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Abstract

We establish a methodology for calculating uncertainties in sea surface
temperature estimates from coefficient based satellite retrievals. The un-
certainty estimates are derived independently of in-situ data. This enables
validation of both the retrieved SSTs and their uncertainty estimate using
in-situ data records. The total uncertainty budget is comprised of a num-
ber of components, arising from uncorrelated (eg. noise), locally systematic
(eg. atmospheric), large scale systematic and sampling effects (for gridded
products). The importance of distinguishing these components arises in prop-
agating uncertainty across spatio-temporal scales. We apply the method to
SST data retrieved from the Advanced Along Track Scanning Radiometer
(AATSR) and validate the results for two different SST retrieval algorithms,
both at a per pixel level and for gridded data. We find good agreement
between our estimated uncertainties and validation data. This approach to
calculating uncertainties in SST retrievals has a wider application to data

from other instruments and retrieval of other geophysical variables.
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1. Introduction

Uncertainty is inherent in all geophysical measurements and must be ap-
propriately characterised for their scientific application. Data providers have
a responsibility to communicate the levels of uncertainties associated with
their products and inform data users of the correct methodology for using
uncertainty information provided. Within the Sea Surface Temperature Cli-
mate Change Initiative (SST CCI) project (Hollmann et al., 2013; Merchant
et al., 2014) we aim to provide an uncertainty budget for every SST value
provided in products (skin temperature, SST at 0.2 m depth and spatially
averaged SST). We aim to derive uncertainty estimates independently of SST
validation datasets, allowing validation of both the SST values and their as-
sociated uncertainty.

The terms ‘error’ and ‘uncertainty’ are sometimes used interchangeably,
but have distinct standard definitions that will be adhered to throughout this
paper. Error is the difference between a measured value and the true value of
the measurand (JCGM, 2008; Kennedy, 2014). In practice we know neither
the true value nor therefore the error for a particular measurement. However
the distribution of the errors can often be estimated and this distribution
characterises the uncertainty in the measured value. Formally, uncertainty
is a parameter characterising the dispersion of values that could reasonably
be attributed to the measured value (JCGM, 2008). To quantify uncertainty

in this paper we quote one standard deviation of the error distribution.
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It is common to provide generic uncertainty estimates for remotely sensed
SST derived via comparison with in-situ datasets during validation activites.
The standards of the Group for High Resolution Sea Surface Temperature
(GHRSST) specify the provision in all datasets of single sensor error statis-
tics (SSES). For pragmatic reasons, SSES are defined to comprise the mean
difference and standard deviation of remotely sensed SST matched to a ‘refer-
ence’ dataset (GHRSST Science Team, 2010). Drifting buoy SSTs are often
used as the ‘reference’. Mean and standard deviation validation statistics
are often provided as globally invariant dataset specific values (May et al.,
1997; Reynolds et al., 2002; Casey and Cornillon, 1998). An additional field
indicating the retrieval quality level can be specified at pixel resolution pro-
viding information on the likelihood of cloud contamination, noise lamplifi-
cation at extreme satellite zenith angles or input data quality (Donlon et al.,
2007; Kilpatrick et al., 2001). An extension of this approach is the MOD-
erate Resolution Infrared Spectrometer (MODIS) algorithm, which provides
validation-based uncertainty information stratified by season, latitude, sur-
face temperature, satellite zenith angle, a selected brightness temperature
difference, SST quality level and day/night (Castro et al., 2010).

Sources of uncertainty in remotely sensed SST are intrinsic to the retrieval
process and the data utilised. Uncertainties vary from pixel to pixel due to
local changes in instrument noise, satellite viewing geometry and atmospheric
conditions. We present here a method of estimating SST retrieval uncertainty
that accounts for these factors at the pixel level. There are a number of
sources of uncertainty in SST measurement and the need to differentiate the

effects of random, and systematic errors has been previously noted (Reynolds
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et al., 2002; Casey and Cornillon, 1998; Merchant et al., 2012; Kennedy,
2014). Gridding of products introduces sampling uncertainties and a number
of studies have considered these when constructing global or regional SST
datasets from in-situ observations (She et al., 2007; Folland et al., 2001;
Rayner et al., 2006; Morrissey and Greene, 2009; Jones et al., 1997; Brohan
et al., 2006).

In this paper, we consider uncorrelated and locally systematic effects con-
tributing to SST uncertainty. The random or uncorrelated effects arise from
noise in the satellite brightness temperature, which propagates into the re-
trieved SST. Locally systematic effects cause errors that are correlated on
synoptic scales of atmospheric variability and are related to the retrieval
method itself interacting with changes in atmospheric properties (Minnett,
1991; Barton , 1998; Le Borgne et al., 2011; Minnett and Corlett, 2012;
Embury and Merchant, 2012; Merchant et al., 2012). We also discuss un-
certainties from large scale systematic effects (spatially coherent on larger
scales than synoptic features). In a companion paper (Bulgin et al., 2016)
we derive a method for calculating sampling uncertainty in gridded products
due to incomplete sampling of observations in each grid cell, primarily as a
result of cloud cover. In this paper, we use reuslts from Bulgin et al. (2016),
and, for completeness, show how sampling uncertainty combines with other
components of uncertainty in gridded products.

The remainder of the paper is structured as follows. Section 2 describes
the theory behind the calculation of uncertainties, their propagation and how
this is applied to different levels of SST data (orbit data and gridded prod-

ucts). Section 3 describes how an initial uncertainty budget is constructed
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from errors originating from random, locally correlated and sampling effects.
In Section 4 we present a validation of our uncertainty budget and in Section

5 provide a discussion of the results. We conclude the paper in Section 6.

2. Uncertainty Calculation and Propagation

We construct an uncertainty budget for SST measurements in CCI prod-
ucts comprised of uncertainty components arising from random, locally sys-
tematic, large-scale systematic and sampling effects. The full equation for
the propagation of uncertainty in a variable y, (u(y)), given that y is related
to input quantities z; via y = f(z1, .., .., T,), is defined as equation (1) in the
Guide to the Expression of Uncertainty in Measurement (GUM) (JCGM,
2008).

oS (L) 125 5 (L) (L)t

i i=1 j=i+1

Uncertainty is expressed with respect to (y) in the GUM, and we repro-
duce this notation throughout the paper. However, in Earth Observation,
we conventionally relate a retrieval estimate & to observations y ie. T = f(y)
which is the reverse convention. The first term in equation (1) describes the
propagation of uncertainties from uncorrelated errors. These can be added
in quadrature with the differential term (0f/0z;) defining the sensitivity of
the total uncertainty to each uncertainty component. The second term de-
scribes the propagation of uncertainty terms arising from correlated errors.
This term sums the uncertainty components from correlated errors for each

pair of input variables (z; and z;) found as the product of the sensitivity for
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both z; and x; and the covariance between them, u(x;, ;). The factor of ‘2’
is included, as for each pair, each is equally correlated with the other.
Equation (1) can also be written in the form of equation (2) where the
uncertainty is expressed as the sum over all pairs of input variables and the
covariance term is expressed as the product of the standard uncertainty in
x;, written u;, in x;, written u;, and of the correlation of errors in z; and z;,

written r;;.

uZ = Z Zl gg@ g—jjuiujrij (2)

Equation (2) applies fairly generically to any transformation y = f(x;, ....x,)
for which the sensitivity parameters (0f/0x;) are adequately constant over
the range x; — w; to x; + u;; it is a first order approximation. Because we
will use the results later, we illustrate the use of equation (2) for calculat-
ing the uncertainty in the mean SST from a number of observations. If
[ =>", xi/n, where each x; is a contributing SST value, then the sensitiv-

ity parameter is 0f /0x; = 1/n giving:

u? = % Z Z UiU;T54 (3)

i=1 j=1
We can consider three limiting cases. First assume errors are uncorrelated

between pixels. We can then put r;; = d;;, where 0;; = 1 fori = j, and d;; = 0
for ¢ # j. In this case, the uncertainty in the mean is scaled by the familiar

‘L’ reduction in uncertainty, because

B

u2 = % Z Z uiuj&j (4)

i=1 j=1
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112 Second, consider the case r;; = 1, which means errors fully correlate

us  between contributing SSTs. Equation (3) becomes

i=1 i=j

:%(Zm> Y

1 implying u = %2:;1 u; ie. the uncertainty is the average uncertainty of

=
IS

s the contributing SSTs.

1

-

116 Third, consider the case 7;; = 0;; + (1 — 0;;)r - all SSTs have the same

u7 error correlation with other SSTs. Substituting into equation (3) gives

=

u? = % Z Zuzuj [04j + (1 — 6ij)r] (8)

118 This form yields the previous results as special cases (r = 0 and r =
us 1). Constant r;; for ¢ # j is in practice unlikely to be exact for a real
1o situation, but may be a useful approximation in some cases, avoiding the

121 need to estimate r;; for every contributing pair.
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3. Uncertainty Budget Components

3.1. Uncorrelated Effects

Random errors in SST estimation from satellite data arise from noise
in the satellite observations. The signal recorded by a typical radiometer
is a voltage measured across a detector, digitised and recorded as counts.
In the operational calibration, a linear radiance is calculated in the form
radiance = gain X counts + offset where the gain and count parameters are
calculated during instrument calibration (Smith et al., 2012). A non-linearity
adjustment is then applied to the longwave channels (Smith et al., 2012) for
which the associated uncertainty has not been calculated. In this analysis
we simply take the detector noise in the measured counts and propagate this
into our geophysical retrieval. In a coefficient based retrieval, SST is calcu-
lated from a pre-defined linear or nearly linear (Anding and Kauth (1970);
Deschamps and Phulpin (1980); Kilpatrick et al. (2001); May et al. (1997);
McMillan and Crosby (1984), and further references within Merchant (2013))
combination of the observed brightness temperatures. Brightness tempera-
ture uncertainty is characterised using channel-specific noise equivalent dif-
ferential temperature (NEAT). This uncertainty is then propagated into the
SST retrieval uncertainty.

We illustrate the propagation of errors from random effects using data
from the polar orbiting Advanced Along Track Scanning Radiometer (AATSR)
aboard the Envisat satellite. Envisat was in a sun synchronous orbit with
an equator overpass time of 10.00 am. AATSR made observations in seven
spectral bands covering the visible and infrared spectrum at two viewing ge-

ometries: nadir (0 — 22°) and forward (52 — 55°). SST can be derived using
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the nadir infrared channels only, or using both the nadir and forward views.
We consider here the propagation of uncertainties through two different re-
trievals: ‘N2’ using the 11 and 12 pgm channels in the nadir view only and
‘D2’ using the 11 and 12 pum channels in both views. The formula used here

for estimating coefficient based SSTs from satellite data is:

Bssr=ao0+ Y aryk (11)
B

Where g, refers to each channel used in the retrieval, ag is an offset and ay,
are channel specific coefficients. Note that here & = f(y), in contrast to usage
in Section 2 (as previously noted). These coeffcients vary with the context in
which the observation is made, according to the viewing geometry and total
column water vapour (TCWYV), but are predefined. The error (difference
between the measured value and true value) for a given SST can be defined

as:

€ssT = Z A Ey, (12)
k

This is a linear combination of the errors in the brightness temperatures
in each chanel (denoted by ‘k’) multiplied by the coefficient used in the
retrieval. In practice, we do not know the true SST value nor therefore the
error on each individual measurement, but we can simulate a ‘typical’” error
field from our knowledge of the NEAT in each channel. We illustrate this in
panels 1 and 2 of Figure 1 which show simulated error fields for the nadir
view of the 11 and 12 pm channel at pixel resolution (1 km at nadir for
AATSR). These are constructed using a Gaussian random number generator

selecting values from a distribution with 0.0 °C mean and 0.05 °C standard

9
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Table 1: Coefficients for each channel used to calculate SST in the ‘N2’ and ‘D2’ retrievals

in Figure 1.
Retrieval | Channel | Sec(Sat Zenith Angle) | a; coefficient
N2 11 pm 1.0 2.04314
N2 12 pm 1.0 -1.02542
D2 11 pm 1.0 4.65371
D2 11 pm 1.76 -1.65009
D2 12 pm 1.0 -3.27043
D2 12 pm 1.76 1.27186

deviation representing NEdT estimates for the two channels (Embury and
Merchant, 2012). Errors vary in magnitude from pixel to pixel and can be
either positive or negative in sign.

Panels 3 and 4 of Figure 1 show the propagation of these simulated error
fields in a N2 and D2 retrieval. For the purpose of this illustration we assume
a fixed view angle and TCWYV (23 kg m~2) across the image giving coefficients
(ay) dependent only on channel, as shown in Table 1. Under normal retrieval
conditions these would vary slightly on a per-pixel basis. The coefficients
are specified to five decimal places (Merchant and LeBorgne, 2004). Further
discussion of error inherent in the retrieval process is provided in Section
3.2. As indicated in equation (12) the uncorrelated errors in a given retrieval
are the sum of the errors in each channel, and therefore the total errors are
smaller in the N2 retrieval than the D2 retrieval (which uses four channels
with generally heavier weights).

Many users require gridded Level 3 products generated from full reso-

10
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lution data. When generating gridded products, the average SST can be

calculated using the arithmetic mean:

1 n
[i‘ ridde - — .Z% 7 13
GriddedS ST n ; SST(i) ( )

Where n is the number of observations (i) in the grid cell. The alternative
would be to calculate a weighted mean based on the per-pixel uncertainties,
but we choose the arithmetic mean as it gives equal weight to all measure-
ments across the grid cell and therefore represents a mean across the geo-
physical variability within the grid cell. Panels 5 and 6 show the arithmetic
mean of the errors over a 5 x 5 pixel grid cell, approximately representing the
creation of 0.05° Level 3 products. The range in the mean error is naturally
smaller in the gridded product, but remains larger for the D2 retrieval than
the N2 retrieval.

In practice, when retrieving SST from satellite observations we don’t ex-
plicitly know the error in either the brightness temperatues or SST. We need,
however, to estimate the uncertainty in the SST retrieval. Given estimates
of NEAT, this is an example of standard uncertainty propagation. ‘Standard
uncertainty’ is the standard deviation of errors in each channel brightness
temperature, estimated to be of the order of 0.05 K for both the 11 and 12
pm channels of AATSR (Embury and Merchant, 2012). The propagation of
uncorrelated uncertainty components is shown in equation (5) where uncer-
tainties are added in quadrature. Applying this to equation (11), in the first
instance to give the per pixel uncertainty, and differentiating with respect to

each channel (y;) used in the retrieval gives:

11
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U = Z&iuzk (14)
\/ %

For a gridded product using the arithmetic mean, the uncertainty in the

mean of the contributing pixels is

N

UGriddedSST = —F—
NLD n

(15)

For fixed coefficients and a constant error in the brightness temperatures
(0.05 K) as in Figure 1, there is an invariant uncertainty value for each re-
trieval algorithm (N2 and D2) at the pixel level. When creating a real SST
product, NEdT varies as a function of both channel and brightness temper-
ature. For N2 retrievals in the example provided, this invariant uncertainty
value is 0.11 K and for D2 retrievals 0.25 K. Uncertainties in gridded aver-
ages reduce by \/iﬁ giving uncertainty estimates of 0.02 K and 0.05 K for N2
and D2 retrievals over fully observed grid cells. In practice, many grid cells
in Level 3 products are not fully observed due to cloud cover. This reduces
the number (n) of observations available and increases the uncertainties from
random effects. This is illustrated in panels 7 and 8 of Figure 1 for N2 and
D2 retreivals. A cloud mask has been superimposed on the simulated data at
the per-pixel level and uncertainties propagated into the 5x5 pixel product.
Observing only part of a given grid cell additionally introduces sampling un-
certainty, discussed briefly in Section 3.4 and more fully in the companion

paper (Bulgin et al., 2016).

12
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3.2. Locally Systematic Effects

Uncertainties from locally systematic effects arise from ambiguities in or
limitations of the SST retrieval algorithm. Coefficient based retrievals for
the ATSR instruments in Phase 2 of the SST CCI will use coefficients from
the ATSR Reprocessing for Climate (ARC) project. These are calculated
based on radiative transfer simulations which cover a comprehensive range of
surface and atmospheric conditions (Embury and Merchant, 2012; Embury
et al, 2012). Locally systematic effects therefore vary on synoptic scales
consistent with changes in atmospheric conditions.

We can characterise the uncertainties arising from locally systematic ef-
fects in the retrieval scheme using simulation studies. To do this, we take a
‘true’ SST field from Numerical Weather Prediction (NWP) data and simu-
late the associated brightness temperatures globally as would be observed by
the AATSR instrument using the RTTOV radiative transfer model. We can
then use these simulated brightness temperatures as input into our retrieval
scheme, comparing our retrieved SST with the ‘true’ SST eg. (Merchant
et al., 2009). For any given scene, we can plot the retrieval error field using
this methodology as shown in Figure 2. The contour lines in the top pan-
els show atmospheric pressure and in the bottom two panels TCWV with
the spatial distribution of the error field consistent with synoptic scales of
pressure in hPa and total column wate vapour (TCWV) in kgm? variability.
However, features in the SST error field are not simply linked to TCWV
distributions, since we see that a single contour line can run through re-
gions of both positive and negative errors. The ARC retrieval coefficients are

banded by TCWYV and the observed errors are not simply a bias that can

13
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be removed from the retrieval. Uncertainty arising from these error effects
is characterised in the retrieval as a function of TCWYV consistent with the
coefficient banding. Panels in the left and right in Figure 2 show the SST
retrieval error fields for different days, which vary in time as well as space on
synoptic scales.

Within the retrieval scheme, uncertainties are calculated as the standard
deviation of the error distributions from the simulated data, taking the dif-
ferences between the ‘true’ and retrieved SSTs. This is the fitting error of
the regression when the coefficients are applied to the simulated data used
to generate the coefficients. Figure 3 shows the uncertainties as a function of
TCWYV for retrievals using different channel combinations at different view-
ing geometries. For the N2 retrieval using two channels (11 and 12 pm) the
uncertainties increase as a function of TCWV, flattening at higher TCWV’s
above 45 kg m™2. With the addition of information from multiple viewing
angles (0-22° and 52-55°) locally systematic uncertainties are significantly
reduced to ~ 0.1 K or lower.

Figure 3 also shows the uncertainty from uncorrelated effects as a func-
tion of TCWV for different channel combinations. Comparing single-view
retrieval uncertainties with dual-view uncertainties, the dual-view capability
reduces the systematic uncertainty at the expense of the increased retrieval
noise. Uncertainties from uncorrelated effects are dependent on both the
NEdT for a given channel combination and the coefficients. For the N2 and
D2 retrievals large weights are assigned to the 11 and 12 pgm channels which
magnifies the uncorrelated uncertainty. ARC coefficients are tuned to assume

NEdTs of 0.01 K (smaller than actual values) as they are designed to produce

14
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SST products at 0.1° resolution. This has the effect of reducing locally sys-
tematic uncertainties at the cost of increased uncorrelated uncertainties as
these decrease as a function of 1/y/n when calculating the gridded product.

Many SST retrievals also use information from the 3.7 pm channel at
night. The consequence of adding this third channel to the retrieval (results
not shown) reduces uncertainty from locally systematic effects to ~ 0.1 K or
lower, with larger uncertainties for drier atmospheres. As TCWYV increases,
the 11 and 12 pm channels become less sensitive to the surface whilst the 3.7
pm channel remains relatively transparent. SSTs in regions of high TCWV,
close to the equator also show less variability which may improve the fit of
the retrieval to the training data. For the uncertainties due to uncorrelated
effects, including the 3.7 ym channel in the retrieval results in smaller weights

for the 11 and 12 pm channels reducing the noise amplification.

3.3. Large Scale Systematic Effects

Other effects can cause SST errors that are correlated on larger scales.
For brevity, the uncertainty associated with unknown errors correlated on
large scales is hereafter referred to as “systematic uncertainty”. (It is taken
for granted that any ‘known’ or ‘estimated’ systematic errors have been ad-
dressed i.e., that any general bias has been quantified and subtracted from
data. The systematic uncertainty therefore quantifies the degree of doubt in
the measurements associated with what might be termed ‘residual biases’.)

All satellite sensors are calibrated prior to launch to a pre-defined stan-
dard. The required accuracy for SST measurements from space for climate
applications is 0.1 K (Ohring et al, 2005). In some cases the SST algorithm

itself is capable of adjusting for some of the systematic errors in calibra-
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tion, for example an SST retrieval algorithm that fits regression coefficients
to buoys directly will correct for some of the calibration biases as part of
the fitting process. This process will also introduce an additional source of
uncertainty from unknown errors in the buoy measurement. The buoy data
are point measurements at depth whereas the satellite observations are area
measurements of skin temperature. If the sensor is poorly characterised this
additional uncertainty term can be smaller than the systematic calibration
bias. Thermal channels on some sensors seem in practice to have a BT cal-
ibration accuracy of 0.1 K, judging by the SST accuracy achievable using
radiative transfer-based coefficients.

The sensor having been calibrated to a certain level, there remain smaller
errors, within the specified calibration accuracy, that are unknown. These
may vary systematically with scene temperature, general instrument temper-
ature, the thermal state of the on-board calibration target, the temperature
of the detectors, the illumination of the sensor on the space-craft by the Sun,
and potentially with many other factors. Sometimes, these effects are suffi-
ciently evident in flight that they can be diagnosed and corrected for (Cao
et al., 2005; Yu et al., 2012; Wang and Cao, 2008; Mittaz and Harris, 2011;
Mittaz et al., 2013). There may be a gradual evolution of such systematic
calibration effects over time, as the sensor ages, and/or as the platform orbit
drifts, changing the illumination and thermal cycling of the sensor.

Where satellite datasets are reprocessed, there may be some effort to
harmonise the BTs across different sensors. “To harmonise” here means to
reconcile the calibration of the observed BTs given the known differences

between the sensors; it does not mean that the BTs would be the same for

16



323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

two sensors viewing the same scene; it does mean that the differences would
be traceable to known instrumental differences, such as different spectral re-
sponse functions. The adjustments made to BTs in the light of harmonisation
have their own associated uncertainty, and this also is likely to be system-
atic as defined here. Overall, harmonisation is intended to reduce systematic
effects, particularly relative errors between sensors.

It is possible in principle to estimate the systematic uncertainty associated
with calibration. There are two possible approaches. The first is to exploit
the pre-flight calibration information where an analysis of the potential cal-
ibration errors has been made. Where such information is available in suffi-
cient detail in the public domain, it can form the basis of an uncertainty bud-
get. The second is to exploit near-coincident observations in space between
different sensors. Having accounted for instrumental characteristics, differ-
ences in matched observations can be used to adjust a less-well-calibrated
sensor to a better-calibrated sensor. These adjustments have a quantifiable
statistical uncertainty, which then provides an estimate of the magnitude of
the post-correction systematic uncertainty eg. (Goldberg, 2007).

In general, however, calibration uncertainty is not well quantified and
propagation of such information into the systematic uncertainty in SST has
not been undertaken, to our knowledge. Arguably, for SSTs generated opera-
tionally for use in numerical weather prediction and real-time oceanography,
it has not been necessary. However, in the context of developing repro-
cessed SST datasets for climate applications, it is an area that needs to be
developed. Climate data records require justified uncertainty estimates, par-

ticularly estimates of their multi-decadal stability, which implies a detailed
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engagement with understanding and propagating uncertainty from system-
atic effects throughout the record (Minnett and Corlett, 2012). A metrology
(science of measurement) of Earth Observation needs to be developed, to
bring relevant metrological principles for developing traceable chains of un-

certainty to bear in the context of historic satellite missions.

3.4. Sampling Uncertainties

Many users of SST data require gridded products with SST specified as a
mean value across the space and time represented by the grid cell. Often grid
cells are not fully observed, typically in infrared measurements due to cloud
cover, but also in the case of corrupted data or problems with the retrieval
process. Data may also be removed from the subsample by conservative cloud
detection schemes which can mask clear-sky pixels. The mean SST across
the observed pixels may differ from the mean SST across all pixels in the
grid cell introducing sampling uncertainty.

We cannot explicitly calculate the difference between the SST across the
full grid cell and the SST in the available subsample within the retrieval as
we do not know the SST of the unsampled pixels. We can however model the
sampling uncertainty associated with this process using fully clear-sky data
extracts, and we do this as a function of the percentage of the total number
of pixels available in the subsample and the standard deviation of the SST
in the available pixels.

The full details of the derivation of the sampling uncertainty model are
provided in the companion paper (Bulgin et al., 2016). Here we provide only
a brief overview, for completeness of the discussions in this paper. In Bulgin

et al. (2016) we parameterise sampling uncertainty using a cubic function in

18



373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

the form (ap® + bp? + cp + d) where a, b, ¢ and d are coefficients dependent
on the SST standard deviation in the subsample, and p is the percentage of
clear-sky pixels within a given grid cell. This model is therefore applicable
to any retrieval scheme with data at the same spatial scale provided that the

noise contribution to the SST standard deviation has been subtracted.

3.5. Other effects contributing to uncertainty

The propagation of the effects of radiometric noise and the analysis of
locally systematic uncertainty discussed has assumed the context of normal
clear-sky conditions for each SST retrieval. This neglects the fraction of
retrievals that will in practice be made under unusual conditions. These are
principally retrievals made for pixels whose classification as clear-sky-over-
seawater is doubtful, but which have nonetheless passed the cloud screening
process. At present, we have no method for estimating this in the uncertainty
budget.

The first case to consider is ‘residual’ unscreened cloud contamination.
Clouds escape detection if they are sufficiently small and low (warm) or suffi-
ciently optically thin (e.g., some cirrus). In these cases they can nonetheless
affect BTs at the level of several tenths of kelvin. The corresponding im-
pact on SST depends on how different the cloud impacts on BTs are from
the impact of increased water vapour in the atmosphere (which the retrieval
algorithms are adapted to deal with). The probability of such cases is con-
sidered to be greater around the edges of areas correctly identified as cloudy.
Note that both the distribution of BT modification by cloud-contamination
in pixels falsely considered to be clear sky, as well as the frequency of failure

to detect are dependent on the cloud screening system. One could envisage
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that simulation of a representative range of cloudy situations be carried out
to generate such information, but to our knowledge, this has not been done.
Given these pieces of information, assessment of the contribution to SST un-
certainty could be undertaken by error propagation methods similar to those
described earlier. At present, however, the contribution of this effect to SST
uncertainty is not estimated.

The second case to consider is atmospheric aerosol of a form and optical
depth outside the range of circumstances for which the retrieval coefficients
are designed. Again, to the degree that the aerosol affects the BTs differently
to water vapour [e.g., Merchant et al. (2006)], SST errors may be induced
of unknown size. While aerosol events trigger cloud detection if the optical
depths are sufficiently great, there is a regime where SST retrievals can be
affected, the effect in most cases being to make the retrieved SST too cold.
Again, the contribution of this effect to SST uncertainty is not estimated.

The third case relates to sea ice being present within the pixel for which
SST is retrieved. If the ice is not too cold and is relatively dark (circumstances
that often go together in the formation of new ice), the ice may not be
detected. Similar considerations apply as to missed residual cloud or aerosol,
and this contribution to uncertainty again is not presently estimated.

There are a number of further effects contributing to SST uncertainty that
are neglected in the SST CCI uncertainty model. These include differences
in the instantaneous field of view for channels of different wavelength, and

local to regional variations in trace gas concentrations.
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4. Validation of the Uncertainty Budget

Having constructed an initial uncertainty budget for remotely sensed
SSTs independently of in-situ data, we can now use these in-situ data to
validate our uncertainties (as well as the retrieved SST). In Section 3, we
characterised two quantifiable components of uncertainty relating to SSTs
calculated from satellite data at a pixel level (a random component due to
noise in the data and a locally systematic component arising from uncertain-
ties varying on a synoptic scale within the retrieval) from which we construct
our initial uncertainty budget. We validate this budget using data from the
AATSR instrument spanning four years (2006 - 2009 inclusive) considering
both the N2 and D2 retrievals. The data used in the validation are taken
from the SST CCI multi-sensor match-up system (MMS) (Corlett et al.,
2014) where drifting buoy and satellite observations are matched globally
under clear-sky conditions (Corlett et al., 2014).

Matches are filtered to include only the closest in-situ match in time to
the satellite observation and to check the quality of the in-situ data. Matches
can have a maximum time difference of 4 hours and maximum spatial sepa-
ration of 10 km. Bad quality in-situ data are removed based on the following
criteria 1) absolute difference between NWP and in-situ SST greater than
10 K, 2) standard deviation of the in-situ SST history greater than 5 K and
3) standard deviation of the in-situ latitude history greater than 10 degrees.
Validation of satellite data using in-situ data necessitates a comparison be-
tween a point measurement and the satellite footprint. There are uncertain-
ties in this process arising from comparing two different types of observation

and geolocation errors in both the satellite and in-situ data. The filtering is
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therefore necessary to minimise both spatial and temporal separation of the
satellite and in-situ observations (Minnett, 1986; Donlon et al., 2002; Corlett
et al., 2006).

For each match up, the uncertainties in the retrieved SST are calculated
as follows. The noise in a given observation is a function of both the channels
and associated brightness temperature, and is calculated by monitoring in-
orbit blackbody temperature signals (Smith et al., 2012). For AATSR, the
NEAT is fairly consitent throughout the lifetime of the mission. These NEdT
values are are used to calculate the uncertainty due to uncorrelated effects
at L2 using the methodology presented in Section 3. The uncertainty from
locally systematic effects is quantified as a function of the TCWV consistent
with the banding of the retrieval coefficients. In both cases the uncertainties
are then propagated into the gridded product for validation of data in L3
format. For the gridded products, a sampling uncertainty is also calculated
due to the presence of cloud preventing observation of all pixels within a
given grid cell (Bulgin et al., 2016). This is an additonal uncertainty due
to uncorrelated effects that is introduced in the gridding process. At both
the per pixel and gridded scales the uncertainty components are added in
quadrature to give a total uncertainty.

The validation data for the N2 and D2 pixel level retrievals are shown
in the top two panels of Figure 4. Here we plot the standard deviation of
the SST difference (retrieval minus drifting buoy) against the SST retrieval
uncertainty which we have calculated independently represented by the thin
black lines in Figure 4. The dashed lines indicate the uncertainty model we

would expect to see based on retrieved SST minus drifting buoy differences.
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There is a lower limit on this model of +/— 0.15 K which represents the
uncertainty in the drifiting buoy measurements. We chose the time period
of 2006-2009 inclusive for our validation as the drifting buoy uncertainty
has been stable at around 0.15 K over this period (Lean and Saunders |,
2012). The blue line on the plots indicate the median difference between the
retrieved and in-situ SST across all match-ups in each uncertainty bin (width
0.02 K). The standard error in this value is represented by the error bars.
Red lines at the end of the black bars indicate the statistical uncertainty in
the calculated standard deviation and are visible primarily for bins where
the number of contributing cases is small.

For the N2 pixel level data we find that our uncertainty estimates closely
match the expected uncertainty model below a total uncertainty of 0.25 K.
Above this threshold, our estimated retrieval uncertainties are too high: a
better fit would be obtained if the bins shifted to lower estimated uncertainty
values. For the D2 retrieval, we see that our uncertainties calculated within
the retrieval process show excellent agreement with the expected uncertainty
model. At a per-pixel level the dominant terms in the uncertainty budget
come from the uncorrelated and locally systematic effects, assuming that a
good cloud detection algorithm is used. Therefore the validation indicates
that our estimate of these components is well constrained.

We also consider the validation of uncertainties for gridded N2 and D2
retrievals across a 5x5 pixel domain approximately corresponding to 0.05°.
In this case we also include the sampling uncertainty component in our initial
uncertainty budget (Bulgin et al., 2016). The results for this validation are
shown in the bottom two panels of Figure 4. When considering gridded
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data we find a larger range of estimated uncertainty than for the per pixel
data. This is because SST varies across the gridded domain, and for cells
that are not well sampled, the uncertainty on the mean SST increases. For
the N2 gridded data we see a similar pattern to the N2 per pixel data with
uncertainties being slightly overestimated. For the D2 gridded retrieval the

overall uncertainties are smaller, but we underestimate the total uncertainty.

5. Discussion

Overall, we see that our independent uncertainty estimates show good
agreement with validation data using in-situ drifting buoy measurements.
The best agreement is for the D2 retrieval at a per-pixel level. For the N2
retrievals we see a similar over-estimation of uncertainties above 0.2-0.25
K in both the pixel level and gridded products. The uncertainty budget
constructed is based on the errors that we currently have the capability to
estimate and propagate through the retrieval. Some of the sources of error
discussed in the earlier sections such as residual unscreened cloud contam-
ination, failure to detect clear-sky pixels and aerosol are not yet included.
These may be larger across a gridded domain if they affect multiple pixels.

In this validation, the estimation of large scale systematic uncertainties
has also been excluded, but in the SST CCI Version 1 products this is set
to an invariant value of 0.1 K per pixel as a best estimate of the magnitude
of this component, and then added in quadrature to the uncertainty budget
(Merchant et al., 2014).

Although at present the uncertainty budget can not be fully constrained

due to the limitations described in the Section 3, we are able to characterise
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well the components resulting from random, locally systematic and sampling
effects across a range of retrievals for the ATSR instruments as evidenced
by the good validation statistics. On the relatively short spatial and tem-
poral scales (pixel to gridded averages at 0.1° and instantaneous measure-
ments) the uncertainties from uncorrelated and locall systematic effects are
the dominant terms in the uncertainty budget. The contributions from the
‘missing’ components are therefore relatively small under these SST retrieval
conditions. Empirical systematic effects (biases) are within the estimated un-
certainties and these uncertainties can sucessfully distinguish more and less
certain SSTs. The approach outlined in this paper has a wider application to
coefficient based SST retrievals using other algorithms and data from other
instruments. If the data provider or user knows the NEdT distribution for
each channel used in the retrieval they can propagate this through the algo-
rithm to obtain the uncertainty due to uncorrelated effects in the retrieved
SST. Data providers can use simulation studies to characterise the locally
systematic uncertainty in their retrieval scheme, and the sampling model is
applicable to any SST retrieval on the same spatial scales as discussed in
this paper provided that the uncertainty due to noise is removed first. Provi-
sion of uncertainty information as part of the retrieval process then enables
validation of these uncertainty estimates, as well as the SST, using in-situ
data.

Figure 5 maps mean uncertainty estimates for 2010. The uncertainty
maps show the square root of the mean of the error variance across all days
with observations. Where more than one observation is available for a given

day, the smallest error variance has been used. The uncertainty from uncorre-
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lated effects (a) contains the noise and sampling uncertainty components and
when added to the uncertainty due to lcally systematic effects (b) in quadra-
ture, produces the total uncertainty map (c). Total uncertainties typically
range between 0.1-0.25 K globally, with the highest values predominantly in
equatorial regions and some northern hemisphere high latitudes. The uncer-
tainty due to uncorrelated effects is the larger contributor to this signal, and
in these regions scattered or patchy cloud cover increases sampling uncer-
tainties. Figure 5 (d) also shows the ratio of the retrieved SST variability to
the uncertainty, calculated by dividing the standard deviation of the SST in
an given location over the whole of 2010 by the total uncertainty. The high-
est ratios are seen in mid-latitude regions where SSTs show greater seasonal

variation.

6. Conclusions

In this paper we present a framework for the provision of uncertainty
estimates in coefficient based SST retrieval from satellite data, based on
propagation of noise, simulation of noise-free retrieval errors, and empirical
characterisation of sampling effects. The uncertainty estimates can be val-
idated in their own right, in addition to validating the retrieved SST. We
provide a detailed discussion of different sources of uncertainty in the SST
retrieval and how to propagate these through the retrieval process. We derive
three uncertainty components here and in the companion paper; uncertain-
ties due to uncorrelated, locally systematic and sampling effects. We apply
our derivation to AATSR data within the context of the SST CCI project

and find that our uncertainties validate well against in-situ data for both per
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pixel and gridded products, and for two different retrieval algorithms.
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Figure 1: Uncorrelated random errors and uncertainties in brightness temperature obser-
vations and SST retrieval. Panels a) and b) show simulated errors in the 11 and 12 pm
channels. Panels ¢) and d) show these errq@g propagated into SST retrievals for N2 and
D2 retrievals. Panels e) and f) show the mean error at a 5x5 pixel resolution with a cloud
mask superimposed on the data. Panels g) and h) show the associated uncertainty fields

at a 5x5 pixel resolution.
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Figure 2: AATSR retrieval errors for two different days from simulation studies (left and
right). Plots show the difference between the ‘true’ and retrieved SST field. Plots in the
upper panels show pressure contours hPa, and plots in the lower panels TCWV contours

kg m~2.
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Figure 3: Uncertainties from a) locally systematic and b) uncorrelated effects as a function

of total column water vapour for different channel combinations.
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Figure 4: SST uncertainty validation against drifting buoy in-situ data. Top panels show

pixel level uncertainties for N2 and D2 retrievals. Bottom panels show grid cell uncer-

tainties (5x5 pixels approximately corresponding to a resolution of 0.05°) for N2 and D2

retrievals. Dashed lines show ideal uncertainty model accounting for uncertainties in the

buoy data and geophysical uncertainties arising from a skin to depth comparison and colo-

cation. Solid black lines show one standar§9deviation of the retrieved minus buoy SST

differences, and blue lines the median satellite minus buoy SST difference. Error bars

show the standard error in these differences. Uncertainties in the retrieval uncertainty are

indicated by red bars at the base and top of the solid black lines.
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Figure 5: Annual means in SST retrieval uncertainties calculated from AATSR L3C data
in 2010. Mean uncertainties are derived by adding all uncertainty observations in a given
cell in quadrature, dividing by the number of observations and taking the square root. a)
Shows uncertainty due to uncorrelated effects (noise and sampling uncertainty), b) shows
noise due to locally systematic effects and c) total uncertainty. d) Shows the ratio of the

SST standard deviation over 2010 to the total uncertainty.
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