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Abstract—Locality to other nodes on a peer-to-peer overlay
network can be established by means of a set of landmarks shared
among the participating nodes. Each node independently collects
a set of latency measures to landmark nodes, which are used as a
multi-dimensional feature vector. Each peer node uses the feature
vector to generate a unique scalar index which is correlated to its
topological locality. A popular dimensionality reduction technique
is the space filling Hilbert’s curve, as it possesses good locality
preserving properties. However, there exists little comparison
between Hilbert’s curve and other techniques for dimensionality
reduction. This work carries out a quantitative analysis of their
properties. Linear and non-linear techniques for scaling the
landmark vectors to a single dimension are investigated. Hilbert’s
curve, Sammon’s mapping and Principal Component Analysis
have been used to generate a 1d space with locality preserving
properties. This work provides empirical evidence to support
the use of Hilbert’s curve in the context of locality preservation
when generating peer identifiers by means of landmark vector
analysis. A comparative analysis is carried out with an artificial
2d network model and with a realistic network topology model
with a typical power-law distribution of node connectivity in the
Internet. Nearest neighbour analysis confirms Hilbert’s curve to
be very effective in both artificial and realistic network topologies.
Nevertheless, the results in the realistic network model show that
there is scope for improvements and better techniques to preserve
locality information are required.

Index Terms—Peer-to-Peer Networks; Landmark Clustering;
Hilbert’s Curve; Principal Component Analysis; Sammon’s Map-
ping

I. INTRODUCTION

In Peer-to-Peer (P2P) networks it can be advantageous to
be aware of the geographical heterogeneity between nodes
as a means of optimising load balancing, routing and search
efficiency [1], [2], [3], [4]. These benefits are derived from
exploiting the fact that nodes in close proximity enjoy lower
communication latency.

In order to reap these rewards the P2P network needs to
embed some measure of the topological distribution and the
locality of its constituent nodes. Obtaining this information
can be problematic as nodes do not have complete knowledge
of the network from which to calculate a neighbourhood.

Landmark clustering [2] has been widely used to generate
proximity information. If nodes are physically close to each
other, they are also likely to experience similar latency in the
communication path to selected landmark nodes.

A set of landmarks allows generating a multi-dimensional

space, where each node is represented by a landmark vec-
tor, i.e. a vector of the typical communication latency to
the landmark nodes. Nearby nodes in the network topology
are expected to be represented by similar landmark vectors.
Landmark cluster analysis allows identifying and quantifying
node proximity without the detailed and global knowledge of
the network topology.

Landmark spaces are typically high dimensional and tech-
niques to map them to a 1-d space, like Distributed Hash
Table (DHT) identifier spaces, have been studied [5], [6]. The
general approach first calculates locality at a node via a latency
vector to predefined landmark nodes throughout the network.
The vector is then reduced to a 1-d index space by means of a
dimensionality reduction technique employing a space filling
curve known as Hilbert’s curve.

It is known that Hilbert’s curve possesses good locality
preserving properties compared with other space filling curves
[7], [8]. Among others, authors in [9] and [10] have studied
Hilbert’s curve and its locality preserving properties.

Yet there exists little comparison between Hilbert’s curve
and other general techniques for dimensionality reduction
regardless of their practical applicability in the context of
large-scale distributed systems.

Dimensionality reduction is a projection from a D-
dimensional space onto an K-dimensional one, for D > K .
A large number of dimensionality reduction techniques have
been proposed in the litterature with different characteristics,
properties and aims [11], [12]. Typically these techniques are
used as pre-processing step in order to cope with the curse
of dimensionality before an appropriate learning algorithm is
applied to the data (typically K � D). In other applications,
dimensionality reduction aims at the visualisation of multi-
dimensional data (K = 2).

In the context of the landmark and identifier spaces in P2P
systems described above, D is the number of landmark nodes
and K is 1.

In this work the effectiveness of Hilbert’s curve is compared
with two other methods for dimensionality reduction: Principal
Component Analysis (PCA) [13], [14], [15] and Sammon’s
mapping [16].

Principal component analysis is one of the most popular
and widely used linear dimensionality reduction methods and
provides the optimum projection in terms of the mean-square



error.
Sammon’s mapping is a visualisation technique which per-

forms a dimensionality reduction and is based on a non-linear
approach.

These two techniques were chosen as they are well known
examples of linear and non-linear dimensionality reduction.
However, as they both require global knowledge of the data
space, it would be impractical to implement them in large-
scale distributed environments, like P2P systems. They rather
serve as a benchmark with which to assess the quality of result
produced by Hilbert’s curve.

The experimental analysis is based on two network topology
models. In the first topology nodes are placed on a 2d plane
to generate an artificial distribution and to emphasize locality.
This is used as proof of concept.

A second more rigorous simulation is based on a realistic
network topology model with a typical power-law distribution
of node connectivity in the Internet.

The overall goal of this paper is to provide an argument
in support of the use of Hilbert’s curve as a dimensionality
reduction method via benchmark comparison with two other
widely used techniques. An additional goal is to provide a
quantitative evaluation of the locality information which is
preserved after landmark vector analysis. This should lead to a
better understanding of the benefits that can be expected from
such a technique and of the margin for improvement.

The rest of the paper is organised as follows. Section II
provides an overview of three techniques adopted to convert
the landmark vectors into a locality-aware 1-d identifier. Sec-
tion III describes the methodology adopted for the comparative
analysis of the three methods. Sections IV and V provide
the experimental results and their interpretation. Conclusive
remarks are given in section VI.

II. OVERVIEW OF TECHNIQUES

A. Hilbert’s Curve

Hilbert’s curve is a continuous fractal space-filling curve of
finite granularity. Giuseppe Peano (1858-1932) discovered a
densely self intersecting curve in 1890 which passes through
every point in a 2-d space (and by extension in an n-
dimensional hypercube) [17], [18]. This work was followed
in 1891 by that of David Hilbert [19] who published his
own version of the space filling curve including illustrations
for construction (Figure 1). Hilbert’s variant proves to have
performance advantages (in terms of how well ’compact
regions’ of 2-d space are represented) over other space filling
curves which explains its attraction as a contemporary multi-
dimensional indexing method [20] [21].

The Hilbert’s variant proceeds through each step replacing
the U shape with an upside down Y. Each corner in the
diagram represents an additional number in the sequence. As a
mean of dimensionality reduction, it transforms the data from
n to 1 dimension by assigning each point in space a number.

Fig. 1. The first 4 levels of Hilbert’s curve in 2 dimensions

B. Principal Component Analysis

Principal Component Analysis (PCA) was introduced by
Karl Pearson in 1901 [22], [15]. It employs the Karhunen-
Loéve theorem which is similar to a Fourier series and
transforms potentially correlated variables into a lesser number
of uncorrelated variables known as principal components.
PCA in essence aims to cast a projection of the higher
dimensional data onto the low dimensional space from its most
’informative’ angle retaining as much variability as possible.

The initial principal component chosen attempts to capture
as large a range of variability within the data as is possible,
with the next principal component chosen to maximize the re-
maining variability and so forth until all principal components
are identified.

C. Sammon’s Mapping

Developed by J. W. Sammon Jr in 1969 [16], Sammon’s
mapping is a non-linear form of dimensionality reduction
based on gradient search which attempts to keep as much of
the structure of the original measurement of dimensions as
possible. Each iteration attempts to minimize an error function
known as Sammon’s stress, while matching the pairwise
distances in the high-dimensional space to those in the lower-
dimensional one.

PCA and Sammon’s mapping have been shown to be among
the best methods for dimensionality reduction in terms of
preserving cluster validity [23] for data visualisation (K = 2).

III. COMPARATIVE ANALYSIS

This work provides a comparative analysis of the three
techniques described above for reducing dimensionality to



generate a locality aware index (K = 1) for the nodes of P2P
overlay networks. A randomly generated index for control and
an ideal index obtained from global network knowledge are
included in the comparison for reference.

A. Simulation 1: landmark analysis on a 2d plane

In the first experiment an artificial network topology is
considered as proof of concept. 1000 points were arranged
on a 2d Euclidian plane following a rectangular perimeter to
represent nodes on a network (Figure 2). Six landmarks are
randomly selected, based on preliminary work suggesting that
this number of landmarks produces the best accuracy within
a range restricted by computational resources available. The
Euclidean distance from a node to a landmark is used to
simulate network latency and provides a 6d vector for every
node. This vector was reduced to the 1d node index using
all three methods of dimensionality reduction. The Hilbert
number H(n) was computed with a recursion free version
[24][25] of the Hilbert’s curve algorithm. Node indices P (n)
and S(n) were calculated by means of the implementations
of the algorithms, respectively, PCA and Sammon’s mapping,
available in the data mining development environment KNIME
[26]. As a control, a random index R(n) was created in which
there was no relation between index values and location.

For each network node n, the 10 nearest neighbours
(nn1, ..., nn10) were found by searching the 10 closest indices
on the 1d space defined by, respectively, node indices H(),
S(), R() and P (). The Euclidean distances were determined
from node n to its nearest neighbours (nn1, ..., nn10) on the
original 2d plane. The sum (N ) of these distances is computed
for each node to create distance arrays NH [], NR[], NS []
and NP []. The value of N was also found for the nearest
neighbours of every point on the original 2d plane to produce
an ideal neighbour value array NI []. These 5 arrays were then
compared with each other to assess the degrees of locality
preservation.

Fig. 2. Layout of the artificial network topology with 1000 nodes (2d plane)
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Fig. 3. A 2d representation of the realistic network topology (Inet) with
3037 nodes. (Landmarks are marked)

B. Simulation 2: landmark analysis in weighted graph

The second experiment applies the same methodology to
a more realistic network topology generated with Inet [27],
an Autonomous System level Internet topology generator.
Inet generates random networks with characteristics similar
to those of the Internet in terms of the power-law distribution
of node connectivity. It can approximate Internet-like network
topologies to a high degree of accuracy [28] with respect to
the degree distribution and the minimum vertex cover size.
Inet was used to create a 3037 node graph with 4788 edges
whose weights corresponds to latency values. 6 nodes of this
graph were chosen as landmarks (Figure 3).

The shortest path between pairs of nodes was computed
with the Dijkstra algorithm to determine their communication
latency. For each network node a 6d vector was generated with
the communication latency to the landmarks. From this vector
the indices H , P and S were computed and the random control
R was generated. The 5 nearest neighbours for every node in
each 1d space defined by the indices H , P , S and R were
found and the sum of distance to these neighbours via Dijkstra
shortest path was calculated. Similarly to the previous case, the
latency arrays NH [], NR[], NS [] and NP [] were computed. The
actual 5 nearest neighbours of every node in the network were
found using a Dijkstra algorithm with expanding search radius.
The total sum of the path length from each node n to its 5
nearest neighbours (nn1, ..., nn5) was computed to produce
an ideal sum of latencies array NI [].

IV. EXPERIMENTAL RESULTS

The landmark-vector analysis on the artificial 2d plane
topology showed that Hilbert’s curve is the most effective
method of preserving locality information among the three
dimensionality reduction techniques. Table I and Figure 4
show the result for this case. Points indicated as adjacent by
the Hilbert index were on average over twice (2.13) as far as
the best possible as given by the ideal case but over 19 times
closer than if they had been chosen at random. Sammon’s
mapping came second scoring four times worse than Hilbert’s



TABLE I
AVERAGE DISTANCE TO THE 10 NEAREST NEIGHBOURS FOR THE

ARTIFICIAL NETWORK TOPOLOGY (2D PLANE)

Method (6 landmarks) Mean distance to 10 nearest neighbours

Ideal 44.52
Hilbert 94.72
Sammon 404.98
PCA 883.35
Random 1810.78
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Fig. 4. Neighbour distance (moving average) for the artificial network
topology model (2d plane)

curve, but four times better than random points. PCA scored
nine times worse than Hilbert’s curve, but still over twice as
well as random.

Table II and Figure 5 show a comparison of the different
techniques for the more realistic hierarchical topology. The
Hilbert’s curve confirmed to be the most effective technique
with an average latency of just over twice the ideal possible
value (2.23 times higher) but with much less improvement over
random (1.25 times lower). The PCA approach came second
with just 1.05 times smaller latency to neighbours than to
neighbours chosen randomly. Sammon’s mapping performed
the worst showing barely any improvement over random (only
1.008 times smaller on average).

In the artificial 2d plane topology an ideal nearest neighbour
distance is on average 40.67 times less than to an index
based on randomly chosen neighbours. In this case Hilbert’s
curve is very close to the ideal index. In the Internet-like
topology the ratio between ideal and random indeces dropped
to 2.79. However, in this more realistic case the performance
of Hilbert’s curve is far from ideal.

V. DISCUSSION

The results on the 2d plane network model showed good
performance for the landmark analysis technique as might be
expected when Euclidean distance can be taken to landmarks
(as this is the principle of GPS navigation systems). The
Hilbert’s curve produced results that were much closer to the
ideal values than to the random control values. The other two

TABLE II
AVERAGE LATENCY TO THE 5 NEAREST NEIGHBOURS FOR THE REALISTIC

NETWORK TOPOLOGY (INET)

Method (6 landmarks) Mean latency to 5 nearest neighbours

Ideal 269.07
Hilbert 600.54
Sammon 714.34
PCA 744.80
Random 751.18
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Fig. 5. Neighbour latency (moving average) for the realistic network topology
(Inet). Five neighreast neighbours are considered for each node

techniques also performed much better than random on this
test, but were less effective than Hilbert’s curve.

In order to generate a homogeneous Hilbert index across
independent nodes, all that is required at each node is the
maximum possible size of all input dimensions and a curve
width. These can be predetermined constants. For Sammon’s
mapping, the entire data set would need to be recalculated
every time a new node joined the network as the maps pro-
duced lack generalisation. Similarly, PCA relies on knowing
the entire data set to establish the covariance matrix which is
central to the algorithm. For this reason, Sammon’s mapping
and PCA are wholly unsuitable for distributed geographical
indexing purposes. In this test they really serve as a benchmark
with which to assess the effectiveness of the Hilbert’s curve.
These methods are better suited to feature preservation than
locality preservation.

In general, the results were not unexpected considering
Hilbert indexing is known as one of the best methods of
preserving locality, but the degree to which it outperforms
other dimensional scaling methods was surprising.

The results from the more realistic topology model indicate
that landmark vector analysis via Hilbert’s curve can give
nodes an awareness of locality. The results also show that
Sammon’s mapping and PCA are not likely to produce useful
results, performing only marginally better than points chosen
at random. Considering the chart in Figure 7, the PCA and
Sammon’s mapping may actually perform worse than random
for some nodes (1800 to 3000).

What these results are not able to show for certain is



whether the relatively poor performance on the Internet-like
network topology when compared to the 2d plane topology
is due to the loss of landmark quality when a path is found
through a network or whether this degradation is due to the
dimensionality reduction. However given that the performance
on the 2d plane, it seems likely that a real network represents
a more complicated space through which to derive locality so
performance is not likely to approach that of a more theoretical
realm.

Whether the 25% improvement over random achieved by
the Hilbert reduction of landmark vector analysis represents
enough locality information to be useful is subject to the in-
dividual requirements of the desired application. These results
give at least some indication as to the quality of accuracy likely
to be achieved by using this, or similar techniques across a real
network.

VI. CONCLUSION

This work has presented a comparative analysis of multi-
dimensional scaling techniques for establishing node locality
in P2P networks. A set of shared landmarks can be adopted
by each node to incorporate locality information in its peer
identifier. The experimental analysis on both an artificial
topology model and on a hierarchical topology based on a
realistic Internet model, has shown the effectiveness of the
Hilbert’s curve with respect to Principal Component Anal-
ysis and Sammon’s mapping. Nevertheless, the analysis has
also identified scope for improvements; locality preserving
techniques based on Hilbert’s curve and landmark clustering
are far from ideal. The space filling curve used in the H-
indexing scheme proposed by Niedermeier et al. [10] purports
to outperform Hilbert’s curves in terms of locality preser-
vation. These curves shall be incorporated and evaluated in
future implementation. Current research efforts are focusing
on the optimisation of the simulation code in order to extend
the analysis to larger networks, varying number of landmark
nodes and neighbours. These factors are currently restricted by
computational resources. To provide more realistic results still,
an implementation on PlanetLab P2P overlay test bed [29] is
planned. A further interesting research direction is the adoption
of techniques to cope with missing latency measurements to
some landmarks and to introduce robustness to variability of
the set of landmarks over the network nodes.
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