiella theobroma*) represents one of the major constraints to
34 production. In a recent survey, Ghanaian farmers typically reported cocoa losses to mirids in
35 the region of 30 to 40% (Awudzi et al. 2016). Past research efforts on mirid control in Ghana
36 and elsewhere in West Africa have concentrated on developing biological and chemical control
37 strategies (Bruneau de Miré 1977; Owusu-Manu 1995; Padi 1997). More recently, emphasis
38 has been placed on an integrated pest management approach that is environmentally safe and
39 easily adopted by smallholder cocoa farmers (Padi and Owusu 1998). To reduce losses due to
40 pests and diseases on cocoa in Ghana, the government in 2001 introduced a number of
41 interventions including the cocoa diseases and pests control programme (CODAPEC) (Asante
42 et al. 2002). This has involved the spraying of cocoa farms with recommended conventional
43 insecticides and fungicides. Although the programme has achieved some success in increasing
44 yields, application of pesticides on a routine rather than a need basis can result in excessive
45 pesticide use, with negative environmental consequences. With global concerns on pesticide
46 use and food safety, it is increasingly necessary for a need-based assessment to be carried out
47 before pesticides are applied on cocoa farms. Mirid population monitoring could be used to
48 provide such a system alongside climatic data to decide on the most appropriate time to apply
49 a control strategy. Pest monitoring is an important tool as it helps to determine when pest
50 numbers have built up to warrant control or to predict the correct timing for interventions
51 (Diana and Sannino 1995; Taylor 1984; Van-Emden 1996).

52
53 Pheromone trapping has been tested as a means to assess mirid numbers in some countries in
54 West Africa. This has shown promise as a monitoring tool and could be incorporated into pest
55 control programmes for effective mirid management (Mahob et al. 2011; Sarfo 2008).
56 However, the method currently used for determining mirid populations is the visual hand-
57 height assessment method described by Collingwood (1971). In contrast to the pheromone
58 trapping method where mirids caught in traps can be counted at any time of the day, the visual
59 hand-height assessment method must be done between 6:30 am and 9:00 am since the pest is
60 less active in the early mornings of the day. The visual hand-height assessment method is
61 tedious and difficult to adopt by smallholder farmers. Both assessment methods were therefore
62 compared to ascertain whether pheromone trapping could provide a true representation of mirid
63 populations and give an indication of the level of damage in cocoa farms compared to the visual
64 hand-height method. Since pest numbers are influenced by climatic factors, the relationship
65 between climate, pest numbers and their damage was also investigated.

66 The specific objectives of the study were therefore:

67 i. To evaluate pheromone trapping as a means of monitoring mirid population dynamics
68 in cocoa farms in comparison to the currently used hand-height method.

69 ii. To examine the relationship between mirid numbers, damage caused and climatic
70 factors.

71

72 **Materials and methods**

73 **Study site**

74 The study was conducted in the Ashanti and Eastern regions of Ghana at Adobewura ($2^{\circ} 0'$
75 $49.3''$ W, $6^{\circ} 32' 11.4''$ N); Ntobrosu ($2^{\circ} 2' 46.7''$ W, $6^{\circ} 31' 50''$ N); Achiase ($2^{\circ} 2' 20.9''$ W,
76 $6^{\circ} 28' 37.3''$ N) and Tafo ($2^{\circ} 22' 10.4''$ W, $6^{\circ} 13' 25.8''$ N). Six farms were used on which
77 hybrid cocoa (bi-parental crosses) was grown and four farms on which the Amelonado variety
78 was grown. Planting distance for hybrid farms were 3m x 3m while that for farms with
79 Amelonado varied and was planted irregularly. Farm size averaged 0.4 hectares with
80 approximately 445 cocoa trees per farm. The age of farms used ranged between 6 and 15 years.
81 These farms were lightly shaded (averagely 5 to 9 trees per 0.4 hectares) with *Terminalia*
82 *ivorensis*, *Terminalia superba*, *Funtumia elastica* and *Albizia coriaria* as the most encountered
83 shade trees. The farms were organic certified and had not received conventional insecticide for
84 at least five years. Sampling for mirid population was carried out by pheromone trapping and
85 the conventional visual hand-height assessment methods. Mirid population size and field
86 assessment of mirid damage on cocoa pods and chupons were carried out fortnightly for sixteen
87 months from January 2012 to April 2013.

88 **Visual hand-height assessment method**

89 The visual hand-height assessment of mirid population (Collingwood 1971) was carried out on
90 twenty randomly selected trees per farm. This involved visually inspecting mirid inhabiting
91 sites (pods, pod peduncles, chupons, flower cushions, crevices on pods as well as the pod-stem
92 interface) on each tree for mirids at hand-height and recording their numbers. Assessments
93 were carried out from the base of the tree up to maximum hand stretch of the assessor (about 2
94 m) along the stem between 6:30 am and 9:00 am since mirids are less active before sunrise.
95 Trained insect assessors helped in data collection to ensure that data were collected within this
96 limited time frame. Data collected by trained insect assessors were cross checked in the field
97 to ensure accuracy and reliability. Pods and chupons were also assessed visually for mirid

98 damage. Pods and chupons with characteristic vivid circular or elliptical dark feeding lesions
99 were counted as mirid damage.

100 **Mirid sex pheromone trapping method**

101 Mirid pheromones produced by the Natural Resources Institute (NRI), UK and previously
102 tested in Ghana (Sarfo 2008) were used for this study. The study relied on the optimum
103 pheromone blend, lure longevity, optimum trap design and optimum trap height reported by
104 Sarfo (2008) to investigate mirid trapping suitability as a monitoring tool. The traps were made
105 from 4.5 litre plastic containers. Two 15 cm x 8 cm oblong holes or windows were created on
106 opposite sides at 5 cm from the base of each container. At 2 cm below the lower edge of the
107 cut surfaces, small holes (<5mm) were made to drain off excess water from traps when it rained,
108 to ensure that trapped mirids do not overflow from the traps. Traps were hung upside down,
109 filled with water to a level just below the overflow holes. Lures containing the pheromone
110 impregnated in vials were suspended in the traps about 2 cm above the water surface and held
111 in place by a copper wire attached to the central top of the trap. Ten traps were evenly
112 distributed in each farm at a height of 2.7 m above ground level with an average inter-trap
113 distance of 30 m (Sarfo 2013). Lures in each trap were changed at monthly intervals. Traps
114 were inspected every other week for trapped mirids (*Sahlbergella singularis* and *Distantiella*
115 *theobroma*) and their numbers recorded from January 2012 to April 2013.

116
117 **Meteorological data**

118 Data on rainfall, temperature and relative humidity were taken fortnightly from the nearest
119 meteorological stations (Kumasi: 000°10'02.6" W; 05°36'16.8" N; Tafo: 2° 22' 10.4" W, 6° 13'
120 25.8" N). Miniature data loggers (Gemini Tiny Tags, UK) in Stevenson screens were also
121 placed in farms to record temperature and relative humidity to compare with data obtained from
122 the meteorological stations. Data loggers were set to log weather data at 1 hour intervals each
123 day and downloaded every other week for comparison.

124
125

126 **Data analysis**

127 The number of mirids counted (both to hand height and by pheromone trapping) were analysed
128 using the linear mixed model approach to repeated measurements where the correlation within
129 the subjects was modelled as first order auto-correlation AR (1). The fixed effects in the model
130 were specified to account for location, variety, assessment method and the interaction between

131 variety and assessment method. This was done using the Mixed Model procedure in GenStat.
132 The relationship between mirid numbers, their damage and climatic data was investigated by
133 means of regression analysis in GenStat.

134

135 **Results**

136 **Mirid population: The visual hand-height assessment method**

137 Mirids numbers recorded by the hand-height method were generally low from January to May
138 for both 2012 and 2013 (Fig. 1). Rapid mirid population increase began in June, reaching a
139 peak in September and began to decline after October. Temperature, relative humidity and
140 rainfall patterns from January 2012 to April 2013 for the Ashanti and Eastern regions are
141 presented in Figure 2. A significant inverse relationship was observed between mirids sampled
142 at hand-height and mean temperatures for the Ashanti ($y=-0.0515x + 1.491$; $r^2=0.25$; $p=0.03$)
143 and Eastern regions ($y=-0.137x + 4.1934$; $r^2=0.30$; $p=0.02$) such that more mirids were sampled
144 at lower temperatures. In addition, there was a positive correlation between relative humidity
145 and mirid numbers for both regions (Ashanti: $y=0.0098x - 0.6984$; $r^2=0.23$; $p=0.02$ and
146 Eastern: $y=0.1024x - 8.0151$; $r^2=0.33$; $p<0.001$). Significantly more mirid nymphs
147 (mean=0.31) than adults (mean=0.10) were counted to hand-height ($Lsd=0.04$, $p<0.001$).
148 Higher temperatures and low relative humidity prevail between January and May compared to
149 the rest of the year; whilst rainfall patterns varied greatly across the year with the highest
150 rainfall figures recorded in June (see Figure 2). However, no relationship was found between
151 rainfall and mirid population assessed to hand-height. There was a significant positive linear
152 relationship between the number of mirids assessed to hand-height and mirid damaged pods
153 and chupons (Fig. 3).

154

155

156 [Figure 1 here]

157 [Figure 2 here]

158 [Figure 3 here]

159 **The pheromone trapping method of assessing mirid populations**

160 The population dynamics of mirids recorded from pheromone traps differed from that observed
161 using the visual hand-height assessment method (Fig. 1). This method indicated that mirids
162 were present on cocoa all year round as observed with the visual hand-height method but with
163 different peak periods. With pheromone trapping, three major peaks in mirid numbers were

164 observed in January, February and April followed by a gradual decline through the rest of the
165 year. The population profile in the first quarter of 2013 was similar to that observed during the
166 same period in 2012. There was a significant positive linear relationship between the number
167 of mirids caught in traps and mean temperatures for the Ashanti (Fig. 4A) and Eastern (Fig.
168 4B) regions even though the regression coefficient for the Eastern region only explained a small
169 proportion of the variation making the relationship a weak one ($r^2=0.22$, $p=0.02$). There was
170 no significant relationship between numbers of mirids caught in traps with rainfall, relative
171 humidity and mirid damage on cocoa trees.

172

173 [Figure 4 here]

174

175 **Comparison of mirid numbers sampled with pheromone trapping and the visual hand-
176 height assessment methods**

177 When comparing the two assessment methods, the first half of the year showed a significant
178 difference in monthly mean mirid numbers caught in traps (3.0) compared to mirids counted at
179 hand-height (0.1) ($p<0.001$; $Lsd=0.55$). Population dynamics were the same for the second half
180 of the year although more mirids were caught in traps (mean=2.6) than mirids assessed to hand-
181 height (mean=0.25) ($p<0.001$; $Lsd=0.42$). Data analysed for the whole year therefore showed
182 significantly more mirids in traps (monthly mean=2.3) than to hand-height (monthly
183 mean=0.3) ($p<0.001$; $Lsd=0.47$). The trend in the total number of mirids recorded from January
184 to April 2012 was similar to the pattern observed in the same period of 2013 for the two
185 sampling methods. A significant inverse relationship was established between the two
186 assessment methods even though the coefficient of determination explained a relatively small
187 proportion of the variation ($r^2= 0.25$, $p=0.01$).

188

189

190

191

192 **Differences between regions and varieties in mirid numbers and mirid damage**

193

194 The Mixed Model approach used to analyse the repeated measurements showed a substantial
195 auto-correlation (0.64 ± 0.22) among the measurements. The fixed effects of interest in this
196 study are sampling method, variety and location. There was no effect of location on the number
197 of mirids caught in traps (mean value for the Eastern Region=2.26 and for the Ashanti Region

198 =2.25; p=0.97, Lsd=0.46). The mean number of mirids caught in traps in the Eastern and
199 Ashanti regions were similar through most of the year except in the period between August and
200 December (Fig. 5A) where the number of mirids increased in the Ashanti region and decreased
201 in the Eastern region. The number of mirids assessed to hand-height was different for the
202 locations as significantly more mirids were counted to hand-height in the Eastern (mean=0.53)
203 than the Ashanti (mean= 0.13) region (p<0.001; Lsd=0.12). The number of mirid damaged
204 pods and chupons were also significantly greater in the Eastern region (0.42) than in the Ashanti
205 region (0.14) (p<0.001; Lsd=0.1). The pattern of the number of mirids assessed to hand-height
206 in the two locations across the study period is presented in figure 5B. Generally, differences
207 observed in mirid populations between the different locations occurred in the second half of
208 the year.

209
210 Significantly more mirids were caught in traps on farms growing Amelonado (mirids per
211 trap=2.57) compared to farms growing hybrid cocoa (mirids per trap=1.94) (p=0.001,
212 Lsd=0.38). Significantly more mirids were counted to hand-height on farms growing hybrid
213 cocoa (mean=0.40) than farms growing Amelonado (mean=0.28) (p=0.03, Lsd=0.10). Mirid
214 damage assessed visually to hand-height on pods and chupons, was significantly higher in
215 farms growing Amelonado compared to those growing hybrid cocoa (1.53 and 0.26
216 respectively; p<0.001, Lsd=0.4. The trends in the number of mirids counted to hand-height and
217 in traps on hybrid and Amelonado cocoa is presented in figure 6.

218
219

220 [Figure 5 here]

221

[Figure 6 here]

222 **Discussion**

223 Understanding the population dynamics of insect pests is crucial for monitoring, forecasting
224 pest populations and designing IPM programmes (Dormon et al. 2007). Pest population
225 monitoring is also a means for determining when pests enter a crop and when their numbers
226 have built up sufficiently to warrant separate control measures or to predict correct timing for
227 such measures (Van-Emden 1996).

228 The broad pattern of mirid numbers across the season recorded by the visual hand-height
229 assessment method was broadly similar to other reports on mirid population dynamics on cocoa
230 in West Africa (Anikwe et al. 2009; Babin et al. 2010). However, the results from the hand-
231 height method did not correlate with the observation of high mirid numbers in the first half of

232 the year as seen using pheromone trapping. Visual hand-height assessment largely provides
233 information on nymph populations whilst winged adult males were caught in traps. In the first
234 half of the year, adult male mirids caught in traps reached their peaks while mirids assessed to
235 hand-height (both adults and nymphs but mostly nymphs) reached their peak in the second half
236 of the year. The difference between the two sampling methods reflects generational changes of
237 the pest. Pheromone traps mainly catch adults when they are abundant. After mating, eggs are
238 laid and as a result nymph numbers rise while the numbers of adults then decline. On the other
239 hand, when nymph numbers decline a concomitant increase in the number of adult males
240 caught in pheromone traps is observed.

241
242 The visual hand-height assessment method indicated that mirid populations (predominately
243 nymphs) began to increase rapidly in April with an initial peak in May, followed by a rapid
244 build-up in June. This is a couple of months earlier than reported in the major producing
245 countries in West Africa (Anikwe et al. 2010; Padi and Owusu 1998). Between June and July
246 2012, there was a significant increase in the number of adult mirids in traps, due to the
247 progression of nymphs seen in April/May. Therefore, given that nymph numbers are starting
248 to build up in April this would be the most effective time to disrupt the population cycle.
249 Application of insecticides at the point when pest numbers are beginning to rise may be a more
250 effective strategy to suppress the mirid population before it reaches damaging levels. Timely
251 application of insecticides could alter or delay the onset of subsequent peaks in the growing
252 season observed in our data. Whether or not subsequent applications of insecticides are needed
253 in August/ September would depend on how effective the early applications were. The results
254 support a re-appraisal of the optimum timing of insecticide application in Ghana (Adu-
255 Acheampong et al. 2014).

256
257 Indirectly, seasonal variation in climate can modify the population dynamics of mirids by
258 altering the physiology of host cocoa trees making them more or else unpalatable to insect
259 pests. However, it has been difficult to identify the direct effect of environmental factors on
260 the population dynamics of cocoa mirids because of the interaction between environmental
261 factors and host plant factors (such as the availability of feeding and breeding sites) as well as
262 favourable climatic factors necessary for the growth and development of the pest and its natural
263 enemy complex (Gurr and Kvedaras 2010). However, it was clear from this study that there
264 exists a positive relationship between mirid number counted to hand height and relative

humidity which is inversely related to temperature. Lower temperatures and higher humidity therefore favour mirid survival. High temperatures result in lower population size due to high desiccation risk for mirids because of their soft bodies (Babin et al. 2010). Anikwe et al. (2010) also noted that mirid populations decline in periods of low humidity. Higher temperature and lower humidity in the West African dry season would also reduce the survival rate of mirids by reducing the amount of water in feeding sites and the availability of suitable feeding and breeding sites. In a study of water stress in cocoa under greenhouse conditions, plants watered less frequently had lower water and nitrogen contents in their leaves relative to those watered frequently (Acheampong 2010), suggesting that availability of moisture alters the physical and nutritional properties of host plants which may eventually affect feeding. In contrast to mirids counted to hand height (mainly nymphs), this study showed a significant positive linear relationship between trapped adult mirid numbers and mean temperatures. A possible hypothesis for this apparent contradiction is that at higher temperatures winged adults may fly to cooler parts of the canopy. Attraction to pheromones in traps then becomes stronger as mirids get closer and so they are more likely to be trapped.

Differences in mirid numbers and levels of damage observed in the Eastern and Ashanti regions may be due to slight differences in weather conditions. Although farming practices (e.g. insecticide application and pruning) were not observed in surrounding farms, it is possible that these may also have had an impact on mirid numbers. The present study suggests the need for multi-locational studies to ascertain regional differences in mirid numbers, damage trends and for location-specific control strategies to be put in place. More mirids were caught in traps and greater tissue damage was observed on Amelonado compared to hybrid cocoa farms and is in agreement with reports suggesting that hybrid cocoa varieties are more resistant to mirid attack than the Amelonado varieties (Anikwe et al. 2009; Sounigo et al. 2003).

When considering practical applications of the two methods, this study confirmed that the visual hand-height assessment method is effective in predicting the level of mirid damage in cocoa farms. This method mostly provides information on mirid nymphs (over 85% of mirids counted at hand-height were wingless nymphs). In contrast, pheromone trapping provides information on winged male adults, but does not account for female adults and nymphs and so will not give a true representation of the mirid population in farms. However, it has the practical advantage that data can be collected at any time of the day, unlike the hand-height method which must be done between 6:30am and 9:00am (Collingwood 1971; N'Guessan et al. 2008).

297 Ideally, a combination of both the hand-height method and the pheromone trap method should
298 be employed in the field by extension agents to monitor different stages of the mirid life-cycle.
299 In practice, the distances between farmers' farms and their homes could sometimes make hand-
300 height assessment difficult and tedious particularly when farmers have more than one plot of
301 land. In the absence of capacity to carry out hand-height assessments, the pheromone trap
302 could provide an early warning of future nymph numbers.

303 For efficient monitoring and scouting as a component of integrated pest management strategy,
304 the use of economic threshold levels to inform pest management decisions becomes important.
305 Work is therefore needed to estimate the economic threshold level for mirids in the presence
306 of natural enemies and prevailing environmental conditions when using the pheromone trap
307 and hand-height methods (Owusu-Manu 1995).

308 In Ghana and most West African countries, mirid control is carried out using a calendar-date
309 system. Blanket applications of insecticides are made from August to December but omitting
310 November. This is based on work done on mirid population dynamics decades ago (Owusu-
311 Manu 1974; Raw 1959) and not on current or expected population trends. In the case of Ghana
312 111.3 million US Dollars was spent on the cocoa pest and diseases control programme during
313 the 2009/10 cocoa season (World Bank 2009/2010). Instituting a monitoring component to
314 complement control activities would be very useful and cost effective. Communication systems
315 could be developed to disseminate information on the expected mirid population and inform
316 farmers and cocoa pest and diseases sprayers on when to spray recommended insecticides.
317 Insecticide application could therefore be carried out on a need-based system based on
318 information from a national monitoring programme. To achieve this, a well-coordinated
319 national pest management framework with a monitoring component is needed.

320 **Acknowledgment**

321 The authors would like to express their gratitude to Mondelez Inc. and BBSRC, Dorothy
322 Hodgkin Postgraduate Award for sponsoring this study and CRIG management for logistical
323 support. We thank Prof. David Hall of the Natural Resources Institute, University of
324 Greenwich, for providing mirid sex pheromones and his advice. We are also grateful to staff
325 of the Entomology division of CRIG for their help in collecting data for the study, notably
326 Dickson Ampadu, Abraham Sowah, Ebenezer Obeng Mintah, Godson Fiakiegbe and Enoch
327 Chawudzi. The paper is published with the kind permission of the Executive Director of CRIG.

328

329

330

331

332 **References**

333 Acheampong K, 2010. A physiological study on the field establishment of cacao clones through
334 the improvement of agro-ecological conditions. In: School of Biological Science,
335 University of Reading, Reading, 297.

336 Adu-Acheampong R, Jiggins J, van Huis A, Cudjoe AR, Johnson V, Sakyi-Dawson O, Ofori-
337 Frimpong K, Osei-Fosu P, Tei-Quarley E, Jonfia-Essien W, Owusu-Manu M, Nana
338 Karikari Addo MS, Afari-Mintah C, Amuzu M, Nyarko Eku-X N, Quarshie ETN, 2014.
339 The cocoa mirid (Hemiptera: Miridae) problem: Evidence to support new
340 recommendations on the timing of insecticide application on cocoa in Ghana.
341 International Journal of Tropical Insect Science, 34, 58-71.

342 Anikwe JC, Okelana FA, Omoloye AA, 2010. The population dynamics of the brown cocoa
343 mirid, *Sahlbergella singularis* Haglund in Ibadan, Nigeria. African Journal of Food,
344 Agriculture, Nutrition and Development, 10, 2772-2783.

345 Anikwe JC, Omoloye AA, Aikpokpodion PO, Okelana FA, Eskes AB, 2009. Evaluation of
346 resistance in selected cocoa genotypes to the brown cocoa mirid, *Sahlbergella*
347 *singularis* Haglund in Nigeria. Crop Protection, 28, 350-355.

348 Asante EG, Baah F, Adu-Acheampong R, 2002: Preliminary report on monitoring of the mass
349 spraying of cocoa in the Eastern central and Ashanti regions: Cocoa Research Institute
350 of Ghana, Tafo, Ghana.

351 Awudzi GK, Asamoah M, Owusu-Ansah F, Hadley P, Hatcher PE, Daymond AJ, 2016.
352 Knowledge and perception of Ghanaian cocoa farmers on mirid control and their
353 willingness to use forecasting systems. International Journal of Tropical Insect Science,
354 36, 22-31.

355 Babin R, Ten Hoopen GM, Cilas C, Enjalric F, Gendre P, Lumaret J-P, 2010. Impact of shade
356 on the spatial distribution of *Sahlbergella singularis* in traditional cocoa agroforests.
357 Agricultural and Forest Entomology, 12, 69-79.

358 Bruneau de Miré P, 1977. La dynamique des populations de mirids et ses implications. In: Les
359 mirides du cacaoyer. Ed. by E Lavabre, GP Maisonneuve et Larose, 171 –186, Paris.

360 Collingwood CA, 1971. A comparsion of assessment methods in cocoa mirid count trials In:
361 3rd International Cocoa Research Conference, Accra, Ghana,, 161-168.

362 Diana G, Sannino L, 1995. Adversities of tobacco culture. Insect Informatore Fitopatologico,
363 45, 24-31.

364 Dormon ENA, van Huis A, Leeuwis C, 2007. Effectiveness and profitability of integrated pest
365 management for improving yield on smallholder cocoa farms in Ghana. International
366 Journal of Tropical Insect Science, 27, 27-39.

367 Gurr GM, Kvedaras OL, 2010. Synergizing biological control: Scope for sterile insect
368 technique, induced plant defences and cultural techniques to enhance natural enemy
369 impact. Biological Control, 52, 198-207.

370 ICCO, 2010/11. Annual report [WWW document]. URL http://www.icco.org/about-us/international-cocoa-agreements/cat_view/1-annual-report.html.

371

372 Mahob RJ, Babin R, ten Hoopen GM, Dibog L, Yede, Hall DR, Bilong Bilong CF, 2011. Field
373 evaluation of synthetic sex pheromone traps for the cocoa mirid *Sahlbergella singularis*
374 (Hemiptera: Miridae). Pest Management Science, 76 (6), 672-676.

375 Owusu-Manu E, 1974. The effects of insecticides used in the control of cocoa mirids on non-
376 target organisms. In: Proceedings of the 4th West African Cocoa Entomologist
377 Conference, pp 3-10, Legon, Accra, Ghana, 3-10.

378 Owusu-Manu E, 1995. The need for chemical control of cocoa mirids in Ghana. In: Cocoa
379 Pests and Diseases Seminar, Accra, Ghana, 71-79.

380 Padi B, 1997. Prospects for the control of cocoa capsids - alternatives to chemical control. In:
381 Proceedings of the 1st International Cocoa Pests and Diseases Seminar, pp 28-36,
382 Accra, Ghana, 28-36.

383 Padi B, Owusu GK, 1998. Towards an integrated pest management for sustainable cocoa
384 production in Ghana. In: Workshop, Panama, Smithsonian Institution, Washington,
385 D.C., 3/30-34/32.

386 Raw F, 1959. Studies on the chemical control of cacao mirids, *Distantiella theobroma* (dist.)
387 and *Sahlbergella singularis* Hagl. Bulletin of Entomological Research, 50, 13-23.
388

389 Sarfo JE, 2008. Experience with the mirid pheromone in w africa [WWW document]. URL
390 <http://www.dropdata.net/thamesvalleycocoa/Joe%20Sarfo.pdf>

391 Sarfo JE, 2013. Behavioural responses of cocoa mirids, *Sahlbergella singularis* hagl and
392 *Distantiella theobroma* Dist. (Heteroptera: Miridae), to sex pheromones., University of
393 Greenwich.

394 Sounigo O, Coulibaly N, Brun L, N'Goran J, Cilas C, Eskes AB, 2003. Evaluation of resistance
395 of *Theobroma cacao* l. To mirids in côte d'ivoire: Results of comparative progeny trials.
396 Crop Protection, 22, 615-621.

397 Taylor LR, 1984. Assessing and interpreting the spatial distribution of insect population.
398 Annual Review of Entomology, 29, 321-358.

399 Van-Emden H, 1996. Pest control. CAB, International. 150pp.

400 World Bank, 2009/2010. Supply chain risk assesment. Cocoa in Ghana [WWW document].
401 URL
402 <https://www.agriskmanagementforum.org/sites/agriskmanagementforum.org/files/Documents/Ghana%20Cocoa%20SCRA%20Report%202011%20ARMT.pdf>.
403

404

405

406

407

408 **List of figures**

409

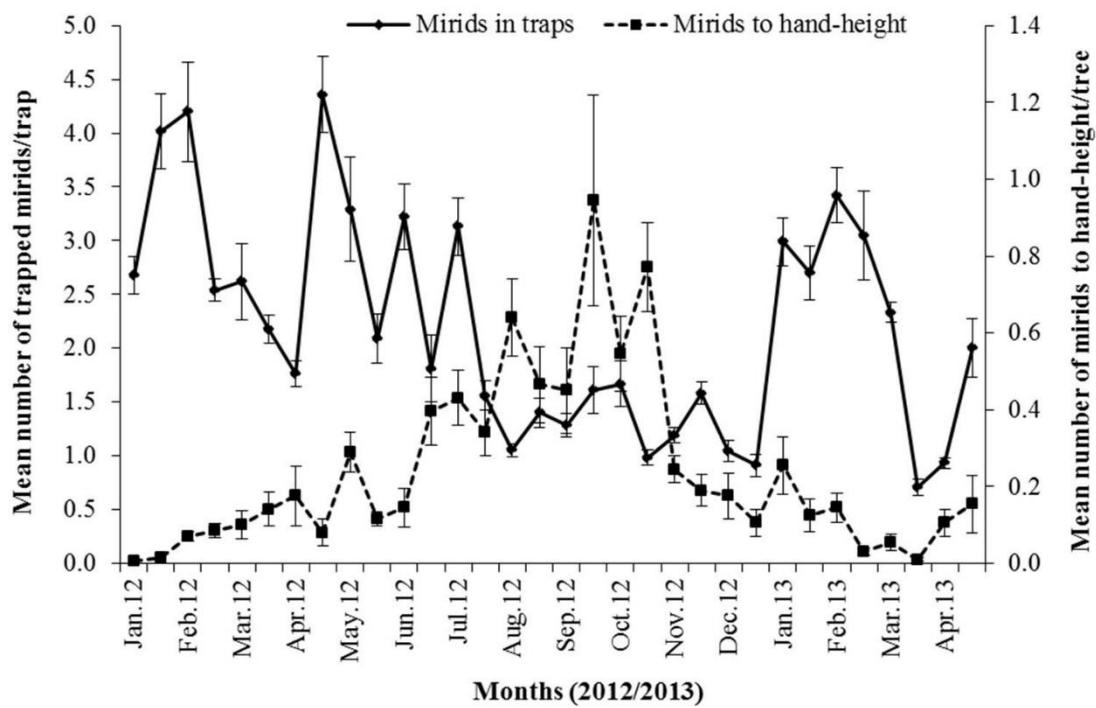
410 Figure 1: Mirid numbers recorded by the visual hand-height and pheromone trapping
411 assessment methods from January 2012 to April 2013 (at each two-weekly interval data
412 points represent the mean values from 10 farms; 20 observations per farm for the visual hand-
413 height method and 10 observations for pheromone trapping). Vertical bars represent standard
414 error of means.

415 Figure 2: Rainfall totals (15 day intervals), mean daily relative humidity and mean daily
416 temperatures from January 2012 to April 2013 for the Ashanti (A) and Eastern (B) regions

417 Figure 3: Relationship between the number of mirids assessed at hand-height and their
418 damage on pods & chupons (total mirid damage) (mean values measured at two-weekly
419 intervals over a period of 15 months)

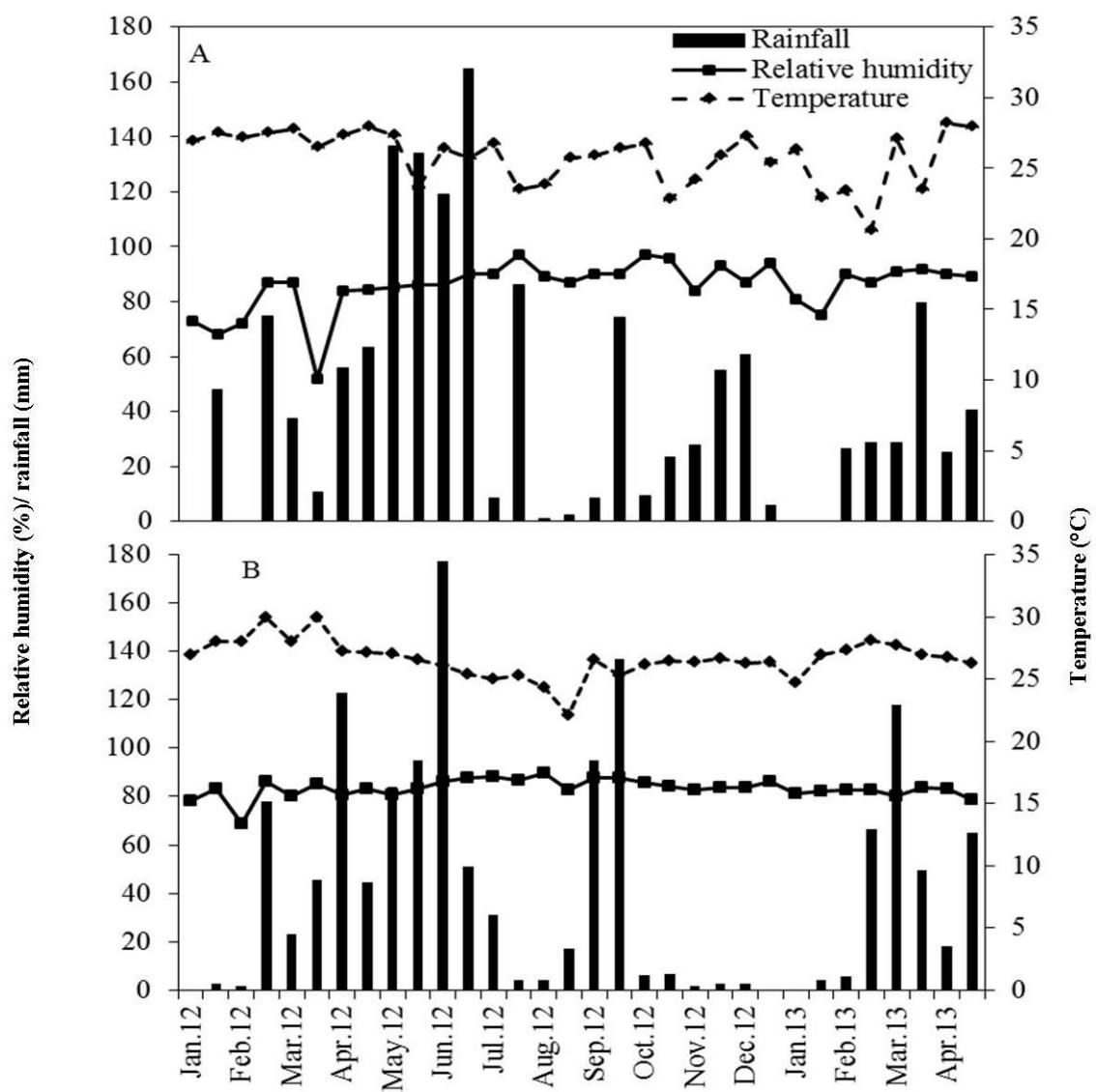
420 Figure 4: Relationship between the mean numbers of mirids caught per trap and the mean
421 daily temperatures (at two-week intervals over a period of 15 months) for the Ashanti (A) and
422 Eastern (B) regions

423 Figure 5: Comparison of the mean number of mirids caught in pheromone traps (A) and that
424 counted to hand-height (B) in the Ashanti and Eastern regions from January 2012 to April
425 2013 (at each two-weekly interval data points represent the mean values from 6 farms in the
426 Ashanti Region and 4 farms in the Eastern Regions; 20 observations per farm for the visual
427 hand-height method and 10 observations for pheromone trapping). Vertical bars represent
428 standard error of means. Note differences in scales.


429 Figure 6: Difference in mirid damage trends (A), mirid population trends using the
430 pheromone trapping (B) and the visual hand-height assessment method (C) for farms growing
431 Amelonado and farms growing hybrids from January 2012 to April 2013 (For A. at each two-
432 weekly interval data points represent mean values from 10 farms and 20 trees per farm. For
433 (B) and (C) at each two-weekly interval data points represent the mean values from four
434 farms growing Amelonado and six farms growing hybrids; 20 observations per farm for the
435 visual hand-height method and 10 observations for pheromone trapping). Vertical bars on
436 line graph represent standard error of means. Note difference in scale between B and C.

437

438


439

440 FIGURE 1

441

442 FIGURE 2

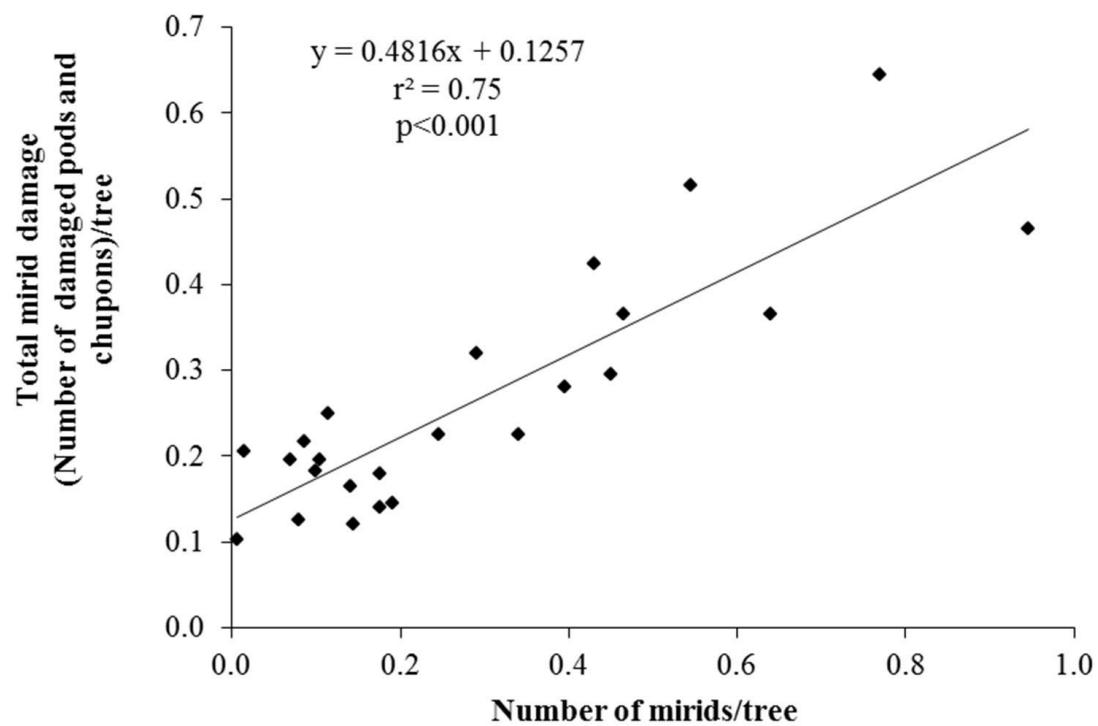
443

444

445

446

447


448

449

450

451

452 FIGURE 3

453

454

455

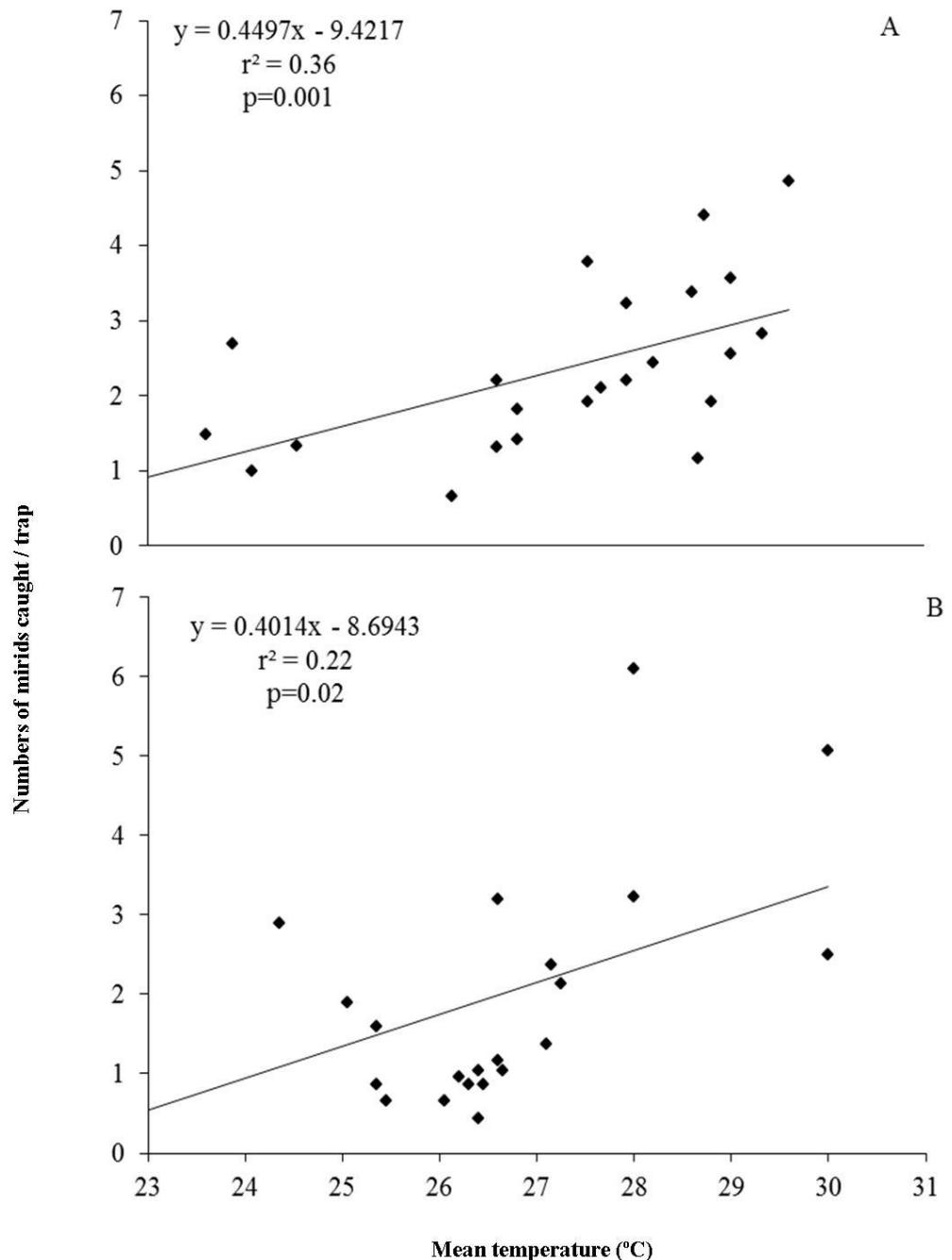
456

457

458

459

460

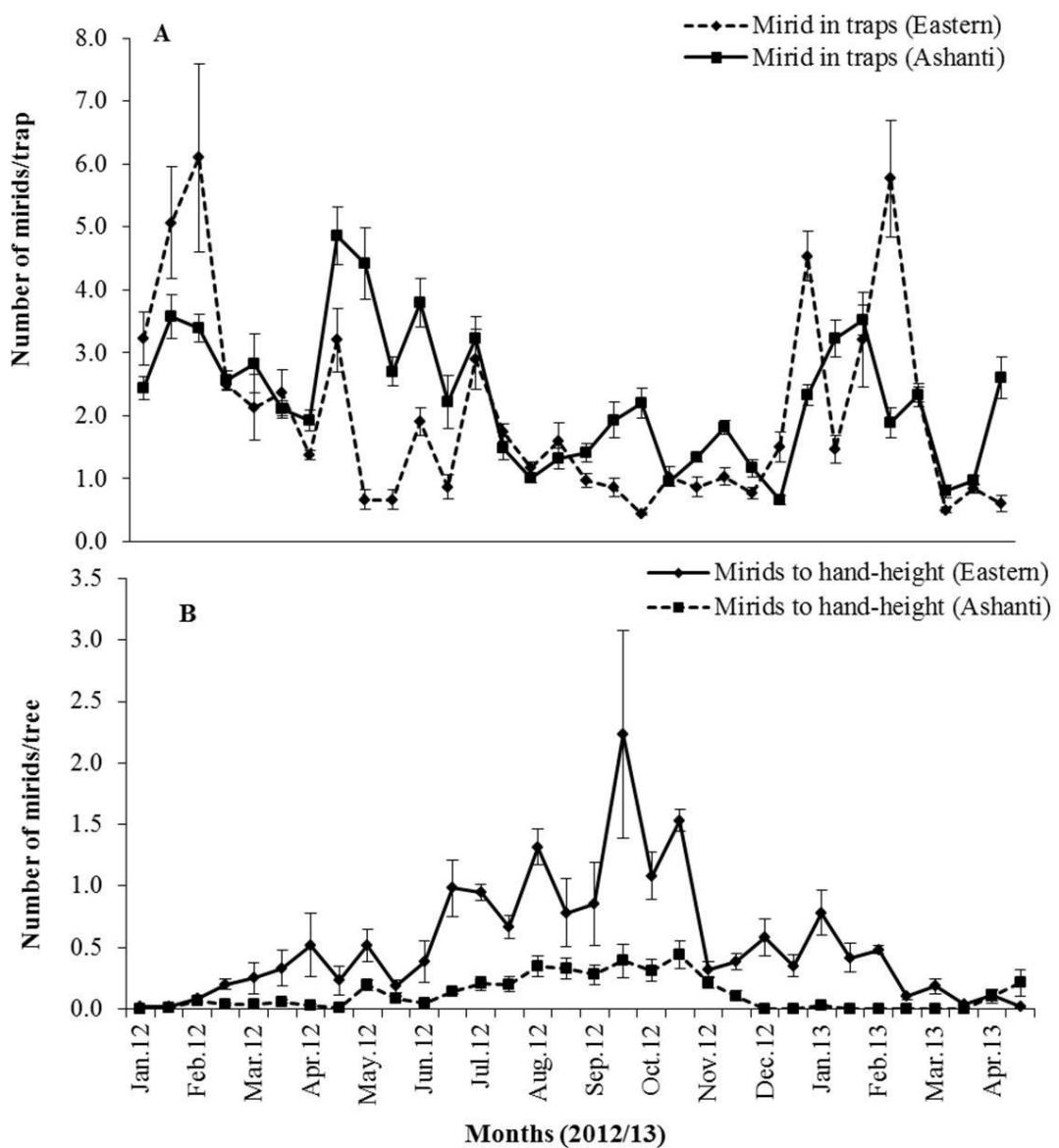

461

462

463

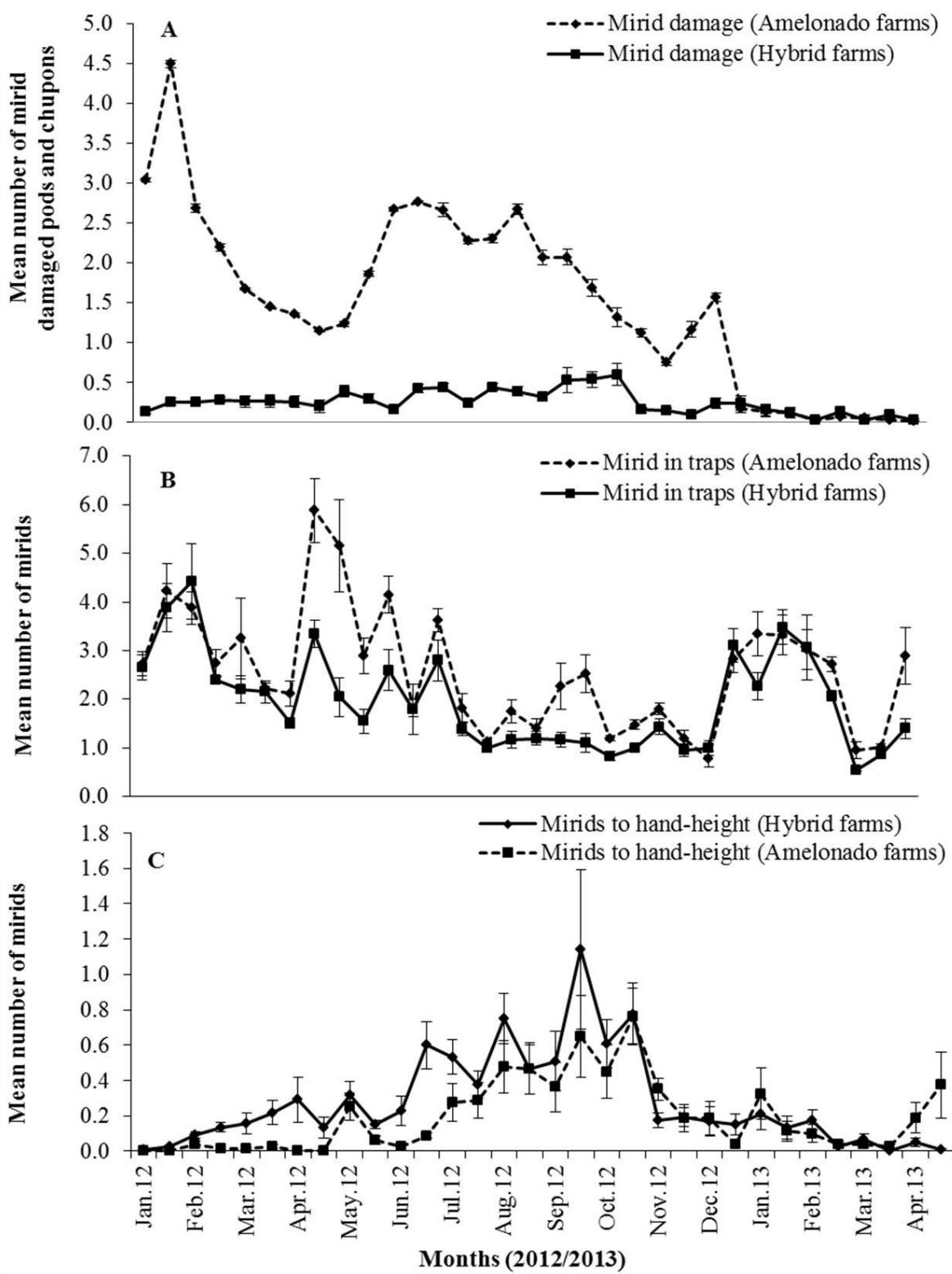
464

465 FIGURE 4


466

467

468


469

470 FIGURE 5

471
472
473
474
475
476
477
478
479
480
481
482

483 FIGURE 6

484
485
486
487