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Abstract: Lack of access to insurance exacerbates the impact of climate variability on
smallholder famers in Africa. Unlike traditional insurance, which compensates proven
agricultural losses, weather index insurance (WII) pays out in the event that a weather
index is breached. In principle, WII could be provided to farmers throughout Africa. There
are two data-related hurdles to this. First, most farmers do not live close enough to a rain
gauge with sufficiently long record of observations. Second, mismatches between weather
indices and yield may expose farmers to uncompensated losses, and insurers to unfair
payouts — a phenomenon known as basis risk. In essence, basis risk results from
complexities in the progression from meteorological drought (rainfall deficit) to
agricultural drought (low soil moisture). In this study, we use a land-surface model to
describe the transition from meteorological to agricultural drought. We demonstrate that
spatial and temporal aggregation of rainfall results in a clearer link with soil moisture, and
hence a reduction in basis risk. We then use an advanced statistical method to show how
optimal aggregation of satellite-based rainfall estimates can reduce basis risk, enabling
remotely sensed data to be utilized robustly for WII.
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1. Introduction

In Africa, climate variability can limit development and deepen poverty [1][2]. For example,
banks are unlikely to lend to farmers if the crop failure caused by drought will result in defaults,
as many farmers are likely to default in the same year [3]. In the last 10 years, a new type of
insurance has been designed to mitigate climate-related risk. Weather index-based insurance
(WII) is linked to a weather-based index such as rainfall, rather than to a physical outcome, such
as a low yield [4]. WII has the potential to be cheap to administer and transparent to operate. In
principle, WII provides a means of insuring smallholder farmers throughout Africa against perils,

including drought.

There are many operational and technical hurdles to the widespread uptake of drought based
WII and two major data-related hurdles. Currently, most schemes are centered around
individual rain gauges. The African gauge network is, however, sparse, and the rainfall climate,
spatially variable [5]. Schemes that rely on gauge data thus cannot provide insurance to the

majority of farmers in Africa.

Secondly, WII schemes are based on an index, rather than a proven loss. Mismatch between
insured weather based indices and agricultural losses can lead either to unfair payouts, or to
uncompensated losses. Such mismatches are termed basis risk. In essence, basis risk stems from
complexities in the progression from low rainfall (meteorological drought), to deficit in root
zone soil moisture (agricultural drought). Low rainfall is not necessarily a precursor to soil
moisture deficit, and conversely, soil moisture deficits may occur, even when rainfall is near

normal [6][7].

These issues are closely linked. Basis risk is exacerbated when the insured weather index does
not accurately represent local meteorological conditions. Even a few kilometers from a station,
the weather may be significantly different to that observed. An alternative approach is to use
remotely sensed data, such as satellite-based rainfall estimates (SRFEs), which can provide local

information on meteorological conditions in near real time [8].

Although they both provide estimates of rainfall, SRFEs and gauge measurements are
fundamentally different. The degree to which they agree varies spatially and temporally -
depending on the meteorological regime, satellite rainfall estimation methodology and density of
the gauge network[9]. If the assumptions underlying the satellite rainfall estimation
methodology do not account for the dominant rain forming processes, SRFEs provide a poor

approximation of rainfall variability.



In most cases, the skill of SRFEs is improved by averaging in time and space [10]-[12].
Agricultural drought is, furthermore, linked more closely to cumulative than to instantaneous
rainfall, because soil moisture is affected by the accumulation of rainfall over weeks or months.
In some regions, moreover, lateral as well as vertical flow of water contributes significantly to
soil moisture. Total soil moisture and hence the risk of drought, is thus related to spatially, as

well as to temporally distributed rainfall.

The previous discussion suggests that the aggregation of SRFE-based WII indices is likely to
mitigate basis risk. The optimal scale of aggregation is a function both of rainfall variability and
of the interaction between meteorological and land-surface conditions. As such, the scale is likely
to vary from one region and season to another. The principles and methodologies for identifying

the optimal scale for aggregation, however, are widely applicable in Africa and beyond.

In this paper, we focus on cotton in Zambia - an important cash crop, which is already insured
using SRFEs. We first use a land-surface model to describe the progression from meteorological
to agricultural drought in the region. We then consider how aggregation in space and time affects
the capacity of SRFEs to represent local rainfall. The final section of the paper draws these

threads of analysis into a discussion of how the aggregation of SRFEs relates to basis risk.

2. Data and models

This study combines land-surface model integrations with analyses of satellite imagery and
survey of agricultural loss data. The land surface model chosen was the Joint UK Land
Environment Simulator (JULES). JULES is used to investigate the development of drought and the
scales of land-atmosphere interactions. Statistical analysis of satellite imagery is used to quantify
algorithmic uncertainty, and thus to quantify the effect of aggregation in space and time on SRFE
skill. The following sections describe JULES, the SRFE estimation methodology (TAMSAT) and

the agricultural loss data.
2.1. Joint UK Land Environment Simulator (JULES)

JULES is a process-based land-surface model. When coupled to one of the Hadley Centre
atmosphere models, it comprises the land-surface scheme of the Hadley Centre climate models.
Full descriptions of JULES are available at [13], [14]. The following summarizes the features of

greatest relevance to this study.

JULES divides the land-surface into nine surface types: broadleaf trees, needle leaf trees, C3

(temperate) grass, C4 (tropical) grass, shrubs, urban, inland water, bare soil, and ice. The land-



surface types are tiled to represent sub-grid heterogeneity[15]. Surface fluxes of moisture and
heat are calculated for each tile, and the state of the grid box is then represented by the
aggregation of the tile fluxes. JULES can be run either at a point or over a grid (distributed
JULES). It is important to note that the formulation of distributed JULES used for this study does

not include lateral transfer of heat or moisture.

JULES includes a multi-layer representation of soil. In this study, the default four layers were
used (depths 0.1, 0.25, 0.65, and 2 metres). Each soil layer is described by a set of hydraulic and
thermal properties (table 3 in [13]). In practice, these quantities are derived by applying
pedotransfer functions to maps of soil texture [16]. In distributed JULES, the soil hydraulic and
thermal properties are allowed to vary at each grid point. Although it is possible to vary the soil

properties with depth, for this study, they were assumed to be constant.

The water available to plants is described by beta, a dimensionless measure of water stress. Beta

is related to the soil moisture by the following formula:

1 for & = &,
A= -. :,ﬁ for fhy = & = (1)
0 for @ =&,

where @ is the soil moisture in the root zone and &: and &, (the soil moisture at the critical and
wilting point respectively) are amongst the aforementioned hydraulic soil properties. Beta is

used in this study as a proxy for plant water stress and hence for agricultural drought.

The results shown in Figures 2-4 derive from integrations of JULES carried out for 1983-2012 at
0.59 horizontal resolution over the domain shown in Figure 2. JULES was forced with three-
hourly gridded time series of radiation, precipitation, temperature, humidity, wind speed, and
surface pressure, extracted from the WFDEI (WATCH Forcing Data based on ERA-Interim)
forcing dataset. In this dataset, all variables apart from precipitation are extracted from the ERA-
Interim reanalysis. The precipitation data are based on ERA-Interim, bias corrected using the

CRU dataset. For a full description of the WFDEI forcing data, see [17].

2.2. TAMSAT and TAMSAT rainfall ensembles

The TAMSAT (Tropical Applications of Meteorology using SATellite data and ground-based
observations) rainfall ensemble algorithm is used to represent the inherent uncertainty in
satellite estimates of rainfall by generating ensembles of equally likely rainfall scenarios over

Africa.



2.2.1 The TAMSAT Method

The TAMSAT algorithm relies upon imagery from Meteosat thermal Infra-red (TIR) imagery to
determine the Cold Cloud Duration (CCD) parameter which is defined as the duration each pixel
is below a predetermined threshold temperature and is used as a proxy for rainfall[8], [11], [18],
[19], [20]-[22]. Such an approach is used in place of instantaneous temperature measurements
often used in rainfall estimation [23][24] as TIR-only based rainfall estimates are most skillful
when aggregated due to the indirect nature of the relationship between cloud top temperature
and rainfall. This indirect relationship is valid for convective rainfall events (i.e. the longer a
cloud top is below the threshold temperature the greater one would expect the rainfall amount
to be) and does not hold for warm rain processes where the cloud top temperature is less
representative of the rainfall on the ground. As such, the TAMSAT algorithm is suited for much of
tropical Africa, which is dominated by convective rainfall. Given the heterogeneous nature of the
African rainfall climate, CCD fields are regionally calibrated assuming a linear relationship
between CCD and rainfall for each calendar month using historic gauge measurements, ensuring
the resulting estimates reflect the expected local conditions. The TAMSAT method has shown
high levels of skill across Africa, often exhibiting similar, or greater, performance than other,

more complex satellite algorithms [10], [25]-[30].
2.2.2 TAMSAT rainfall ensembles

During the calibration stage, the relationship between CCD and rainfall can be characterised
probabilistically to determine probability distributions of both rainfall occurrence and amount.
Using this information, it is possible to generate an ensemble of rainfall fields by randomly
sampling from the probability distributions. However, carrying out this process for each pixel
independently would result in unrealistic, spatially uncorrelated fields. To overcome this,
spatially independent ‘seed’ pixels are chosen from the observed CCD field and the influence of
the surrounding pixels on each seed pixel’s probabilities is calculated using a geostatistical
process known as sequential simulation (SS). SS is performed in two stages: (1) to delineate
regions of rain and no rain and (2) to assign a rainfall amount to the rainy pixels. This process
samples out of each pixel’s occurrence and rainfall amount probability distributions respectively
in a manner designed to preserve spatial correlations, and is conducted until all pixels in the
domain are considered. The entire process is repeated many times, producing a set of spatially
coherent, equally likely rainfall scenarios that are consistent with the observed CCD field and the

climatological CCD-rainfall relationship. A more detailed description of the method is given in



[31]-[33]. TAMSAT rainfall ensembles are thus an expression of the uncertainty in the TAMSAT

algorithm.

2.3. Loss data

Data on agricultural losses were gathered at the 38 locations shown on the maps included in
Figure 2. The loss percentage (actual/expected yield) is calculated using a combination of
different sources of data, both quantitative and qualitative. Multiple sources of data are used
because there is no single reliable source of loss data for all sites. The reliability/credibility of the

source of loss data, moreover, varies by location.
The sources of loss data are:

1. Information on farmer experience, collected via semi-structured interviews. Inevitably
these focus on the 'worst years', which farmers' remember, and there is a bias towards

recent years,

2. Feedback from field staff of distribution channels, including agricultural extension

agencies and suppliers of agricultural inputs, and

3. A simple yield stress model, relating rainfall deviation and multiplicative crop yield
factors to calculated yield deviations for cotton for different historical years (based on
FAO crop yield stress factors), supplemented by occurrence of droughts reported in the

scientific literature.

Different credibility weights are assigned to the each of these sources. For example the early part
of the record (before ~1995) depends more strongly on the yield stress model, while the later

data incorporates more information from farmer interviews.

3. Results and discussion

Cotton in Zambia is almost exclusively rain-fed. It is to be expected, therefore, that when rain is
low, losses are high. This is supported by Figure 1, which shows a convincing association
between average losses over the 38 study locations and peak rainy season (November-March
rainfall) averaged over the domain shown, in Figure 2 (correlation coefficient 0.65, which is

significant at the 95% level).
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Figure 1: Time series of total November-March rainfall (black) and a time series of

mean losses at the 38 locations shown in Figure 2 (grey)
There are, however, discrepancies - with heavy losses experienced during some years of near
normal rainfall. These may be explained by the wider social context of agriculture in Zambia. As
well as rainfall variability, cotton production is affected by a multitude of economic factors. It is
notable that around 2002, the Zambian Kwacha started to appreciate against the US Dollar,
placing the export sector under increasing pressure. In response to the failing export market, in
2006, one of the largest cotton ginning company, NWK-Agri-Services announced a 30%
reduction in the price it would pay, resulting in a 40% drop in area planted during the 2007
season [34]. It is likely that price pressures, rather than rainfall deficit, explain the fall in
production during the 2006 and 2007 seasons. This wider context may also, in part explain the

volatility in cotton production since 2002.

Zambia’s economic troubles exacerbate the population’s vulnerability to climate variability,
particularly drought. Robust WII could mitigate some of these risks - especially if it can be
implemented at a large scale. As was described in the introduction, the fair implementation of
drought WII requires a clear connection between rainfall and root zone soil moisture i.e. a
consistent progression from meteorological to agricultural drought. The progression from
rainfall deficit to agricultural drought is illustrated by Figure 2, which shows the correlations
between rainfall, upper level soil moisture and beta. Correlation coefficients are calculated, for
inter-annual variability in January, April, July, and October at every modeled grid point. The

correlation between rainfall and upper level soil moisture (top row of figures) relates to the



infiltration of rainfall into the top layer of soil. The correlation between upper level soil moisture
and beta (middle row of figures) relates to percolation of water from the top layer of soil to the
root zone. The correlation between rainfall and beta (bottom row) illustrates the ensuing link

between rainfall and root zone soil moisture.

During the rainy season, the correlation between rainfall and upper level soil moisture is strong
(>0.8 in most of the country). Out of the rainy season, in July, when there is little rainfall, the
correlation is near zero. There is a slight weakening in the strength of the correlation as the rainy
season progresses — probably because of the increasing proportion of time that the upper soil
layer is saturated. The second row of plots in Figure 2 shows that the correlation between upper
level soil moisture and beta varies both spatially and temporally - reflecting heterogeneity in
climate and soil type. In the north of the country, the correlation is strongest towards the end of
the rainy season (in April), while in the south it is strongest in January. The maps of the
correlation between beta and rainfall (bottom row) confirm that the strength of the link between
rainfall and agricultural drought is varies. This complexity highlights the need to adjust WII
indices spatially, and indeed, to consider carefully which regions can be insured fairly using

indices based on cumulative rainfall.

January April July October
= % .
*‘/’r

upper soil
moisture

Upper soil
moisture
& beta

Rainfall
& beta




Figure 2 Correlation between rainfall and upper level soil moisture (top row); upper
level soil moisture and beta (middle row); rainfall and beta (bottom row) for (from
left to right) January, April, July and October. Cyan shading denotes negative
correlations of <-0.1. Black circles are the localities for which loss data are available;
blue circles represent the three locations shown in Figures 3 and 4 (from west to east:
Chikanta, Makafu, Kalichero).

The discussion above focused on the broad links between rainfall and drought. The next sections

look in more detail at three localities for which we have loss data:
e Chikanta: 26° E; 16.49S
e Makafu: 28.89E; 14.3°S
e Kalichero: 32.49E; 13.59S

The locations of these stations are shown as blue circles on Figure 2.
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Figure 3 Precipitation versus beta for (from top to bottom) Chikanta, Makafu, and

Kalichero for May-September (grey circles), October-December (yellow circles), and

January-April (green circles).
Figure 3 plots beta against mean rainfall - distinguishing between the different parts of the
season. The plots show how beta increases as the season progresses, reaching a maximum in
January/February. For the most western locality, beta never reaches 1, and as a result, the strong
correlation between beta and rainfall persists through the season. This is consistent with Figure
2, which shows that correlations remain reasonably strong through the whole season in this part
of Zambia. For the other localities, beta reaches its maximum during the second half of the
season, and as a result, the correlation between beta and rainfall drops. Again, this is consistent

with Figure 2.

The relationship between rainfall and beta is explored further in Figure 4, which shows plots of
beta versus cumulative precipitation during the peak of the rainy season (November-March).
Broadly speaking, cumulative rainfall is proportional to beta, until beta reaches 1. The clarity of
the link, however, varies from one locality to another. In particular, at Chikanta, there is
considerably more noise than at the other locations. In one of the drought years (1994/95), beta
remains near zero, which implies that the wilting point is never reached. It is notable that during
the droughts, not only is cumulative rainfall lower than average at all three localities, but also
that beta is unusually low, given the rainfall that has occurred. This has implications for index
design, in that indices based on cumulative rainfall may underestimate the severity of losses

during the most severe droughts.

Notwithstanding subtleties in the link between cumulative rainfall and beta, the previous section
has demonstrated a clear link between meteorological and agricultural drought in southern
Zambia. This supports the use of WII for mitigating drought-related risk. However, the gauge
network is sparse, and any large scale WII scheme is likely to depend on remotely sensed data.
There are a number of Africa rainfall datasets available at the required resolution and for a
sufficient time period [35][19]. The rest of this study will focus on one such dataset, TARCAT,
which is the historical product, based on the TAMSAT method (see Section 2 for further details).
We focus on TARCAT because the underlying method has been shown to have good skill for

Zambia [26], and the dataset is already used in WII schemes for this region.
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Figure 4 Cumulative precipitation versus beta for (from top to bottom) Chikanta,
Makafu, and Kalichero. The brown dots and lines highlight four years during which
there was widespread drought and severe agricultural losses in Zambia: 1986, 1991,
1994, and 2001.
Although the TAMSAT method captures Zambia rainfall variability reasonably well, a degree of
algorithmic uncertainty is inevitable. For example, the TAMSAT daily estimation method cannot
distinguish rainfall over ~40mm. The ensembles method described in Section 2, provides a

means of objectively quantifying algorithmic uncertainty. In this study, we have used the
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ensembles to investigate the expected improvements in skill when SRFEs are aggregated in time
and space[10]. Figure 5 shows how the spread of ensembles, and hence the uncertainty in
rainfall estimates, reduces as they are aggregated in time. It can be seen that there is significant
variability in the magnitude of the spread from one locality to another, but that the shape of the
curves is very similar, with limited benefit from aggregating beyond five days. The example
shown in Figure 5 is for January, but there were similar results for the whole rainy season (not

shown).

0 N
|

_—

| | [ |
5 10 15 20

Mean ensemble range (mm)
g
|

Length of aggregation {days)

Figure 5 Time length of aggregation plotted against the mean ensemble range for

each of the localities shown in Figure 2. The pale grey lines relate to individual time

series for the, and the bold line is the mean.
Figure 6 illustrates an analogous effect when aggregating in space with clear increases in skill
evident up to ~200 km. Beyond 400 km, there is little discernible improvement. When
aggregating rainfall, however, the improvement in skill must be balanced against less accurate
representation of local conditions. In other words, a 400 x 400 km aerial mean rainfall estimate
may be an accurate representation of rainfall over a 400 x 400 km region, but a poor proxy for
rainfall at any given point within it. This is illustrated by Figure 7, which shows the correlation
between regionally averaged and local rainfall, for regions ranging from 100 x 100 km to 600 x
600 km. It can be seen that there is a rapid drop off in correlation, so that beyond 300 km, values
are bordering on statistically insignificant. This means that rainfall averaged over a 300 x 300

km region is not representative of local rainfall.
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Figure 6 Mean ensemble range as a function of box size, for a box centered on 25°E

15°S.
The above analysis of aggregation in time and space provides useful information for index
design. Figure 5 shows that the ensemble range is high when daily SRFEs are not aggregated in
time. This means that at a daily time scale, TIR-based SRFEs are highly uncertain. Indices based
on statistics of individual days may, therefore, not be robust. An example of such an index would
be n, where n is the number of days in a given period, for which rainfall is less than x mm.
Conversely, indices based on cumulative rainfall are more robust. Spatially aggregating rainfall
indices also increases their skill, but it is necessary also to consider the effect of aggregation on

the representation of local conditions.

Comparison between Figure 6 and Figure 7 can provide guidance as to the optimal spatial scale
for aggregation. In Zambia, it has been found that indices based on dekadal rainfall averaged
over 10 days closely match user experience of losses. This is consistent with Figure 6, which
shows that aggregating over 10 days markedly improves skill. Figure 7, however, indicates
rainfall averaged over a wide region would have higher skill, while still representing local
conditions. It is important to recognize, moreover, that while this methodology is widely

applicable, the optimal scale of aggregation is likely to vary from one region/season to another.
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Figure 7 Correlation between rainfall at a point at 25°E 15°S and mean rainfall in a

box surrounding the point (y-axis), plotted as a function of the length of the side of

the box (x-axis).
The first part of the discussion considered the progression from meteorological to agricultural
drought, and the second part considered aggregation of rainfall estimates. These two factors are

interlinked, and both must be considered when designing WII indices.

As well as being more reliably represented by SRFEs, cumulative precipitation is a better
determinant of soil moisture deficit than instantaneous precipitation as confirmed by
comparison between Figures 3 and 4. The link between soil moisture and rainfall also
strengthens as these quantities are aggregated in space. This is confirmed by Figure 8, which
shows how the percentage in variance in beta is explained by cumulative precipitation increases
when the data are aggregated. It should be noted that although the effect is fairly small, it is
coherent across the region (not shown). Because JULES does not account for lateral transfers of
water (see Section 2), this effect can only be explained by the averaging out of extremes of
rainfall and heterogeneities in the land surface. In reality, like any land surface hydrological
variable, soil moisture is affected by aerially distributed rainfall. Figure 8 may therefore

underestimate the effect of spatial aggregation on the link between rainfall and soil moisture.

These findings support the notion that an index based on spatially and temporally averaged
SRFEs can be a good proxy for agricultural drought as long as the aggregation is carried out at an
appropriate scale. The optimal scale depends on spatial and temporal variability in the rainfall

climate, the skill of SRFEs, and the properties of the land-surface.
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Figure 8 Box side length of region averaged over, versus the percentage of variance in

beta explained by total precipitation for January.
In summary, we have shown that on a national scale, cotton production losses in Zambia are
strongly linked to variability in rainfall. A process analysis using a land surface model showed
some association between cumulative rainfall, upper level soil moisture and root zone soil
moisture. This is reflected in significant correlation between rainfall and root zone soil moisture
opening up the possibility of implementing WII. The lack of gauge data, however, means that WII

must be based on remotely sensed data, such as SRFEs.

Further analyses confirmed that when rainfall is aggregated in time and space, the skill of SRFEs
improves. The aggregation also irons out heterogeneity in both the rainfall climate and the land
surface, resulting in higher correlations between precipitation and root zone soil moisture.
When designing WII schemes the improvements resulting from aggregation must, however, be

balanced against the need to capture local conditions.

4. Conclusions
1. In Zambia, cotton production losses are associated with rainfall variability.

2. There is a significant relationship between meteorological and agricultural drought on all

spatial scales and throughout Southern, Central and Eastern Zambia.

3. The high skill of SRFEs in the region open up the possibility of expanding drought WII to a
national level, provided that indices are carefully chosen to be skillful, representative of local

conditions and strongly linked to variability in soil moisture.
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