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Abstract 
This paper presents a parallel genetic algorithm to the 
Steiner Problem in Networks. Several previous papers 
have proposed the adoption of GAs and others 
metaheuristics to solve the SPN demonstrating the 
validity of their approaches. This work differs from them 
for two main reasons: the dimension and the 
characteristics of the networks adopted in the experiments 
and the aim from which it has been originated. The reason 
that aimed this work was namely to build a comparison 
term for validating deterministic and computationally 
inexpensive algorithms which can be used in practical 
engineering applications, such as the multicast 
transmission in the Internet. On the other hand, the large 
dimensions of our sample networks require the adoption 
of a parallel implementation of the Steiner GA, which is 
able to deal with such large problem instances. 
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1. Introduction 
 
The Steiner Problem in Networks (SPN) [22], is a classic 
combinatorial optimization problem which in its general 
case decision version has been shown [10] NP-complete. 
Its applications cover many different scientific and 
technological fields such, for instance, the VLSI and 
pipeline design, the Internet multicast routing, the 
telephone network design, etc. Given the importance that 
the problem entails in many scientific fields, many efforts 
have been produced in the last years to design 
polynomial-time algorithms to determine sub-optimal 
solutions. Several heuristics have been developed capable 
of providing approximate solutions [11], [16], [19]. 
Mathematical proofs constrain the solutions determined 
by these heuristics to the optimal solution, binding them 
by some multiplicative factors. This property allows their 
adoption for many practical applications. However, it 
remains a scientific challenge to determine the optimal 
solutions for those small instances treatable by exhaustive 
algorithms, and the best sub-optimal solutions in the other 
cases. 

As previously mentioned, among the practical 
applications of the SPN there is the construction of a 
minimal distribution tree to connect a set of Internet 
routers involved in a multicast transmission. The 
extremely dynamic nature of this application imposes the 
development of efficient and effective heuristics capable 
of determining, in a very short time, sub-optimal solutions 
that however may represent good approximations. Many 
of such methods have been proposed in the last years, 
with the further constraint to produce deterministically the 
solutions. To validate the effectiveness of the proposed 
algorithm it is useful to compare the approximations 
obtained with the exact solutions. However the NP-
complete nature of the problem, at least to the current 
knowledge, does not allow to perform complete 
algorithms for graphs whose dimensions are comparable 
with the current size of the Internet. 
Among the most efficient approximating algorithms, 
recently some meta-heuristics such as Genetic Algorithms 
[5], tabu-search [7], and Simulated Annealing [4] have 
been proposed.  Although these approaches can be 
considered the best approximating methodologies, they 
suffer the disadvantage of their non-deterministic 
behavior that does not allow their adoption in fields 
requiring a distribute coordination among several 
independent entities. However, the good performances 
produced by these evolutionary methods suggested us the 
idea to exploit their results as comparison term. The 
approach that better than each other has been evaluated 
suitable for exploiting the coarse grain parallelism 
available in our laboratory was a parallel implementation 
of Genetic Algorithm. This technique results extremely 
scalable and the software implementation we carried out 
allows us to extend its execution to very large grid 
computing systems, which currently are becoming 
available on the Internet. The relevant computing power 
available allowed us to solve very large instances of the 
problem, and in most of the cases to determine the best 
solutions ever obtained. 
The experiments have been carried out on several 
different sets of graphs, characterized by different 
topological features, with the aim to effectively evaluate 
and compare the performances over a wide range of 
samples. Furthermore, to demonstrate the general validity 
of the methodology we tested our implementation over a 
classical public library set of experiments, SteinLib [21], 



which represents a commonly accepted comparison term 
for the Steiner problem. The remainder of the paper is 
organized as follows. The Steiner Problem in Network is 
formulated in section II. Section III contains the 
description of the parallel genetic algorithm, and section 
IV discusses some topological metrics used to evaluate 
the algorithm performances. Finally, section V describes 
the experimental results, and section VI concludes this 
work and discusses future directions. 
 
2. The Steiner Problem in Networks 
 
Formally, the Steiner Tree Problem in Network can be 
formulated as follows. 
Definition 1. Let G = (V, E) be an undirected graph, 
w : E → R+ a function that assigns a positive weight to 
each edge, and Z ⊆ V be a set of multicast or terminal 
nodes. Determine a connected subgraph GS = (VS, ES) of 
G such that: 
- Z ⊆ VS ; 
- the total weight ∑

∈

=
SEe

S ewGw )()(  is minimal. 

 

The VS – Z set is called the Steiner nodes set and is 
denoted by S. Since the weight function assumes positive 
values, the resulting subgraph is called the Steiner 
minimum tree T, which spans each node in VS. 
Throughout this paper, let n = |V|, m = |E|, p = |Z|. Many 
heuristics proposed in the past years are capable of 
identifying sub-optimal solutions with polynomial time 
complexities. Among these, the Distance Network 
Heuristic (DNH) [22], the Minimum or Shortest Path 
Heuristic (MPH or SPH) [19],  the K-Shortest Path 
Heuristic (K-SPH) [12], the Average Distance Heuristic 
(ADH) [17], and the Stirring heuristic [2]. Some of the 
heuristics used as comparison terms and exploited in our 
algorithm are briefly described here. The DNH builds the 
distance network Kz induced by Z, and constructs the 
minimum spanning tree (MST) on the network Kz. It 
replaces the virtual links with the real paths (the nodes 
and links of the initial network), thus obtaining a 
subgraph of the initial network, Gz. It then computes the 
MST on Gz and finally prunes all the S-vertices of degree 
one. The MPH builds a subtree of G in an incremental 
fashion: it starts off by selecting an arbitrary node among 
the terminal nodes (typically the source node) and then 
progressively adds the terminal node nearest to the tree, 
including the nodes and edges of the connecting path. The 
K-SPH is an improvement of the MPH algorithm. It 
builds a forest of subtrees joining together the closest 
nodes or subtrees until a single solution tree has been 
obtained. ADH is a generalization  of K-SPH. It 
repeatedly connects nodes or subtrees through the most 
central node. ADH terminates when a single tree remains, 
spanning all the Z-nodes. The ADH algorithm is the most 
effective among these heuristics, though the better 
performances involve a higher computational cost, O(n3) 
versus the upper bound of O(pn2) of all other heuristics. 
The Stirring heuristic is a local search optimization 

method, constrained to assume a deterministic behavior, 
which uses a solution found from the above heuristics to 
determine better solutions. Furthermore, many algorithms 
capable of identifying the optimal solution tree have been 
proposed in the literature. All of them are characterized 
by an exponential complexity. Among these, the 
Spanning Tree Enumeration Algorithm [22], has 
O(p2 2n-p + n3) complexity, and the Dynamic 
Programming Algorithm  with O(n3 + n2 2p-1 + n 3p-1) 
complexity. However, their exponential nature does not 
allow their adoption in any practical field. 
 
3. The Parallel Genetic Algorithm 
 
In this paper we will not describe the basic genetic 
algorithms, and for their description we remand the 
interested reader to [8]. To solve a problem using a 
genetic algorithm, it is necessary to perform a mapping of 
the problem elements into the basic components of the 
GA. To perform the analysis of the solution space, a GA 
needs the representation of the problem solutions as basic 
individuals of its population, which are called genomes. 
During the execution of the algorithm new individuals 
will be generated by means of the mutation and crossover 
operators. New generated individuals should own the 
basic property to still represent feasible solutions. To 
encode the feasible solutions of the SPN as binary 
genomes, we adopted the following representation. For 
each particular instance of the problem we define the 
genome as a binary array whose length corresponds to the 
dimension of the set V – Z, i.e. the set of all the nodes 
which may be considered potential candidates for 
belonging to a given solution. The value of the i-th bit 
represents if the correspondent node i in the set V – Z 
should be considered as complementary node to generate 
a tree which connects the Z nodes. To follow the genome 
indication of including the correspondent nodes in a 
solution tree we map each genetic individual in a new 
instance of the problem where the original Z nodes are 
extended with the nodes coded by the genes. This new 
instance of the problem is solved using the K-SPH 
heuristic [12] and the solution pruned with regard to the 
original multicast set. The fitness value is 
straightforwardly calculated as the inverse of the tree cost, 
thus to restrict the range of the fitness function to the 
interval (0,1]. Among the heuristics presented in the 
previous section, we chose the K-SPH as evaluation 
criterion, since its performances represent a valuable 
trade-off between execution time and solution 
competitiveness. 
Genetic Algorithms are naturally suited to be 
implemented on a parallel architecture. Surveys on 
parallel GAs can be found on [1] and [20]. Several 
approaches to parallel implementations of GAs have been 
proposed. In this paper we will consider a simple global 
model. In this approach a master process is responsible of 
the main execution of the genetic algorithm and exploit 
the availability of different processors by allocating a 
slave process on each of them. Each slave will be required 



to execute the evaluation function for some individuals of 
the current population on the basis of its availability. This 
way, the master process has only to deal with the 
genomes population, while the slave processes have to 
deal with the more expensive computation of the 
evaluation function. This allows a good scalability of the 
algorithm with respect to the number of available slaves. 
 
4. Topological metrics 
 
Before evaluating the heuristics performances over the 
sample graphs, we firstly need to establish some criteria 
to objectively measure the topological characteristics of 
the graphs. This is in order to compare the experimental 
graphs with the networks coming from the application 
world, such as the case of the Internet for multicast 
transmission applications. Namely, the performances of 
the heuristics can heavily depend from global network 
parameters such as the maximum node degree and the 
connection degree, that in turn depends from the type of 
the examined graph. In this section we describe some 
topological parameters used to characterize computer 
networks, including the node degree, the node rank and 
the degree frequency distribution (see table 1). Recently, 
it has been shown [6] that, despite their apparent 
randomness, current Internet topologies exhibit power 
laws of the form y ∝ xα, where α is a constant, between 
some topological parameters that are examined in table 1. 
 

Metric Description 
dc Connection degree, i.e. fraction of edges with 

respect to a same-size fully connected network. It is 

obtained as 
)1(

2
−

=
nn
mdc . 

dv Node degree, i.e. the number of outgoing edges 
from the node v. 

rv Node rank, i.e. its index ordering all nodes in 
decreasing degree. It follows from the definition 
that if ∃ two nodes v and w such that dv < dw, then 
rv > rw. 

fd Degree frequency, i.e. the number of nodes with 
degree d. 

 

Table 1 - Graph and node parameters used to characterize 
network topologies. 

 
With the above definitions, we are interested particularly 
on the following well known power-laws, as they can help 
in characterizing graphs typologies from each other: 
The degree of a node is proportional to the rank of the 
node to the power of a constant R: 

R
vv rd ∝  

The frequency of a degree is proportional to the degree to 
the power of a constant O: 

O
d df ∝  

In a previous work [3] we found that in order to 
characterize a network and evaluate its matching degree 
with a real network structure such the Internet, we can 
take into account the global network connection degree dc 

and the regression coefficients R2, which determine the 
fitness degree between the node parameters and the above 
power laws. Namely, if a topology exhibits an Internet-
like structure the dc parameter is always very low (under 
0.01) and the two R2 coefficients are relatively high, both 
for the first and for the second law; on the other hand, if 
the topology does not exhibit any particular structure, the 
above distributions can assume very different shapes (e.g. 
gaussian), with meaningless R2 values and the dc 
parameter ranging in the whole interval [0, 1]. 
 
5. Experimental results 
 
The parallel implementation has been carried out on forty 
workstations arranged as a grid cluster managed by the 
MPI system [15]. All nodes present the same hardware 
and software configuration. Each of them is equipped 
with an Intel Pentium 4 processor with a clock frequency 
of 1.5 GHz, 256 Mbytes of RAM, four 100Mbps Ethernet 
cards and managed by the Red Hat Linux 7.2 distribution. 
A redundant degree of connectivity is achieved by means 
of eight 100Mbps Ethernet switches. 
In this section we discuss the experimental results 
obtained on three different test sets of sample graphs, 
taken respectively from the public SteinLib library, the 
BRITE topology generator, and the Mercator project. All 
the test sets are classified according to the topological 
indices described in the previous section. On this 
experimental testbed, we execute the parallel Genetic 
Algorithm, the classical heuristics SPH, DNH, K-SPH, 
and ADH, and the stirring heuristic. The GA parameters 
are set as follows: 
• population size = 120 individuals (three times the 

processors number), 
• number of generations = 30, 
• probability of mutation = 0.05, 
• probability of crossover = 0.8. 
 

 
Fig. 1 - Typical fitness evolution vs. number of generations. 

 
We maintain these values constant for all the executions 
in order to compare all problems on a homogeneous basis. 
Furthermore, since a preliminary observation (see fig. 1)  
revealed a fast convergence of the algorithm with regard 



to the number of generations, we chose for this parameter 
a relatively small value, thus to optimize the execution 
times. 
The first test set is a subset of the SteinLib library [21], a 
public collection of Steiner tree problems in graphs with 
different characteristics, taken  from VLSI applications, 
genetic contexts, computer networks applications, etc. 
More specifically we adopt the subset constituted by 
Beasley’s series C, D, E, formerly known as the OR-
library, which are random-weights graphs with sizes 
ranging from 500 to 2,000 nodes. The connection degree 
is relatively high, ranging from 0.1% up to 10%. This 
network sample does not exhibit any power law as 
regards the degree and rank distribution, which means 
that its graphs do not present any similarity with the  
Internet-like topologies.  However we adopted it as test 
for our parallel implementation of GA, because it 
represents a commonly accepted comparison term since 
the optimal solutions are known. 
 

 
Fig. 2 - Cumulative cost competitiveness on C,D,E SteinLib nets. 
 
Figure 2 shows the cumulative cost competitiveness of 
parallel GA and the classical heuristics over the above 
graphs. The competitiveness is determined as the ratio 
between the costs of trees produced by heuristics and the 
optimal ones. From the comparison of the solutions 
obtained by the GA with the optimal values, it can be 
observed that on 50 over 60 cases the GA is able to 
determine the optimal solution, and for 55 instances the 
obtained solution is at most 1% larger than the optimal 
value. 
The following set of experiments is devoted to investigate 
the graphs with topological features similar to the Internet 
graphs. BRITE (Boston university Representative Internet 
Topology gEnerator) was developed to investigate the 
growth of large computer networks [13], and to compare 
several topology generation models. The key 
characteristic of this generator is the incremental growth 
(the network generation goes on in an incremental 
fashion) and the preferential connectivity (the probability 
that a new node is connected to a randomly selected target 
node is positively correlated to the degree of the target), 
used during the generation process; its authors claim that 

these are the primary reasons for power-laws on the 
Internet, since the generated topologies exhibit the power-
laws with a very high correlation. However, it should be 
underlined that BRITE adopts an incremental growing 
strategy, rather than a hierarchical mode; as noted in [14], 
although it is commonly accepted the idea of a 
hierarchical Internet, experimental tests have proved  that 
an incremental generator, based on the nodes degree, fits 
the real networks better than a hierarchy based generator. 
In our experiments, we tested several networks (~ 400) 
with homogeneous topological characteristics and sizes 
ranging from 1,000 to 5,000 nodes. 
 

 
Fig. 3 - Cumulative cost competitiveness on Brite nets. 

 
Figure 3 shows the cumulative cost competitiveness 
curves for a test set composed of one hundred networks, 
each of them with 1,000 nodes. In this and in the 
following experiments, the competitiveness is determined 
as the ratio between the costs of trees produced by 
heuristics and the best-known sub-optimal solution. As it 
can be clearly observed, GA finds the best-known 
solutions on all the instances, thus confirming its 
effectiveness to be used as a comparison term for the 
other heuristics. 
In the last experiment, the test set is created starting from 
the real Internet data description produced by the 
Mercator project [9]. 
 

 
Fig. 4 - Cumulative cost competitiveness on Mercator subnets. 



This project has produced a real Internet snapshot, by 
merging an enormous amount of measurements taken 
over the time and gathered into a central database. The 
resulting network, obtained in November 1999, includes 
more than 280,000 nodes and nearly 450,000 edges, with 
a connection degree lower than 0.001%. 
The analysis of the cumulative cost competitiveness 
curves, shown in figure 4, reveals the parallel GA  
effectiveness since the best-known solutions are found on 
45 instances out of 50. 
 
6. Conclusion 
 
In this work we proposed the adoption of a parallel 
implementation of  genetic algorithm to obtain near-
optimal solution to the Steiner Problem in Networks for 
large graphs with topological features similar to the 
Internet ones. The results have shown that our 
implementations achieved high competitiveness in all the 
experimented test sets, differentiated for topological 
characteristics. In most of the well known examples of the 
SteinLib library we found the optimal solutions. On the 
sample networks generated by the Brite tool or extracted 
from the Mercator graph, which simulate the Internet 
structure with the best accuracy, we almost always 
obtained the best calculated sub-optimal solutions, thus 
achieving a useful result for the comparison of the 
competitiveness of the polynomial and deterministic 
heuristics. 
As regards the future directions, we are currently 
developing more sophisticated genetic models, such as a 
multi population model, with the aim of further improving 
the GA performances and dealing with larger problem 
instances. 
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