University of
< Reading

A hierarchical distributed approach for
mining molecular fragments

Conference or Workshop Item

Published Version

Sieb, C., Di Fatta, G. and Berthold, M. R. (2006) A hierarchical
distributed approach for mining molecular fragments. In:
International Workshop on Parallel Data Mining, ECML/PKDD,
Sept 2006, Berlin, Germany, pp. 25-37. Available at
https://reading-pure-test.eprints-hosting.org/6138/

It is advisable to refer to the publisher’s version if you intend to cite from the

work. See Guidance on citing.
Published version at: http://kops.ub.uni-konstanz.de/handle/urn:nbn:de:bsz:352-opus-65694

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

University of
< Reading

Reading’s research outputs online

25

A Hierarchical Distributed Approach for Mining
Molecular Fragments

Christoph Sieb!, Giuseppe Di Fatta?, and Michael R. Berthold!

1 ALTANA Chair for Bioinformatics and Information Mining
Department of Computer and Information Science, University of Konstanz
Box M 712, 78457 Konstanz, Germany
{sieb,berthold}@inf.uni-konstanz.de
2 School of Systems Engineering, University of Reading
Reading RG6 6AY, United Kingdom
difatta@reading.ac.uk

Abstract. Recently, two approaches have been introduced that distrib-
ute the molecular fragment mining problem. The first approach applies a
master/worker topology, the second approach, a completely distributed
peer-to-peer system, solves the scalability problem due to the bottleneck
at the master node. However, in many real world scenarios the participat-
ing computing nodes cannot communicate directly due to administrative
policies such as security restrictions. Thus, potential computing power
is not accessible to accelerate the mining run. To solve this shortcom-
ing, this work introduces a hierarchical topology of computing resources,
which distributes the management over several levels and adapts to the
natural structure of those multi-domain architectures. The most impor-
tant aspect is the load balancing scheme, which has been designed and
optimized for the hierarchical structure. The approach allows dynamic
aggregation of heterogenous computing resources and is applied to wide
area network scenarios.

1 Introduction

Due to the enormous amount of data created by many of today’s transactional
applications, it has become necessary to parallelize the corresponding mining
algorithms to attain reasonable response times. One of these applications in
the field of drug discovery is related to the High Throughput Screening (HTS)
technology. The HTS process is widely used to identify potential compound can-
didates for further research in the drug discovery process. HTS is able to screen
more than 100,000 compounds a day for several activities, such as inhibition
of HIV or cancer cells. The screened compounds are recorded in a transaction-
like database together with their activity level. As the number of candidate
compounds is extremely large, it is useful to extract features from the active
compounds and use them to reduce the number of relevant candidates.

Key features are those molecular fragments that occur frequently in active
compounds but infrequently in non-active ones, and therefore represent promis-
ing starting points. These discriminative fragments can be extracted by modeling

26 Christoph Sieb et al.

the compounds as undirected labeled graphs and applying Frequent Subgraph Mi-
ning (FSM) algorithms [9] to them. Even though the available FSM algorithms
use sophisticated methods to speed up the mining process, the scalability issue
can only be solved by increasing the computational power of the underlying sys-
tem. Increasing the power of a single processor machine is limited by current
technology and physical laws. One possible approach to overcome these limita-
tions is to partition the original problem into smaller subtasks and allocate them
to several processors.

Large companies and institutions typically deploy many ordinary, hetero-
geneous desktop PCs and servers at different locations with several security
policies. They are often underutilized and therefore offer a large-scale comput-
ing resource pool. The challenge is to make this pool accessible for computing-
intensive applications to solve problems without the need of expensive special
hardware.

The first work on distributed mining of frequent molecular fragments [5]
describes a centralized master/worker approach, which partitions the induced
depth-first search tree to distribute the mining task. Very often such search pro-
blems exhibit a highly irregular tree shaped computation, and, in some cases as
in molecular fragment mining, the complexity of subtasks cannot be estimated.
In this case it is essential to adopt a dynamic load balancing policy. Typically, for
FSM algorithms, the search space representation in memory is much bigger than
the database size and thus, parallel approaches distribute the induced search tree
instead of the database. The second approach, designed as a completely distrib-
uted peer-to-peer system [6], solved the inherently scalability problem due to the
bottleneck of the central master. Both approaches require direct channel com-
munication to exchange messages. However, in many real world applications the
potential computing nodes are not always directly accessible from each other due
to security restrictions. In those environments both approaches cannot exploit
the potential computing power and therefore represent an architectural bottle-
neck.

In this work we present the first hierarchical distributed system for FSM
and other highly skewed search tree problems applied in the context of ordinary
computer technology. The hierarchical system aligns to the inherent hierarchy
of those multi-domain networks to overcome the described drawback of a cen-
tralized or peer-to-peer system. The load balancing scheme takes into account
the specific challenges of highly skewed search tree problems and the hierarchi-
cal structure respectively. Furthermore, it maintains locality to keep the system
scalable. The tests show that the system performs similar to the centralized
approach but additionally enables access to multi-domain clusters restricted by
real world security policies.

The rest of this paper is structured as follows. The next section discusses re-
lated approaches to hierarchical distributed systems and FSM. In section 3, we
briefly describe a concrete sequential FSM algorithm on which our distributed
approach is tested. In section 4, we introduce the centralized master /worker ap-
proach, followed by section 5, which presents the architecture of the hierarchical

A Hierarchical Distributed Approach for Mining Molecular Fragments 27

system and describes the hierarchical load balancing scheme. Section 6 describes
the experiments we conducted to verify the performance of the hierarchical ap-
proach. Finally, we provide concluding remarks.

2 Related work

Many dynamic load balancing (DLB) algorithms for irregular problems have
been proposed in literature and their properties have been studied [7]. In the field
of hierarchical distributed computing, Antonis et al. describe in [2] a hierarchical
load balancing scheme that needs to know the number of participating nodes in
advance and builds up a logical binary tree.

In [4] Dandamudi and Lo present a load sharing policy for identical nodes
by arranging them in a hierarchical structure. This work addresses hierarchical
distributed systems and, in particular, sender and receiver initiated load bal-
ancing techniques. In [8] a hierarchical load balancing scheme is described that
works close to the operating system. The scheme is implemented on a massive
parallel system where the processors are connected by high speed networks. The
described load balancing scheme, however, needs to know the current load level,
which is not known in search tree problems with highly skewed data.

Finally in [10], a whole framework is proposed to provide a common plat-
form for distributed applications. In this framework, it is necessary to know the
problem size of a task to enable good load distribution. Unfortunately, this is
impossible for most data mining problems as the size of the underlying search
space is unknown a priori.

3 Molecular fragment mining

The problem of selecting discriminative molecular fragments in a set of molecules
can be formulated in terms of frequent subgraph mining in a set of graphs.
Molecules are represented by attributed graphs, in which each vertex represents
an atom and each edge a bond between atoms. Each vertex carries attributes that
indicate the atom type and a possible charge and each edge carries an attribute
that indicates the bond type. Frequent molecular fragments are subgraphs that
have a certain minimum support in a given set of graphs, i.e., are part of at least
a certain percentage of the molecules. Discriminative molecular fragments are
contrast substructures that are frequent in a predefined subset of molecules and
infrequent in the complement of this subset. In this case, two parameters are
required: a minimum support (minSupp) for the focus subset and a maximum
support (maxzSupp) for the complement.

The algorithm organizes the space of all possible fragments in an efficient
search tree. An example of such a search tree is depicted in Figure 1. The al-
gorithm is based on an exhaustive depth-first search strategy. Each node of the
search tree represents a candidate frequent fragment. A search tree node eva-
luation comprises the generation of all the embeddings of the fragment in the
molecules. An embedding of a fragment consists of references into a molecule

28 Christoph Sieb et al.

Lo] [s=o][=]

C—S—C| [C—S—N ‘C—S—O‘

SuBSET PRUNING PRUNING N o
SELECTION [} 1
- 7 c-c-s p-s—~

C—S=N‘ ‘C—C—S‘ ‘O—S—N‘ ‘N=S—N‘ ‘O—S—O‘ ‘O—S=N‘

SUBSET
SELECTION

Fig. 1. Search tree partitioning

that point out the atoms and bonds that form the substructure. The embedding
list allows both a fast computation of the fragment support in the active and
inactive molecules and a fast extension to bigger fragments. When a fragment
meets the minimum support criterion, it is extended by one bond to generate
new search tree nodes. When the fragment meets both criteria of minimum sup-
port in active molecules and maximum support in the inactive molecules, it is
then reported as a discriminative frequent fragment.

The search starts from a root node with a single atom and is iterated for each
frequent atom type. The algorithm prunes the DFS tree according to three crite-
ria. The support-based pruning exploits the anti-monotone property of fragment
support. The size-based pruning exploits the anti-monotone property of fragment
size. And, finally, a partial structural pruning is based on a local order of atoms
and bonds. For further details of the algorithm we refer to [3].

After introducing the underlying application algorithm, the next section de-
scribes the centralized master/worker approach to introduce the basic DLB
scheme.

4 The master/workers approach

There are two aspects in parallel and distributed systems that influence scala-
bility, overall performance and flexibility. The first aspect is the logical commu-
nication topology, while the second aspect concerns the load balancing scheme.
The logical communication topology is important with respect to scalability is-
sues and the flexibility to adapt to administrative policies, e.g. secure subnets.

A Hierarchical Distributed Approach for Mining Molecular Fragments 29

Nevertheless, load balancing must be tightly incorporated and must respect the
logical structure.

In the master/workers approach, the topology is a star scheme, where the
worker nodes perform the actual mining task and the master is responsible for
distributing the workload equally. The distribution of the mining task is done
by partitioning the search space, i.e. each worker explores a different part of
the search space and the master node merges partial results. Search space parti-
tioning is performed by pruning a branch of the depth-first search tree induced
by the mining algorithm. To this aim, an external description of the pruned
search node has to be generated and donated to an idle worker (see Figure 1).
This description must be appropriate to set up the same state of the mining
process for the receiving worker to explore the search subtree. A donated search
node describes a molecular fragment that occurs in a subset of the molecular
database. A pruned fragment with the information necessary to restart the com-
putation in any of the participating nodes is subsequently referred to as a job.
Each computing node has its own replica of the dataset. In order to decrease
the computation overhead of re-embedding the fragment in the molecules, the
ID list of the supporting molecules can be included in the description (subset
selection).

The adopted DLB scheme is a receiver-initiated policy because data mi-
ning applications are typically computation bounded problems. The master node
manages a pool of unprocessed jobs from which it serves child requests.

The master node sends job pruning requests to worker nodes (called donators)
once the job pool size J is below a given threshold. This threshold is derived
from the number of worker nodes C and a relative threshold value oy, called
the relative job pool threshold. Thus, a soft state request is periodically sent
while the following boolean expression holds J < Jp, where J, = af, - C is the
absolute job pool threshold. If the number of jobs is below the threshold Jy, the
master node sends j job requests to its children, whereas j is calculated by the
difference of the job pool size J and the absolute pool threshold J; plus the
number of pending requests ¢: j = Jp, — J 4+ ¢

The master node chooses a worker with a previously assigned job that can
donate a part by pruning its search tree. In dynamic load balancing schemes the
idea is to ask the node with most work. Unfortunately, in this kind of search
problems the actual complexity of a subtask is not known in advance. The load
can only be estimated by the heuristic that older assignments represent bigger
jobs. To decrease the probability of a bad selection and to avoid too many
requests to a single node the requester selects the donator by a Ranked Random
Polling [6].

When a worker has received a job request, it applies two heuristics which
increase the probability of pruning a big job, referred to as pruning heuris-
tics. The first one applies a focus support threshold suppT H, which is greater
than the minimum focus support minSupp. Fragments with larger focus sup-
port supppr have a higher probability of being further extended instead of being

30 Christoph Sieb et al.

discarded due to the downward closure property. Therefore, only fragments for
which supppr > suppT H holds are considered for pruning.

The second heuristic exploits the local order defined in the sequential algo-
rithm [3] to identify larger jobs. This order defines which atoms of the current
fragment can be extended. A fragment with many extendible atoms creates a
larger sub tree in the search space. Thus, fragments can only be pruned if the
number of extendible atoms over the total number of atoms is larger than a
threshold t7,, 0 < t; <1.

Whenever a job is finished at a worker node, the result is reported to the
master node, which merges the partial results. Once the master’s job pool is
empty and no assignments are left in the assignment list, the search is over.

5 The hierarchical distributed system

The advantages of the centralized approach are an easy-to-handle topology, di-
rect communication paths, and a global state maintained by the master, which
offers very good load balancing capabilities. However, in many real world sce-
narios the master often is not able to access each node directly. Even, in cases
where nodes are accessible, long communication delays from the master to sev-
eral workers would reduce the performance.

We adopt a hierarchical communication topology based on a tree. Tree hi-
erarchies correspond to the actual structure of multi-domain systems, in which
just one node in a domain is accessible from nodes of other domains.

In the following subsections, we describe the management of the logical topol-
ogy and outline the hierarchical load balancing scheme.

5.1 Topology management

The hierarchy is structured into administration nodes (admins) and worker nodes
(workers). The root node represents a special admin.

Worker nodes perform the actual mining task, i.e. they explore a part of the
search tree. Furthermore, worker nodes create new subtasks for idle workers by
pruning a node of their current search tree. Once the subtask has finished, the
result is sent to the parent admin node. Workers are the leaf elements in the
communication tree.

Admin nodes manage other nodes and merge the partial results received
from their children. Admins represent inner nodes organized in a tree with one
or more hierarchical levels. All admins (except root) eventually propagate their
aggregated partial results to their parent node.

All computing nodes, except the root, join the system by registering them-
selves to their parent node. Even if there is no restriction on the hierarchy depth,
flat hierarchies have to be preferred in order to avoid long communication paths.
However, the branching factor at admin nodes should be limited to avoid a bot-
tleneck similar to the one of the centralized master-workers approach. It should
be noticed that, in contrast to the centralized system, the hierarchical topology

A Hierarchical Distributed Approach for Mining Molecular Fragments 31

can be extended as soon as an admin may represent a bottleneck. A dynamic
topology management is out of the scope of this paper.

Admin 1
(root)

Admin 2
(open gateway)

Security sub location Security sub location

Secure intranet

Fig. 2. Schematic example hierarchy

Figure 2 shows an example hierarchy with a root node managing two ad-
mins. Admin 2 manages several workers within a secure intranet, which are only
accessible from the admin (gateway). Admin 3 is also part of a secure intranet
but manages two further security sub-locations.

The next section describes the DLB scheme, which has been designed to work
efficiently in hierarchical topologies.

5.2 The load balancing scheme

As in the centralized master/workers approach, the mining task is distributed by
partitioning the search space. In this case, the management task is also distrib-
uted over several admins at different levels of the hierarchy. Each admin node
manages a job pool to serve idle nodes in its subtree. When the job pool size is
below the threshold, the admin sends job requests to its child nodes to solicit
the generation of new subtasks (search tree pruning). The admin is also logically
connected to the rest of the system through its parent node. For a global load
distribution the admin has to send job requests to its parent as well, which in
turn will forward the request to another branch of the communication topology.
However, this naive approach would involve the whole system into the job acqui-
sition process making vain the scalability potential of the hierarchical topology.
For the sake of scalability it is necessary to preserve locality in subtrees of the
hierarchy. In the next sections we introduce the concept of local and global load
balancing that ensure locality in the subtrees.

Local load balancing An admin node performs Local Load Balancing (LLB)
to distribute and balance the load among its children (either admins or workers).

32 Christoph Sieb et al.

From the local point of view, the admin still performs a centralized DLB (section
4). An admin node manages a pool of unprocessed jobs and a threshold Jy, is used
to trigger job-donation requests to its children. We refer to Ji, as the absolute
local job pool threshold. Children are treated the same way regardless of being
workers at a leaf level or further admins. As in the centralized approach, when
a worker receives a job-request, it will prune a part of the local search tree
according to the pruning heuristics (see section 4) and send the new job to the
parent node. In case a job request is sent to an admin node, it is forwarded
by applying the same LLB policy at each intermediate admin until a worker is
reached.

Global load balancing While the LLB activities in a node try to balance
the load among its children, the load balancing activities generated by upward
requests to its parent node are referred to as Global Load Balancing (GLB). An
upward request is triggered by a node when the job pool size is smaller than a
relative global threshold ag, J < Jg = ag - C.

Locality is a crucial aspect for the scalability of hierarchical systems. Com-
munication and load balancing activities within subtrees have to be autonomous
up to a certain degree to prevent that global communication may limit the scal-
ability. An admin node must first try to satisfy demands for new jobs within
its own subtree and, as last extent, it will send a request to its parent node.
Therefore, the global threshold is set below the local one (ag < ayr), avoiding
global requests when they are not necessary.

Another important aspect in DLB is the donation of a job upon a job-
donation request. Donations to child nodes are granted immediately. In contrast,
donations to the parent node should not be granted if this may cause starvation
of child nodes. To avoid this problem, a third threshold parameter is introduced
called the donation threshold ap, which is related to upward job donation. Thus,
donations to the parent node are only granted if J >=ap - C = Jp.

Figure 3 illustrates this threshold in combination with Jr and Jg. The job
pool size of Admin 2 is below the local and the global thresholds and thus it
generates requests to its children and also to its parent node. The job pool size
of Admin 1 is below the local threshold but above the global one. Therefore,
it generates downward requests to the child nodes but no upward requests to
its parent. If Admin 1 receives a request from its parent node, it would not
donate a job from the pool. In general, donating jobs upwards involves more
communication than downward donation. To avoid small jobs resulting in fre-
quent GLB, a computing node donating upwards chooses the biggest job from
the current job pool (according to the pruning heuristics). This strategy reduces
global communication and, thus, contributes to the system scalability.

The previous two sections described the hierarchical DLB scheme. Another
important aspect in hierarchical systems is the aggregation of information and
states. Aggregation makes it possible to approximate a global state for good DLB
performance and keep the system scalable anyway. The next section describes
this more in detail.

A Hierarchical Distributed Approach for Mining Molecular Fragments 33

Job pool

Buffer

1

U

Fig. 3. Hierarchical topology Fig. 4. Pruning Problem

Hierarchical aggregation In centralized systems decisions can be made with
a global state ensuring easy and effective load balancing. Hierarchical systems
must aggregate system information as it is not possible to maintain the global
state in all levels of the hierarchy, i.e. a node should only know about its children
and its parent node.

There exist two important problems, which have to be solved. The first one
concerns the assignment lists and the second one concerns the termination de-
tection of the hierarchical distributed mining run.

As described in section 4 the efficiency of the donor selection policy is based
on the correct knowledge of the global assignment list. However, in the hierarchi-
cal system this is not straightforward when several levels are involved, as Figure
4 shows.

In step 1 Root assigns job 1 to its child Admin R and adds the job to its
assignment list. Admin R assigns the job to Worker 1, which starts a mining
process. The worker prunes a part from job 1 resulting in a new job 2. If job 1
completes before job 2, job 1 is reported as finished to Root (via Admin R) even
though a part of the original job is still mined in the subtree. As job 1 will be
removed from the assignment list of Root the branch is no longer considered for
pruning.

Thus, it is not enough for an admin to remember the job ID and its assign-
ment time. The reason is that job pruning can also occur at deeper levels and
thus is not recognized by the admin.

To solve this problem, we adopted a job identifier (job ID) with a hierarchi-
cal structure which allows aggregated state information about jobs in a subtree.
When a job is propagated downwards the logical topology, at each intermediate
node (admin) a digit is appended in a dotted notation (e.g., 73.5.2”). The hier-
archy of job IDs respect the hierarchies of tasks in the search tree. In particular,
the prefix identifies the parent task and the last appended digit is a sequen-

34 Christoph Sieb et al.

tial counter that uniquely identifies the subtask. Job completion messages from
children are aggregated by means of their ID prefix to detect the completion
of the parent task. When this last condition is met, the admin node sends the
aggregated job completion message up to its parent.

The hierarchical job ID system ensures that the assignment lists always rep-
resent the correct state of jobs in a subtree, thus enabling the donator selection
policy to work properly in the whole hierarchy.

The termination detection problem is also solved by the hierarchial ID sys-
tem. The system ensures that jobs are only reported as completed if all descen-
dant jobs inside the same subtree have also been reported as completed. When
the root node detects the completion of the initial job, the whole mining task is
over.

6 Experimental results

To show the runtime behavior and the functionality of the hierarchical load
balancing scheme we set up different long-distance hierarchical system config-
urations. A pool of 57 heterogenous computing nodes (1.5GHz / 0.5GB up to
3.4MHz / 1GB) were located at the ICAR-CNR? in Italy (24 nodes) and at the
University of Konstanz (UniKN) in Germany (33 nodes).

The test configurations are based on two basic scenarios. The first scenario
has two worker clusters at different locations (UniKN, ICAR) each managed
by an admin, which also resides at the corresponding location. The root node is
located at UniKN and manages the admins of both clusters. The second scenario
introduces a third worker cluster located at UniKN.

In the hierarchical tests the number of participating workers varies from 12
to 48. The workers are distributed equally among the clusters. Table 1 shows
the different configurations of both scenarios.

The hierarchical configurations are compared to the centralized approach.
This involves the same computing nodes, which however, are directly managed
by the master node.

All tests have been conducted on the well-known and freely available NCT
AIDS Antiviral Screen screening dataset from the National Cancer Institute
(NCT) [1]. A total number of 37171 molecules have been divided into a focus and
a complement partition according to an activity threshold (0.5), respectively of
325 compounds and 36846 compounds.

For speedup analysis the sequential algorithm was executed on each of the
heterogenous machines with focus support thresholds (see Section 3) of 4%,
5%, 6% and 7%. The runtime of the fastest machine is applied for later speedup
analysis. Figure 5 shows the sequential runtime as well as the number of reported
discriminative fragments and the number of search tree nodes that have been
explored. The graphs depict the exponential problem space. Even though the
number of reported fragments is quite low due to the complement threshold

3 Istituto di Calcolo e Reti ad Alte Prestazioni, Sezione di Palermo, Consiglio
Nazionale delle Ricerche, Italy

A Hierarchical Distributed Approach for Mining Molecular Fragments 35

Sequential runtime Number Fragments Search tree nodes

8
2
8
8

7.000.000

6000000 —X

8

=3
8

>

2500 \

5.000.000
4000000

3.000.000 \\
2000.000 \

1.000.000

=
8

Runtime (sec)
o 8
8 8
discr. fragments
2

0
4 5 6 7 4 5 6 7 4 5 6 7
Focus support threshold (%) Focus support threshold (%) Focus support thre shold (%)

IS
&

#search tree nodes

]

o
o

Fig. 5. Sequential performance measures

2 worker clusters 3 worker clusters

60 60

50 50

40 40
g- —— Linear speedup g- ——Linear speedup
‘g 20 _e |—#Centralized ‘g 30 / —&—Centralized
2 —a— Hierarchical 2 —a— Hierarchical
) » / —A— Hierarchical (naive) »n 2 / —&— Hierarchical (naive)

0 %Z 10 ﬁ%/é

0 T T T 1 0 T T T d
10 20 30 40 50 10 20 30 40 50
Computing nodes # Computing nodes

Fig. 6. Speedup comparison

filtering, the number of search tree nodes that have been explored shows a huge
search space.

In the distributed tests, the focus support threshold is fixed to a relative value
of 4%. For the given focus partition of 325 molecules a fragment must occur in
at least 13 of them to be frequent. The complement threshold is set to 0.01%.
Therefore, a frequent fragment is also a discriminative fragment if it occurs in a
maximum of 4 molecules of the complement partition.

The two graphs of Figure 6 show the speedup values of the hierarchical tests
(see Table 6). For each configuration the speedup values are compared to the
speedup of the corresponding centralized approach and also to the values of the
naive hierarchical approach without the differentiated hierarchical load balancing
(thresholds and aggregation).

As expected, the speedup of the hierarchical system is below the one of the
centralized system. This is due to the global state maintained by the centralized
approach, which provides better DLB quality. Nevertheless, the performance of
the hierarchical approach is still very good. In both scenarios (2 and 3 clusters)
the naive approach performs poorly due to the missing job-state aggregation

36 Christoph Sieb et al.

160

140 ’.\0\

— ¥
>—

-3 clusters - Naive GLB

-4 2 clusters - Naive GLB

-&- 3 clusters - Proposed GLB

-2 clusters - Proposed GLB

£

. . Basic Worker Worker All nodes

2 scenario UniKN ICAR
g t\/’*/’- 5 5 13
Zw 7 7 17
./l\'// 2 clusters 9 9 21
-— 11 11 25
" ’_//' 23 23 49
2x3 3 13
B 3 clusters 2x5 5 19
2x7 7 25
2x15 15 49

10 15 n b] 35 4n 45 50
Computing nodes

Table 1. Test configura-
Fig. 7. Average idle time tions

(bad donor selection) and the unrestricted parent requests (no DLB thresholds
differentiation), which results in unnecessary job prunings. As a result the idle
times increase. The graph in Figure 7 shows the average idle time for the naive
and proposed hierarchical DLB approaches.

The average idle time increases when number of clusters increases, i.e. with a
more distributed system. As expected, the naive version shows longer idle times.
Note the bigger difference between the idle time in the 2 and 3 clusters config-
uration of the naive version with respect to the proposed one. If the hierarchy
becomes more complex, the impact of insufficient aggregated state information
and undifferentiated load policies becomes more relevant. The experimental re-
sults have provided evidence of the effectiveness of the proposed hierarchical
DLB scheme applied to multi-domain environments.

7 Conclusions

In this paper we have presented a distributed approach to the frequent subgraph
mining problem for computational environments that are characterized by a hi-
erarchical communication topology. The system widens the architectural bot-
tleneck of centralized and peer-to-peer systems, which cannot operate in multi-
domain environments due to security restrictions. The proposed approach was
successfully applied to the discriminative molecular fragments mining problem,
but can also be applied to many problems based on a search tree in which the
search space is unknown in advance.

The system applies a sophisticated hierarchical aggregation as well as a differ-
entiated DLB scheme to reduce the drawback of missing global state information

A Hierarchical Distributed Approach for Mining Molecular Fragments 37

(as opposed to centralized approaches). The system maintains locality within the
hierarchical structure to keep it scalable.

The experimental results show that the hierarchical approach performs close
to the centralized one and is able to exploit potential computing power not
eventually accessible.

Future work will deal with a topology management that dynamically and
efficiently organizes participating nodes by taking into account both security
policies and network delays.

8 Acknowledgements

This work was partially supported by the DFG Research Training Group GK-
1042 ”Explorative Analysis and Visualization of large Information Spaces”. We
also thank Christian Stolze of the University of Konstanz, Germany and Pietro
Storniolo of ICAR-CNR, Italy for their administrative support of the computing
facilities.

References

1. http://dtp.nci.nih.gov/docs/aids/aids_data.html.

2. K. Antonis, J. Garofalakis, I. Mourtos, and P. Spirakis. A hierarchical adaptive
distributed algorithm for load balancing. Journal of Parallel and Distributed Com-
puting, 64:151-162, 2004.

3. C. Borgelt and M. R. Berthold. Mining molecular fragments: Finding relevant
substructures of molecules. IEEE International Conference on Data Mining (ICDM
2002, Maebashi, Japan). pages 51-58, December 09-12, 2002.

4. S. Dandamudi and K. Lo. A Hierarchical Load Sharing Policy for Distributed
Systems. &th International Workshop on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems, Haifa, ISRAEL, 1997.

5. G. Di Fatta and M. R. Berthold. Distributed mining of molecular fragments. Proc.
of IEEE DMGrid, Workshop on Data Mining and Grid of IEEE ICDM, 2004.

6. G. Di Fatta and M. R. Berthold. Dynamic load balancing for the distributed mining
of molecular structures. IEEE Transactions on Parallel and Distributed Systems,
Special Issue on High Performance Computational Biology, 17(8), August 2006.

7. V. Kumar, A. Grama, and V. N. Rao. Scalable load balancing techniques for
parallel computer. Journal of Parallel and Distributed Computing, 22(1):60-79,
July 1994.

8. R. Pollak. A hierarchical load balancing environment for parallel and distributed
supercomputer, International Symposium on Parallel and Distributed Supercom-
puting, Fukuoka, Japan. 1995.

9. T. Washio and H. Motoda. State of the art of graph-based data mining. ACM
SIGKDD Ezplorations Newsletter, 5(1):59-68, July 2003.

10. Y. Xu, T. K. Ralphs, L. Ladanyi, and M. J. Saltzman. Alps: A framework for
implementing parallel search algorithms, The Proceedings of the Ninth INFORMS
Computing Society Conference. 2004.

