University of
< Reading

Goal sketching: towards agile
requirements engineering

Conference or Workshop Item

Accepted Version

Boness, K. D. and Harrison, R. (2007) Goal sketching: towards
agile requirements engineering. In: Second International
Conference on Software Engineering Advances (ICSEA 2007),
25-31 Aug 2007, Cap Esterel, France, p. 71. Available at
https://centaur.reading.ac.uk/6061/

It is advisable to refer to the publisher’s version if you intend to cite from the

work. See Guidance on citing.
Published version at: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4299951

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

University of
< Reading

Reading’s research outputs online

Goal Sketching: Towards Agile Requirements Engineering

Kenneth Boness
University of Reading,
Berks, RG6 6AY UK
k.d.boness@reading.ac.uk

Abstract

This paper describes a technique that can be used as
part of a simple and practical agile method for
requirements engineering. The technique can be used
together with Agile Programming to develop software
in internet time. We illustrate the technique and
introduce lazy refinement, responsibility composition
and context sketching. Goal sketching has been used in

a number of real-world development projects, one of

which is described here.

1 Introduction

Our goal sketching technique starts with the
creation of a goal graph which expresses the high level
motivations behind the intention to develop the
software. This is typically an incomplete sketch of
what is understood about the overall intention. In
general there is often a vague long-term vision coupled
with some short-term clarity. A series of staged
developments are planned using the system graph as a
guide. This is similar to using Scrum sprints [1], or
increments in an iterative and incremental development
process [2]. Each stage is preceded by taking a portion
of the system graph in its current state and refining it
so that there are no remaining vague intentions. This is
called the ‘stage graph’. In the execution of any stage it
is possible that the stage graph will be updated as a
result of the usual agile practice of improving the
quality of the work in hand. At the completion of each
such stage its graph is used to update the system graph.
Thus the true goal graph emerges by successive
iterations and refactoring and so becomes the
inventory, recording the associated rationale for
posterity.

When preparing each stage the goals are refined
only as far as necessary for the stage in hand (a
technique called lazy refinement) using stories or more

Rachel Harrison

Stratton Edge Consulting Ltd,

GL7 2LS, UK

rachel harrison@strattonedge.com

rigorous techniques (such as problem frames [3],
temporal logic etc). We use pair sketching, in which
the goal graphs are sketched by two people working
together (often an analyst and a stakeholder) to ensure
that the refinement argument is sound, in a manner
akin to pair programming. Once an acceptable goal
graph has been produced, according to the measures
collected by technique 2, it is incorporated into the
system goal graph. The system graph may need to be
refactored for the next stage.

The goal graphs are exported to a database for
subsequent analysis. From the database we can
produce matrices to expose composition issues which
may arise from cross-cutting concerns for analysts,
designers, developers and testers. We formalise the
responsibility ~ re-composition ~ of cross-cutting
requirements as follows:

{(responsibility, CR, sub-system} =
{(responsibility, CR)} X {(CR, sub-system)}

where X represents a natural join and CR is a cross-
cutting requirement. This formalism can be used to
determine which responsibilities interact with which
functional requirements in which sub-system.

4 Example

To illustrate the technique we will use an example
involving the calculation of body mass index.

The customer, WeighCom, wishes to develop new walk-
on scales that can be installed in public places and used by
any passers-by to measure their weight, height and body
mass index (BMI) and receive a business card sized printed
record on the spot. Normal operation is for the user to step
onto a pressure mat facing an instruction screen and stand
under an acoustic ranger. The measurements are made once
the user pays a fee of 1 Euro into a receptor.

WeighCom specifies that the solution must use certain
components: pressure mat (PM); coin receptor (CR);
acoustic ranger (AR) and integrated processor with alpha
numerical visual display and user selection touch screen
(IP). All of these are to be controlled through software using
an API. These components support an existing assembly in
which the whole is weather proof and vandal proof.

WeighCom currently installs personal
equipment in public places for coin operated use by the
public. They have an excellent reputation, which is of
paramount importance to them, for always providing a
reliable service or repaying. They have a call centre which
customers can call if their installations appear to be

weighing

malfunctioning.

Figure 1. Problem Statement

Scrutiny of the problem statement suggests the
following primary concerns:-

* Operation in public places.

* Normal operation (i.e. accepting payment through
to printing a card)

* Use of prescribed components.

* WeighCom's reputation.

These provide the necessary information for an
initial system goal sketch as shown in Fig. 3.

‘.'r Satisfy
(primary /
concerns. /m/ |
. i

] N f]
| Satisfy the [_/} { Satisfy [
concerns about		weighCom's
operation in {	reputation	
public places. /m/		concern. /m/
[J [J

f - | [j

| satisfythe | | Use (

{ normal | | prescribed |

{ operation | | components. |

| concern. /fm/ | | icf {

ol

J

Figure 2. Primary Concerns

The goals in Fig.3 represent four child goals
entailing one parent as is usual in KAOS but using
semantic entailment instead of logical entailment. As
an aid to goal sketching each goal is given a type from
the selection shown in Table 1. It is usual to have
motivation goals (“/m/”) as root and sub root goals.
These may be refined into further motivation goals and
eventually into constraint and behavior goals. The
motivation goals essentially are the drivers of the
intention whereas the behavior goals represent the

capability and condition requirements of system
requirements according to the IEEE guidelines [4].
Similarly the constraint goals correspond to the
constraint requirements of the guidelines. There is an
important distinction between the motivation and
behavior goals. The former can express temporal
intentions in a project timeline whereas the behavior
goals represent temporal intentions in terms of the
system run-time. This means that the goal graph must
progress in one direction from top to bottom; at the top
are motivations and below them are behavior and
constraint goals. In a well formed goal sketch only
motivation goals appear as root goals and only
behavior or constraint goals appear as the leaves.

Table 1. Tags for different types of goals

Tag | Goal type Comment

m motivation A business case driver of
objectives

c constraint A constraint in well-formed
requirements.

b behavior in the | One or more capabilities

environment and conditions.

a assumption An unrefinable asserted goal
needed to justify a
refinement argument.

Each of the primary concern goals is refined as far
as current knowledge will allow depending on the state
of the development (see technique 1). Early on the
understanding of the ‘public places’ concern may be
vague (or be simply deferred as complex but
unnecessary for early demonstrations of the product)
and so is left as a ‘to be determined’ (TBD) goal; see
Fig. 4. Meanwhile attention may be placed on
completing the refinement of the normal operation
concern. This is what we predicted in technique 1.
Clearly there is the possibility that when subsequently
the TBD is replaced with a full refinement there may
be a need to refactor and rework the system goal graph
and the supporting implementation of software. This is
no different to normal agile practice except that we
have the goal sketch as a constant indicator of the

assumptions.

l.'[Satisfy the concerns about ."
| operation in public |
/ places. /m/ /
L v

N

N

Figure 4. Deliberately leaving a refinement to
later stages of development (lazy refinement)

Pursuing the normal operation goal (shown in
Fig.3): refinement is continued until goals are reached
that are concrete enough and deemed suitable to be
allocated to one or more agents to take run-time
responsibility. This is a departure from KAOS where
responsibility is given to a single agent with full
control over the real-world parameters. Here a
management choice is made that the goal can be
satisfied by the behavior of one or more agents in
cooperation. This arises typically when an eXtreme
type story is reached; for example:-

Transaction Initiation Story: “When a customer
pays €1 into the CR they may either confirm the
payment or cancel the payment. If they cancel then
the CR refunds the payment. If they confirm then the
service is initiated.”

Three agents must cooperate in the satisfaction of
this goal: the user, a coin receptor (CR) and the
software-to-be (S2B). The rigorous application of
KAOS would require more refinement to the point of
separately specified responsibilities. Alternatively the
stakeholders may decide that this is sufficiently
concrete and risk free for them to accept the current
degree of refinement as adequate; left in this state it is
called a lazy refinement.

f j
| Enecutethe |
| ‘transaction |
initiation {

story". /b/ |

Figure 5a. Lazy Refinement

| Execute the
| 'transaction

{ initiation {
l,' story". /b/ J,'
N
If i \/ 'l' 'l
| Payand "'r |] Detect |
| confirm ..or.. [/ Detectreceipt |/ payment.. |
[etc./bf || of new | | andetc. /bf |
L) /| payment ||) /
1" etc.. /b/ ,"
TN e N eon ~
N N v

Figure 5b. Full Refinement

The two routes are shown in Fig.5 (a) and (b). As
case (a) is a lazy refinement depending on multiple
agents to collaborate in its satisfaction it is not a pure
specification /s/ or expectation /x/ and therefore will be
a behavior (/b/) goal. As case (b) is fully refined
through additional sub goals each of the leaf goals is
assigned to a single agent and the leaves are
expectations and specifications; those shown in the
figure are only suggestions.

Goal sketching favors lazy refinement wherever
possible. In contrast KAOS would progress to case (b).
Goal sketching also favors the use of natural language
whereas KAOS employs a formal logic calculus; thus
in goal sketching goal refinement arguments are
semantically entailed rather than logically entailed as
they are in KAOS.

In the process of creating clear refinement
arguments goal sketching favors a strict policy of
separation of concerns. This implies decomposition
and thus necessitates a late re-composition [3] as cross-
cutting concerns (e.g. collaboration between
responsible agents to indicate necessary collaboration
between capabilities and the imposition of constraints
and conditions [3]). In our experience this approach

minimizes the number of goals with multiple parents
and thus reduces visual tangling in the goal graph. The
price for this benefit is that the composition concerns
are not explicit. However a lightweight solution is to
annotate the assigned responsibilities using a system of
composition tags (described below).
In contrast KAOS uses object and operation models
to accommodate composition concerns. This can be
rigorous but tends to be heavyweight.

(Agent.<MYTAG>

C:Engent.«: @MYTAG >>

Each oval is a responsibility.

The agent name is shown before the full stop.

The presence of compeosition concerns is indicated by
including semantic tags as text inside chevrons (e.g.
<MYTAG?>). If the semantic tag includes the symbol
“@” this means that the associated goal must be
composed with all other responsibilities bearing the
same <MYTAG>. There may be multiple tags
representing the accumulations of multiple
compositions

Figure 6. Responsibility annotation

Fig.6 shows three versions of the responsibility
assignments. Each is shown as an oval with the name
of an assigned agent followed by a full stop. The
architectural precision of the agent depends upon the
underlying domain analysis being used; e.g. an object
in a UML model or a sub-domain of a Jackson context
diagram [3]. An optional system of semantic tagging
is allowed after the full stop. Each tag is written in the
form “<MYTAG>” or <@MYTAG>. Any
responsibility with a given tag (say <MYTAG>) is a
target for composition with a similar named tag
including the “@”. Thus a responsibility marked
<@MYTAG> composes with all responsibilities
tagged with <MYTAG>. Composition means that the
goal associated with the ‘@’ symbol is added to or
changes the goal associated with the other
responsibilities. This feature allows strict separation of
cross-cutting concerns and subsequent re-composition.
The semantic tags are created and managed by the
analyst either manually or with tool support.

The rigour of the goal sketch can be greatly
enhanced if it is drawn with a companion context
sketch based on the method of Jackson’s context
diagrams [3]. If this is done the context diagram
provides the vocabulary (entities and phenomena) that
may be included in the goal sketch. In practice we find
the goal sketch and the context sketch co-evolve. When
a context diagram is available the responsibility
annotations can be enriched with the sub-domain
identifier being taken from the diagram and the
composition tags reflecting shared phenomena [3]
defined in the context diagram. This method of co-
evolving a context sketch with the goal sketch and
using composition notation has been used in the

following industrial projects with the aim of assisting
managers, designers and testers.

5 Industrial Projects

Our method is on trial in a number of industrial
applications. These include (1) a product supported by
venture capital, (2) the specification, procurement and
acceptance of a management information system (MIS)
to support a food processing company and (3) a tool to
support professional services in healthcare. We start
with some general observations and then look at the
MIS application in more detail.

The staffing profiles for the projects involve
managers, executives, developers and testers. These
people all have very different perspectives and
analytical abilities. In all cases the managers and
executives were not involved with detailed
requirements analysis, whereas the developers and
testers were. In the venture capital sponsored project
the developers (circa 15 engineers) were inclined to
use agile methods and the testers (circa 3) were trying
to cope with poor requirements whilst also dealing
with developing in internet time. In the MIS the
developers (circa 2 engineers) are engaged as suppliers
configuring and adapting their own COTS product and
testing is mostly conducted by the customer (one
person with ad-hoc support from departments) as
acceptance testing. In the bespoke tool development
the developers and testers work in an interdisciplinary
way (circa 3 people).

From the beginning it was clear that our industrial
colleagues were not familiar with goal based
requirements methods. We began by creating
preliminary, incomplete, sketches of the system goal
graphs, paying attention to the motivation goals. The
analyst (one of the authors) worked with key staff
members (usually project or product managers) to
create goal graphs with emphasis on the motivation
goals. At this stage a common form of analysis was
adopted guided by the marketing principles of “pain”
and “gain” analysis [5] and the things to be maintained
by the application of the new software. This approach
appealed to the staff co-opted to help write the
motivation goals and also the executive staff who were
asked to review the sketches. The sketches were
grounded in domain sketches based on Jackson context
diagrams [3] and the combined goal and domain
sketches were used to promote a shared understanding
of the project. In each case the cost of reaching this
point was a few staff days.

The creation of behavior goal refinements by the
analyst and partner was more difficult than the
motivation goal refinements for two reasons:-

1. The tendency when faced with semantic
entailment to create activity sequences (project
plans) rather than proper behavioral goal
refinements. The key to avoiding this is to
remember that behavior goals are satisfied by the
run-time behavior of the system to be whilst
motivation goals are satisfied by the coming into
being of the system to be.

2. The tendency to over-elaborate when there is not
enough information. The keys to avoiding this are
to remember the agile discipline of focusing on the
immediate stage, inserting TBD goals and using
lazy refinement as much as possible.

Whilst each of these problems can be mitigated it is
clear that the analyst’s training of is of paramount
importance. This issue is one that we have carried
forward into our future work in the belief that more
attention must be paid to process and tool support
(such as incorporating UML state and activity
diagrams to guide the behavior goal refinements).
However whilst the creation of behavior goal sketches
was difficult they provided good quality specifications
for the developers and testers. The practice of using
composition tags also maintained focus on creating
behavior goals from essential use cases [6], [7]; with
the consequential advantage of distilling the essential
requirements from the design details. The essential
behaviors are made into real behaviors by the use of
composition of design constraints (such as user
interface particulars). This distilling of essential
requirements has already been found to be particularly
advantageous in the preparation of acceptance testing,
especially in the tool development.

In the case of the MIS the initial system goal graph
was developed and presented to the managing director
for approval with resulting productive discussion about
the scope of the MIS. The project is very large and it is
expected that commissioning will take over a year.
Analyzing the whole behavior up front is considered
futile because it is expected that there will be a degree
of concurrent process re-engineering. Therefore the
plan is to work in a series of stages each preceded with
a goal sketch that is produced on a just in time basis.
The goal sketch for each stage provides the acceptance
test criteria and the accumulated stage goal graphs
refactored into the evolved system graph will provide
the legacy record so that future extensions can be
considered in the light of the rationale for the
commissioned system. This exercise will be reported
separately. Here the point is that goal sketching is
being applied to the requirements analysis and the
preparation of acceptance tests.

6 Related Work

Work has been done on how some of the best
practices of requirements engineering could enrich
agile approaches [8]. The practices described include
customer interaction, requirements analysis, non-
functional requirements and managing change. The
paper suggests that ways of adapting requirements
management practices for agile processes are needed.
However note that [8] simply describes how to include
requirements engineering methods in an agile
development process, rather than describing a method
for requirements engineering that is agile. Similarly
Nawrocki et al propose a way in which documented
requirements could be introduced into XP through the
use of automated tools, the Web and on-line
documentation [9].

Orr suggests that it is possible to combine
requirements and agile development by using up-to-
date hardware and sophisticated graphical software
[10]. Prototypes are suggested as a way to improve the
process of defining requirements. However this work
emerged from practice rather than from a theoretical
technique such as goal-oriented requirements
engineering.

Ambler describes an agile approach to modeling
requirements, utilizing approaches such as the planning
game of Extreme Programming and the Scrum
methodology [11]. Similarly Leffingwell and Widrig
discuss an agile requirements technique that is based
on use-case specifications [12]. They also provide
guidelines for selecting which requirements method
(extreme, agile, or robust) is right for a particular
project. However, again these approaches do not have
a formal method such as goal-oriented requirements as
a basis.

7 Further Work

The work reported here concerns the basics of the
goal sketching technique. We are undertaking the
following investigations to advance the work:-

1. Application to more industrial projects to confirm
the applicability and practicality of the method for
use in Agile projects.

2. Development of tools to accelerate the speed of
sketch drafting and refactoring. In this area we are
currently exploring the use of UML diagrams such
as activity diagrams as these are well suited to the
problem of determining behavioral goal
refinements.

3. Development of metrics and supporting tools to
exploit the structure of goal graphs in conjunction

with expert judgments to quantify the adequacy and
feasibility of the intention expressed in a goal graph.
It is anticipated that this will contribute significantly
to the better planning of project stages and the
improved sharing of expectations amongst the key
stakeholders.

4. Tools to export goals sketches into KAOS for cases
that justify upgrading from a goal sketch to a
rigorous KAOS analysis.

8 Conclusions

In this paper we have presented a goal sketching
technique that is intuitive and easy-to-read for project
managers, sponsors and developers as well as for users.
The importance of this is to empower the key decision
makers when negotiating project decisions. The
technique can be used together with Agile
programming to develop software in internet time. We
have given an example of the technique and we are
currently testing its feasibility by application to a
number of industrial systems development projects.
Whilst more validation is needed we can report that
agility has been observed, with an ability to adapt to
evolving requirements and to cope with unresolved
requirements. In a number of cases we have been able
to construct initial goal graphs to show the motivation
goals within a couple of days and by relying on lazy
refinement we were able to add the detail for early
sprints in another couple of days; in all cases fully
involving the non-engineering stakeholders. The goal
graphs became key artifacts for planning and
negotiating subsequent sprints and so the key
assumptions from the earliest sprints remained evident.

This research is the first account of the goal
sketching technique. The technique can be used with
any form of development method to provide a practical
and complete method for internet time software
development.

The technique has been empirically tested on a
number of industrial projects. These trials support the
claim that we can successfully develop evolvable
systems using this technique. Our experience suggests
that the technique is sympathetic with the real world
needs of industrial software development. We have
also partially automated this technique by
implementing a lightweight tool called KAOS Lite for
goal sketching and automated data collection.

9 Acknowledgements

The authors would like to acknowledge their
industrial collaborators. In particular: Nick Gradwell,
Product Manager of ClearPace Ltd; Ian Lycett KTP

Associate at Image Farm Ltd; and Sean O’Mahoney
and Richard Olearczyk of Surelines Audit Services
Ltd.

8 References

[1] Rising, L., Janoff N., “The Scrum Software
Development Process for Small Teams,” I[EEE
Software July/August 2000.

[2] Boehm, B., A Spiral Model of Software Development
and Enhancement, Computer, May 1988, pp. 61-72.

[3] Jackson, M., Problem Frames: Analysing and
Structuring Software Development Problems, Addison
Wesley, 2000.

[4] IEEE, “IEEE Guide for Developing System
Requirements Specifications” IEEE Std-1223
(1998).

[5] Deep, S., Sussman, L., Sandler Institute, “Close
the Deal: 120 Checklists for Sales Success”

[6] Constantine, L., “The Case for Essential Use
Cases,” Object Magazine, May 1997. SIGS
Publications.

[7] Larman, Craig 1998. Applying UML and
Patterns: An Introduction to Object-Oriented
Analysis and Design. Prentice Hall. Upper Saddle
River, NJ.

[8] A Eberlein and J Cesar Sampaio do Prado Leite, Agile
Requirements Definition: A View from Requirements
Engineering, International Workshop on Time-
Constrained Requirements Engineering TCRE'02,
Essen, Germany, Sep, 2002.

[9] Nawrocki, J. R., Jasifiski, M., Walter, B., and
Wojciechowski, A. 2002. Extreme Programming
Modified: Embrace Requirements Engineering
Practices. In Proceedings of the 10th Anniversary IEEE
Joint international Conference on Requirements
Engineering (September 09 - 13, 2002). RE. IEEE
Computer Society, Washington, DC, 303-310.

[10] Orr, K., Agile Requirements: Opportunity or
Oxymoron? IEEE Software, 21, 3 (2004), 71-73.

[11] S. W. Ambler, Agile Modelling: Effective Practices
for EXtreme Programming and the Unified Process,
John Wiley & Sons, 2002

[12] Leffingwell, D. and Widrig, D. 2003 Managing
Software Requirements: a Use Case Approach. 2.
Pearson Education.

