University of
< Reading

Goal sketching with activity diagrams

Conference or Workshop Item

Accepted Version

Boness, K. D. and Harrison, R. (2008) Goal sketching with
activity diagrams. In: Third International Conference on
Software Engineering Advances (ICSEA 2008), 26-31 Oct
2008, Sliema, Malta, pp. 277-283. Available at
https://centaur.reading.ac.uk/6060/

It is advisable to refer to the publisher’s version if you intend to cite from the

work. See Guidance on citing.
Published version at: http://dx.doi.org/10.1109/ICSEA.2008.12

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading’s research outputs online

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Goal Sketching With Activity Diagrams

Kenneth Boness
University of Reading,
Berkshire, RG6 6AY UK
k.d.boness@reading.ac.uk

Abstract

Goal orientation is acknowledged as an important
paradigm in requirements engineering. The structure
of a goal-responsibility model provides opportunities
for appraising the intention of a development. Creating
a suitable model under agile constraints (time,

incompleteness and catching up after an initial burst of

creativity) can be challenging. Here we propose a
marriage of UML activity diagrams with goal
sketching in order to facilitate the production of goal-
responsibility models under these constraints.

1. Introduction

A goal and responsibility model represents the
stakeholders’ hopes (their intention) for a system-to-be
that will operate in an expected environment, in
fulfilment of a contract. Such models (e.g. Figure 1)
are widely wused in goal-based requirements
engineering such as the KAOS approach [i].

Goal
P
T
Assumption Goal Goal
A Q R
/7
/O/\
Goal Goal
S T Actor 1 Actor 2
Actor 1 Actor 3

Figure 1. Goal-Responsibility Model

Rachel Harrison
Stratton Edge Consulting Ltd,
GL72LS, UK
rachel.harrison@strattonedge.com

If the model is structurally complete all objectives
are ultimately satisfied by actors of the system-to-be.
The behaviour (and other qualities) that must be
instantiated is described only at the leaves of the model
instead of being distributed across the model. This is
helpful when appraising the model for its feasibility,
adequacy [ii] and testability. It will help to ensure that
we “create realistic expectations in the minds of the
stakeholders” [iii].

However the prerequisite to such benefits is to be
able to create a goal-responsibility model very early-on
in a real project; probably as a crude sketch to be
evolved as understanding increases.

This need has motivated our interest in goal
sketching [iv] based on natural language with AND
entailment (shown by the circles in Figure 1). Such
sketched models can be made easy for stakeholders
(e.g. managers and customers). to understand
provided that care is taken over the level of detail
shown. However poor construction of the model can
be counterproductive.

We have found that analysts have a tendency to be
very uncertain about the appropriate goal formulation
(refinement argument). This often results in a poor
model. This seems particularly evident in the
following circumstances:-

1. Elicitation: where stakeholders are inclined to
express their requirements as partial, hypothetical,
functional designs.

2. In backlog driven projects: which, after a few
sprints, reach the point where there are inadequate
specifications for regression and acceptance
testing; often result of an initial creative burst of
ad hoc development by a team of experts.

Observing that activity diagrams are good at
representing functionality and processes, we posed the
research question: can they offer a practical
compliment to goal sketching? This paper explores
this question.

After a brief summary of the meaning structural
completeness section 2 explains how activity diagrams
used with a set of guidelines can be used to build goal
responsibility models as complements to activity

diagrams. A key move in representing activity
diagrams in goal-responsibility models is the
introduction of a class of goal that imposes the logic
that glues the activities together. It is presented as a
goal such as “Impose process X”. In brief reports of
two early industrial examples we illustrate the
successful creation of dual views and the role of this
particular class of goal. We see qualitatively the value
of having one viewpoint to focus on understanding
functionality and the other to appraise intention. The
paper concludes with discussions on related work and
further work.

2. Structural Completeness

Figure 1 represents system behaviour and qualities
intended to be developed. It follows the keep all
objectives satisfied paradigm and thus resembles a
KAOS goal and responsibility analysis. It shows how
all objectives (eg the single goal P) are refined in a
stepwise manner into sub goals which are entailed by a
set of actors in the system. By enacting their
responsibilities for the goals S, T and R the system
actors satisfy goal P by entailment provided that
assumption A holds. When all objectives are satisfied
by responsible actors the model is said to be
structurally-complete.

3. Method

The idea is to express functional requirements
through activity diagrams and then transform them into
goal-responsibility models. This makes a dual
representation possible; the activity diagrams can be
used as intuitive viewpoints for stakeholders who more
naturally think in virtual designs and the goal-
responsibility model can be used for more general
representation to direct inspections and the appraisal of
feasibility and adequacy.

3.1 Guidelines

In order to maximise compatibility between the
activity diagrams and goal sketching we used the
following guidelines:-

1. Activities are behaviours and so they should be
described as goals [v].

2. Every activity in an activity diagram must be
either (a) supported by a use-case specification
with fully assigned responsibilities to system
actors, or (b) represent a nested (decomposition)
activity.

3. A structurally complete activity diagram has all
actors traceable by use-cases; if necessary traced
through nested diagrams.

4. The UML activity diagram notation should be kept
to a simple subset initially allowing more precise
notation to be added later as appropriate.

3.2 Complimentary Viewpoints

In order to introduce the method and show how the
two complimentary viewpoints are produced we will
assume that there is an intention that involves
developing a product (PM) to operate in a particular
application domain [vi] such as illustrated in Figure 2.

Product Sub-domain1
Machine (PM) (SD1)

Sub-domain3 Sub-domain2
(SD3) (SD2)

Figure 2. Domain Model

Let O stand for the primary objective (such as
managing patients’ records in a particular medical
environment). Suppose that O would be satisfied by the
activities expressed in the UML activity diagram
shown as Figure 3.

[Guard]
A 4
A2 A3

Figure 3. Activity Diagram

As O concerns behaviour it can be represented by a
goal statement GO. Similarly the activities can be
regarded as having goals G1, G2, G3 for Al, A2 and
A3 respectively. Given that our wish is to work with
goal-responsibility models we might propose that the
set {G1,G2,G3}entail GO as in Figure 4.

O

G1 G2 G3

Figure 4. Proposed entailment of GO.

The set is necessary but does not account for the
logical context of A1, A2 and A3 (guard, fork, join etc)
included in Figure 3. It is therefore not sufficient. It
can be made so by adding an enforcing goal such as
impose process A as in Figure 5. Formally we have:-

{Impose process O, G1,G2,G3}|= GO D

Where semantic entailment (|=) is used because the
goals are specified in natural language.

GO
Impose
process A G1 G2 G3

Figure 5. Goal refinement of GO

If any of the leaf goals in Figure 5 have associated
use-cases defining how they are satisfied by
responsible actors (which must be drawn from Figure
1) they should be added. Figure 6 shows an example
where we have assumed that the actor PM is
responsible for the goal impose process A etc.

GO
|
Impose
process A G3

PM SD1
Figure 6. Incomplete Goal-Responsibility Model
Figure 6 is structurally-incomplete because G3

needs further refinement. Suppose that G3 is satisfied
by the activity diagram A3 shown in Figure 7.

®

Figure 7. Activity Diagram for G3 (A3).

Then treating G3 in the same way as above for GO
and assuming responsibilities for the new goals
(G3.1,G3.2 and G3.3) the structurally complete goal-
responsibility model Figure 8 is produced.

GO
I
Impose
process A G1 G2 G3
I
|
[
I
Impose
process A3

1 %}%}%

PM SD1 PM

Figure 8. Structurally Complete Goal-
Responsibility Model

3.3 Specifying the Leaves

Normally every leaf goal (behaviour) is specified
with a use-case. Hence most leaves will have multiple
actors responsible for them. Cockburn’s casual and
fully dressed forms can be used depending on the
rigour that is appropriate. Alternatives include IEEE
capabilities [vii] and problem frames [viii] depending
on circumstances..

3.4 Composition

Sections 3.2 and 3.3 have shown in principle how
to create the complimentary viewpoints of activity
diagrams and goal-responsibility models. However
goal refinement involves decomposition. Hence
although Figure 8 is structurally complete the re-
composition of the responsibilities must be considered.
This is especially so for the “Impose Process X” class

of responsibility introduced in this paper which will in
general impact on all its sibling goals and their
descendants. For example in Figure 8 “Impose Process
A” must be composed with G3.1 etc as well as G1-G3.
The designer and the tester may discover significant
complexities.

The non-functional requirements must also be
included in a full representation of a real intention.
These have not been the subject of this paper but can
be can be added to the goal-responsibility model as
further goal nodes and the resulting cross-cutting
responsibilities can be composed just as any other
responsibility [iv].

4. Industrial Examples

We introduce two industrial examples: one each for
the two circumstances outlined in the introduction.

4.1 Example A: Clinical Audit Product

The first case is the specification of a small scale
development of three person months. The intention
was to provide a care audit product to be used in UK
medical practices.

An initial analysis of stakeholders’ concerns
informally captured an eclectic mixture of constraints,
abstract goals and design prejudices as surrogates for
requirements; just as predicted in [ix]. After expressing
the overarching goals, assumptions and constraints in a
high level goal model it was evident immediately
which parts of the intention were normative (well
known to the developer and stakeholder community
and needing little elaboration) and which parts were
radical (needing detailed evaluation). This analysis
took only a few hours to complete but made early
appraisal possible and immediately paid back by
allowing the limited staff resources to focus on what
matters in negotiation (“creating expectations” see
introduction) and difficulties in engineering.

The radical functional goals required consultation
with typical users. This led to the agreed activity
diagrams such as shown in Figure 9. Note:-

* Nested activity diagrams are needed to refine
“Prepare sponsor....” And “Send to depository....”
(as indicated by the UML convention of a fork
symbol).

* All other activities are the equivalents of goal
leaves and have use-cases expressing the required
behaviour of the system actors.

* The guards are not rigorous but were sufficient for
the purpose of discussing requirements.

* The guards include factory (or installation)
configuration conditions as well as run-time
conditions.

=8

[Import raw data J

|
[Snapshot 1 & 2
Imported]

reports

[Prepare raw data for]

[Configured

for Export]
Compute practice r Prepare sponsor
comparative report Ap 21 Programme

report
 Sendto
Ap22 Depository

[Exported or
y cancelled]

[Configured +

for Export

AND Exported] [Else]
\

Y

View and print the View and print the
comparative alternative practice

practice report report

®

Figure 9. Primary activity diagram.

A detail from the corresponding goal-responsibility

model is shown in Figure 10. Note:-

* The top goal is not a root goal as there are higher
goals above it.

* Goal “Impose Activity A1” Enforces the logical
flow/states of the activity diagram of Figure 9. A
second “Impose Activity...” Enforces the logic of
a sub activity AD2.1. These are sub-levelled in a
manner corresponding with the activity diagram
nesting.

* Limited space has necessitated leaving out some of
the activities shown in Figure 9; “Prepare raw...”,
“View and Print...”are omitted.

* Al leaf goals have actors (Tool is the software
product; MIQUEST is an agent used in the UK for
extracting medical information from medical
systems). The behaviours are defined by use-cases;
some use-cases have multiple actors.

)\)\
Provide report
to practice
|
Compute Prepare
'Z"t?s_: Import || 1 actice sponsor
A1° ity La: comparative | programme
a report report
/
/
/
/
Tool Tool MlQUES%
Create
Compute encrypted
':"t‘_)s_: sponsor file of
A1° WY || programme || sponsor
report programme
report
Tool Tool User Tool

Figure 10. The partial goal-responsibility model

In Figure 10 all activity is at the leaves. The project
manager, tester and developer have to be sure that all
the leaves are feasible. The analyst used the goal-
responsibility model refinement argument to inspect
the adequacy of the intention. The stakeholders could
be talked through the model but the real value was to
aid the analyst with a disciplined method of appraisal.
This dual method has been used on several projects in
the company since with success judged on willingness
to re-use the method in the commercial environment.

4.2 Example B: Enterprise Product

This case shows the application of the method to
the second circumstance listed in the introduction.
Whereas example A is essentially an a priori problem
this one concerns the a posteriori problem of
acceptance testing. The example is a large scale
development of a database security tool by a UK based

company. Development has followed the Scrum (agile)
iterative process to turn an initial concept into a
product to satisfy a wide range of customers and
environments.

The development has been ongoing for three years
and the product is now on the market yet still has
significant potential for evolution. The development
team has grown over the three years from five to
twelve engineers; early on one of these being a part-
time tester and recently three are full time testers. A
backlog driven sprint methodology was adopted with
an onus on testing to demonstrate at the end of each
sprint that the new backlog items had been
accomplished and that none of the old backlog items
had inappropriately regressed. The number of backlog
items engineered so far is over 3000. Like many
backlog and iterative style developments the individual
backlog items are not always pure requirements. They
include desirable activities such as refactoring and non-
behavioural changes. Consistent with good agile style
the management have encouraged adequacy and
feasibility as guiding principles when planning every
sprint. They have always valued predictability of
accomplishment over quantity of aspiration in their
sprints.

The problem is that the backlog is insufficient as a
resource to design regression and sprint acceptance; the
sum of backlog tickets does not adequately reveal the
coherent and holistic experience warranted for the
product. This seems to be a common jeopardy with
long term backlog based developments.

The problem was addressed by using the methods
described in section 3 to reverse-engineer a model as a
basis for planning regression tests. The activity
diagram viewpoint has brought a uniform
understanding of product behaviour shared across the
company. The goal model has afforded a disciplined
approach to test coverage analysis; this has created a
trend of increasing incompletion faults at the end of
each sprint and other latent faults that would otherwise
only arise to compromise downstream sprints.

The reverse engineered representation involves one
overview activity diagram and only two levels of
nested activities. Across all diagrams there is a total of
approx 60 leaf activities. Every one of these has a use-
case which in turn has a set of test cases so that
percentage test coverage can now be considered.
Whilst presently some are run manually there is a
programme to fully automate them.

A satisfying discovery was that the recognition of
the “Impose Process X” class of responsibility revealed
significant areas of product behaviour that were most
vulnerable to error but had not been strongly
recognised in testing based on original backlog entries.

This problem has provided an examination of the
methods described here in terms of scalability and

utility for a large and complex product. The product
has a complex array of configurations and versions.

In addition to this a posteriori application of the
method there is now interest in using the models to
allow Dbetter investigation of incremental change
impact analysis which as anticipated in [x] is an
increasingly significant problem.

5. Related Work

There is little direct mention of activity diagrams
and goal oriented requirements engineering in the
literature although in [xi] there is an implied
association in the relationship of activity diagrams and
use-cases.

The idea of writing use-cases to elicit and organise
functional requirements is a good practice guideline
[xvii] and is developed strongly in [v,xii]. The work
reported here involves use-cases as part of a different
tactic: Activity diagrams serve to elicit and organise
functional requirements leaving use-cases to define
leaf goals and their responsibilities. It is distinct also
from the practice of associating use-cases with goals as
espoused in [v]; there the goal hierarchy harbours
responsibilities at all levels .

An interesting contrast to our approach is reported
in [xiii]. There the emphasis is on using goal
refinement as a means to discover use-cases as leaf
behaviours. This is a contrast as the very point of our
use of activity diagrams is due to our experience that
eliciting functional goals is itself a problem.

More formal developments involve tactics with
scenarios and UML. For example in [xiv] scenarios are
used for their narrative, concrete and informal style of
description to elicit abstract declarative specifications.
In [xv] goal elicitation is guided by the use of
scenarios. In [xvi] a UML profile provides industrial
professionals with a familiar UML access KAOS
model. We believe that such approaches are very
significant and important but may be too formal for
regular industrial practice (particularly agile practice).
The goal sketching approach espoused here may be
regarded as a preliminary survey to such methods and
accordingly some formal bridging may be possible.

6. Discussion and Further Work

Good heuristics should help people to draw useful
graphs rapidly. Traditional advice of embracing
frequent negotiation with spiral emergence [xvii] and
decomposing width before depth [viii,xviii] is
applicable but more help is needed. The work reported
here endeavours to make contribution in this direction.

The method reported here is work in progress yet
has already has proved practical enough to be useful in
the reported cases. Whilst quantitative gains are not

reported here it is the case that their continued use
against a demanding commercial background suggests
practicality and usefulness.

The method has overlaps with the work of the use-
case and more formal methods communities. We
expect to develop the method to complement these
endeavours; especially to provide appraisal viewpoints.
In this way the method offers complimentary support
rather than simply offering another requirements
analysis technique.

The keys this complementary relationship are: (1)
showing all responsibilities at the leaves and (2) the
technique of introducing the impose X goal (e.g. see
Figure 10). The second of these hides, but does not
discard, complex control or process regimes. It
presents them for appraisal. Activity diagrams could be
substituted by other modelling artefacts such as state
diagrams, use-case goal models or policy statements.

It might be observed that these complementary
views contrast an ordered sequence of activities with
an un-ordered set of goals. But this would be to
overlook the power of the impose X. Indeed this
became very important in the second of the reported
examples where the acceptance tests had to focus on
the glue between the activities.

In the practical examples presented the activity
‘guard’ is used to manage configuration as well as run-
time conditions. This has opened possibilities for
managing the common practical problem of portable
software products: they have to be specified and tested
against multiple configurations. We aim to explore this
further.

7. Conclusions

Aiming to accelerate the process of goal sketching we
have introduced a method of working with activity
diagrams in tandem with goal-responsibility modelling.
In this complimentary use the activity diagrams help
the formulation of goal sketches for functional
requirements and configuration permutation whilst the
goal-responsibility models provide the basis of
disciplined appraisal. The work is at an early stage but
has at least passed the test of application to real world
problems. There are possibilities for generalisation of
the method that are to be investigated with the
expectation that other structured and UML modelling
methods can be incorporated.

8. Acknowledgements

Richard Olearczyk, Sean O’Mahoney of OSKIS
Informatics and Dr Steve Moyle, James Wilson and
Peter Guillebaud.

9. References

[i] Dardenne, A., Lamsweerde A., van, and Fikas, S., “Goal-
Directed Requirements Acquisition”, Science of
Computer Programming Vol. 20, pp. 3-50, North
Holland., 1993, pp. 3-50.

[ii] Boness, K., Harrison, R., Finkelstein, A., “A lightweight
technique for assessing risk in requirements analysis”,
Software, IET, 2008, Volume: 2, Issue: 1 pp. 46-57.

[iii] Nevo, D., and Wade, M., “How to avoid disappointment
by design”, Communications of the ACM, 2007, Vol 50,
No.4 .

[iv] Boness, K., and Harrison, R, “Goal Sketching: Towards
Agile Requirements Engineering”, Proceedings of the
International Conference on Software Engineering
Advances, ICSEA 2007, pp. 71-76

[v] Cockburn, A., Writing Effective Use Cases, Addison-
Wesley, Boston, 2001.

[vi] Jackson, M., Requirements Specifications — A lexicon of

practice, principles and prejudices, Addison-Wesley,
Harlow. 1995.

[vil] Guidelines for writing system requirements
specifications, IEEE Std 1223-1998.

[viii] Jackson, M., Problem Frames, Michael Jackson,
Addison Wesley, Harlow. 2001

[ix] Alexander, 1., Maiden, N., Scenarios, Stories and Use
Cases, John Wiley & Sons, Chichester. 2004.

[x] Rajlich, V., “Changing the paradigm of software
engineering”, Comm. of the ACM, Vol 49, No.8§, 2006.

[xi] Ambler, S., The Object Primer, Cambridge University
Press, 2004.

[xii] Alexander, 1, and Stevens, R., Writing Better
Requirements, Addison-Wesley, Harlow, 2002.

[xiii] Robinson, W., and Elofson, N., “Goal Directed
Analysis with Use Cases”, Journal of Object Technology,
vol 3, n0. 5, pp. 125-14. 22004,

[xiv] Lamsweerde, A., van, and Willemet, L. “Inferring
declarative Requirements from Operational Scenarios”,
IEEE Trans on Software Engineering, Special Edition on
Scenario Management. 1998.

[xv] Rolland, C., and Souveyet, C., et. al., “Guiding
Modelling using Scenarios”, IEEE Transactions on
Software Engineering 24(12), pp.1055-1219. 1998.

[xvi] Heaven, W., and Finkelstein, A., “UML profile to
support requirements engineering with KAOS”, 1EE
Proceedings -Volume 151, Issue 1, 9, pp. 10 — 27. 2004.

[xvii] Sommerville, 1., and Sawyer, P., Requirements
Engineering — a good practice guide, Wiley, Chichester.
1997.

[xviii] Adolph, S, and Bramble, P., Patterns for effective
Use Cases, Addison-Wesley, 2003

