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4-1 Abstract 

New models for estimating bioaccumulation of persistent organic pollutants in the agricultural food chain 

were developed using recent improvements to plant uptake and cattle transfer models. One model named 

AgriSim was based on KOW-regressions of bioaccumulation in plants and cattle, while the other was a 

steady-state mechanistic model, AgriCom. The two developed models and EUSES, as a benchmark, were 

applied to four reported food chain (soil/air-grass-cow-milk) scenarios to evaluate the performance of each 

model simulation against the observed data. The four scenarios considered were: (1) polluted soil and air, 

(2) polluted soil, (3) highly polluted soil surface and polluted sub-surface, (4) polluted soil and air at 

different mountain elevations. AgriCom reproduced observed milk bioaccumulation well for all four 

scenarios, as did AgriSim for Scenarios 1 and 2, but EUSES only did this for Scenario 1. The main causes 

of the deviation for EUSES and AgriSim were the lack of the soil-air-plant pathway and the ambient air-

plant pathway respectively. Based on the results, it is recommended that soil-air-plant and ambient air-

plant pathway should be calculated separately and the KOW regression of transfer factor to milk used in 

EUSES be avoided. AgriCom satisfied the recommendations that led to the low residual errors between the 

simulated and the observed bioaccumulation in agricultural food chain for the four scenarios considered. It 

is therefore recommended that this model should be incorporated into regulatory exposure assessment 

tools. The model uncertainty of the three models should be noted since the simulated concentration in milk 

from 5
th

 to 95
th

 percentile of the uncertainty analysis often varied over two orders of magnitude. Using a 

measured value of soil organic carbon content was effective to reduce this uncertainty by one order of 

magnitude.  

4-2 Introduction 

The bioaccumulation of persistent organic pollutants in agricultural food chains is a process in which 

pollutants are transferred from contaminated sources, such as ambient air and soil to agricultural products, 

such as crops and beef and dairy products, and then to humans.  Modelling and simulation techniques for 

processes such as plant uptake and cattle transfer have been developed (Travis and Arms 1988; Trapp and 

Matthies 1995) and these models have been incorporated into regulatory exposure assessment tools (Arnot 

and Mackay 2008; Lijzen and Rikken 2004; Mckone 1993).  



The European Union System for the Evaluation of Substances (EUSES) is one of the regulatory 

assessment tools, based on the European Commission Technical Guidance Documents on Risk Assessment 

(TGD) (Lijzen and Rikken 2004; European Commission, 2003). EUSES has an agricultural food chain 

component, which is composed of the uptake of pollutants into root and leafy crops, and grass derived 

from Trapp and Matthies (1995) model, and their subsequent transfer into cow’s milk and beef derived 

from Travis and Arms (1988) model. While EUSES is routinely used by regulatory authorities in the EU 

and elsewhere (ECHA 2011; VKM 2009; Elert, 2008), the accuracy of this model to predict contamination 

of the agricultural food chain has been questioned. For example, the root model, the empirical equation of 

transpiration stream concentration factor and of cattle biotransfer in EUSES have shown significant 

deviations from newly derived observed data (Undeman and McLachlan 2011; McKone and Ryan 1989; 

Birak et al. 2001). 

Recently, the performance of plant uptake and cattle transfer models which form significant parts of 

these exposure assessment tools were evaluated (Takaki et al. 2014; Takaki et al. 2015). When agricultural 

soil was contaminated, the model simulations of both plant uptake and cattle transfer in EUSES did not 

reproduce the observed uptake and transfers. The main causes of the poor simulations were the wrong 

selection of a parameter value, i.e., root lipid to octanol correction exponent, the omission of the soil-air-

plant pathway, and the low accuracy of KOW-regressions for cattle transfer of pollutants. However, some 

improvements in each model were able to be demonstrated through: the careful selection of the 

transpiration and volatilisation parameters in the plant uptake model in reference to the original document 

(Trapp and Matthies 1995; Jury et al. 1983), and the use of Quantitative Structure-Activity Relationship 

(QSAR) biodegradation models for estimating the metabolic rate of cattle (Takaki et al. 2014; Takaki et al. 

2015).  

The aim of this study was to integrate the previously improved plant uptake and cattle transfer models to 

build an integrated model for simulating agricultural food chain bioaccumulation of organic pollutants for 

the purpose of regulatory exposure assessments. The integrated model performance was evaluated with 

four different scenarios from the reported experimental observation which considered a food chain, 

soil/air-grass-cow-milk. The performance of EUSES, the widely used existing tool, was also assessed as a 

benchmark with which to compare the performance of the integrated model.  



4-3 METHODS 

Two models for simulating agricultural food chain bioaccumulation of persistent organic pollutants were 

developed: a simple model, AgriSim and a complex model, AgriCom. The agricultural food chain 

component of EUSES was also used. The structures of each model are shown in Figure 4-1 and the model 

equations are described in APPENDIX V. To provide real-world data for comparative purposes, four 

different examples dealing the contamination of milk with persistent organic pollutants from contaminated 

soil and air were chosen from the literature (McLachlan 1996; Mamontova et al. 2007; Batterman et al. 

2009; Shunthirasingham et al. 2013).  

 

Figure 4-1 The overall structures of agricultural food chain bioaccumulation models developed and tested in 

this study (AgriCom and AgriSim) and EUSES, which is tested and compared in this study. Double headed 

arrows mean that equilibrium is assumed. 

 

4-3-1 Model Descriptions. 

Root uptake 

The root uptake models of AgriSim and EUSES were derived from the Trapp and Matthies (1995) 

model, which simulates the root-pore water equilibrium. AgriCom used dynamic steady-state root uptake 

model by Trapp (2002) because the theoretical weakness of the equilibrium assumption was previously 

highlighted ( Trapp and Schwartz 2000; Takaki et al. 2014). EUSES was demonstrated to have an 

inappropriate default parameter value for the octanol-root lipids correction factor, leading to poor 

estimation of root uptake (Takaki et al. 2014). AgriSim uses the default parameter values of CSOIL model 

(Brand et al. 2007), which demonstrated the best performance of all the five root uptake models during 
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testing (Takaki et al. 2014). AgriCom included the parameter of growth dilution into the Trapp and 

Matthies (1995) model for the theoretical reinforcement. The value of growth dilution was optimised to 

minimise the residual errors between the modelled and the observed root uptake (see APPENDIX V).    

Shoot uptake 

AgriSim simulated the shoot uptake based on an empirical equation of the stem concentration factor 

proposed by Ryan et al. (1988) and incorporated in the CLEA model(Jeffries and Martin 2009). However, 

the maximum value of transpiration stream concentration factor by Briggs et al. (1982) and Hsu et al. 

(1990) was adopted  to improve the model performance(Takaki et al. 2014). AgriCom and EUSES 

incorporated the Trapp and Matthies (1995) model which consists of two pathways: soil-root-shoot and air-

shoot. AgriCom incorporates another three pathways: soil-air-shoot, soil particle-shoot, and aerosol-shoot. 

The soil-air-shoot and soil particle-shoot pathways of AgriCom were based on the representation used in 

the CSOIL model(Brand et al. 2007) and parameterised using the method of Takaki et al. (2014). The 

aerosol-shoot pathway was also added(Legind and Trapp 2009) because of its importance for chemicals 

with logKOA > 11, e.g., Heavily chlorinated PCDD/Fs (McLachlan 1999).  

Cattle transfer  

EUSES uses the KOW-regression equation developed by Travis and Arms (1988) for estimating cattle 

transfer to milk and beef. However, the transfer is more significantly affected by the metabolism of 

individual chemicals in cattle rather than their hydrophobicity particularly in the KOW range of 10
3
-10

6
 

(Staple et al. 1997; Hendriks et al. 2007). The metabolic rate in cattle was found to be predicted well by the 

combination of QSAR biodegradation models of microorganisms (BioWIN (Boethling et al. 1994)), and 

fish (EPI-HL (Arnot et al. 2009), and IFS-HL (Brown et al. 2012)), that is, the biodegradation by 

microorganisms mimics the metabolic process in cattle gut, and the biodegradation by fish mimics 

metabolism after the absorption, which mainly occurs in the liver (Takaki et al. 2015). For estimating the 

cattle transfer to milk and beef, AgriSim incorporated the regression models between the biotransfer factor 

and the metabolic rate predicted by the QSARs and AgriCom adopted a mechanistic model based on 

CKow model (Rosenbaum et al. 2009) and the metabolic rate predicted by the QSARs, both of which 

showed the highest performance in the model comparison(Takaki et al. 2015).  



The Procedural Models  

AgriSim and AgriCom, were coded in Excel
©
. As for EUSES, the equations used in this study were coded 

into a new spread sheet. The chemical properties considered, such as KOW, KOC, and the Henry’s law 

constant were taken from EPI Suite
TM 

 (US EPA 2012) except the KOW values of PCBs, and PCDD/Fs, 

which were derived from specific studies by Schenker et al. (2005), and Chen et al. (2001) respectively. 

The concentration in milk of each pollutant derived from cattle raised on contaminated soil and 

surrounding air was then calculated and compared with experimental results from the literature. In 

addition, the contribution of each pathway for the contamination in milk (%) was calculated. An overview 

of the models and data requirements is provided in Table 4-1, and the model equations are described in 

APPENDIX V. 



TABLE 4-1. Summary of data requirements and descriptions of Models Used in This Study. 

Models AgriCom AgriSim EUSES (EC-TGD) 
Chemical properties 
needed 

KOW, H, MW, VP_L,  KOC, 

BioWIN4 score, EPI-HL, IFS-

HL 

KOW, H, KOC, BioWIN4 score, 

EPI-HL, IFS-HL 

KOW, H, S, VP_L,  KOC 

Minimum requirement 
for the simulation 

Chemical structure (SMILES) 

Concentration in soil or air 

Chemical structure (SMILES) 

Concentration in soil or air 

Chemical structure (SMILES) 

Concentration in soil or air 
External tools needed EPI-Suite

TM
, IFS-HL EPI-Suite

TM
, IFS-HL EPI-Suite

TM
 

Plant uptake pathways 
considered 

Soil-Root 

Soil-Xylem-Shoot 

Soil-Air-(Aerosol)-Shoot 

Air-(Aerosol)-Shoot 

Soil particle-Shoot 

Soil-Root 

Soil-Xylem-Shoot 

Soil-Root 
Soil-Xylem-Shoot 
Air-Shoot 

 

Type and 
time scales 

Root 
uptake 

mechanistic / empirical 
steady state 

empirical 
equilibrium 

empirical 
equilibrium 

Shoot 
uptake 

mechanistic / empirical 
steady state 

empirical 
equilibrium 

mechanistic / empirical 
steady state 

Cattle 
transfer 

mechanistic / empirical 
steady state 

empirical (regression) empirical (regression) 

References (Trapp, 2002; Trapp & Matthies, 
1995; Takaki et al., 2014; 
Rosenbaum et al., 2009; Takaki et 
al., 2015) 

(Brand et al., 2007; Ryan et al., 
1988; Jeffries & Martin, 2009; 
Takaki et al., 2014; Takaki et al., 
2015) 

(Trapp & Matthies, 1995; Lijzen & 
Rikken, 2004; Travis & Arms, 
1988) 

KOW: octanol-water partition coefficient, H: Henry law constant, MW: molecular weight, VP_L: vapour pressure 

for pure product, KOC: organic carbon-water partition coefficient, BioWIN4 score: the output of BioWIN4 

model, EPI-HL and IFS-HL: half life as the output of EPI-HL and IFS-HL model respectively.   



 

4-3-2 Experimental Descriptions and Coverage of the Four Data Scenarios. 

Contamination with hydrophobic pollutants from polluted soil and air  

This study uses a field-based data set for chemical concentrations in air, aerosol, soil, grass, corn, and 

cow’s milk in southern Germany that was collected from six sources by McLachlan (1996) and includes: 

McLachlan et al.(1992); McLachlan unpublished work; McLachlan (1992); McLachlan et al. (1994); 

Welsch-Pausch et al. (1995); Lassek et al. (1993). The targeted compounds were hydrophobic pollutants 

such as HCB, PCBs, and PCDD/Fs. Although the data for each media was not collected from the same 

place at the same time and the data contained an unpublished work unlike the other three scenarios, the 

concentration of three contamination sources, soil, air, aerosol, were available. The fugacity analysis 

indicated that the soil and the air were close to equilibrium for the pollutants (McLachlan 1996). All the 

three contaminated sources were used for input into AgriCom, the concentration in soil and air into 

EUSES, and the concentration in soil into AgriSim. 

Contamination with PCBs from polluted soil  

Mamontova et al. (2007) sampled and analysed pasture soil, spring milk and autumn milk from 15 farms 

in Irkutsk, Russia and obtained PCBs concentration data of each. Though the concentration in air was not 

measured, they claimed that the effect of the background air concentration was negligible because of the 

low regional background air concentration and a strong disequilibrium between PCBs levels in air and soil 

(Mamontova et al. 2007), unlike the McLachlan (1996) study. Therefore the concentration in pasture soil 

was used as the contamination source into the three models. 

Contamination with PCBs from polluted air, surface and shallow soil 

Batterman et al. (2009) sampled and analysed air, surface soil (0-0.5 cm depth), sub-surface soil (1-2 cm 

depth), and milk in industrialized and urban areas of KwaZulu-Natal, South Africa and obtained PCBs 

concentration data of each. The unique aspect of this study was that the concentration in surface soil and 

sub-surface soil was separately monitored. The surface PCB concentration was about 5 times higher than 

the sub-surface concentration. This difference was explained by the variability of organic carbon and the 

possibility of the difference of the atmospheric deposition over space and through time(Batterman et al. 



2009). The concentration measured in the surface soil was used for the soil-air-shoot and soil particle-

shoot pathway in AgriCom. The averaged concentration in between surface and sub-surface soil was for 

the soil-cow pathway, and the concentration in subsurface soil was used for the root uptake and the soil-

root-shoot pathway in the three models. 

Contamination with POPs from polluted air and soil at different altitudes of a mountain 

range  

Shunthirasingham et al.(2013) sampled and analysed air, soil and milk at three different altitudes (500 

m, 1310 m, and 2052 m) in the Swiss Alps for obtaining POPs concentration data of each. The samples 

were taken in the August-September period when grazing occurs at the different altitudes. To reproduce the 

different behaviour of POPs depending on altitude, the vapour pressure of the POPs at each altitude was 

simulated separately by EPI-Suite with the mean temperature in the August-September period of each 

altitude. The low pasture was located in Zurich, and thus the temperature of 16°C in August-September 

was adopted from MeteoSwiss (2014) to estimate the vapour pressure of the POPs there. The temperatures 

of the middle pasture and the high pasture were then estimated using the mean temperature lapse rate of 

6.25°C/km in August-September derived from a study in Alps(Rolland 2003). These simulated vapour 

pressures and the concentration in air at each altitude were incorporated into AgriCom and EUSES. The 

concentration in soil and the measured soil organic carbon content at each altitude were entered into the 

three models.  

4-3-3 Uncertainty and Sensitivity Analysis 

The uncertainty of the modelled outcomes caused by the variability of environmental properties and the 

parameter sensitivity was determined by using the Monte Carlo spread sheet add-in, Crystal Ball (Oracle, 

CA)(Decisioneering 2006). The procedure of the analysis was described in detail in Takaki et al. (2014). 

The environmental parameter set for these assumptions and their CV (coefficient of variability) values are 

given in Table 4-2. 

TABLE 4-2. Assumption Parameters and the Coefficient Variation (CV) for the Uncertainty 

Analysis 

Assumption parameters CV(%) Reference 

Soil parameters   



  Soil organic carbon 200 (Luo & Yang, 2007) 

  Bulk soil density 15 (Mckone & Enoch, 2002) 

  Soil particle density 5 (Mckone & Enoch, 2002) 

  Air content of soil 30 (Mckone & Enoch, 2002) 

  Water content of soil 30 (Mckone & Enoch, 2002) 

Plant parameters   

  Root density 5 (Mckone & Enoch, 2002) 

  Shoot density 30 (Mckone & Enoch, 2002)  

  Water content of plant 15 (Rikken et al., 2001) 

  Lipid content of plant 50 (Rikken et al., 2001) 

  Transpiration stream flow rate 100 (Luo & Yang, 2007) 

  Growth rate constant 100 (Luo & Yang, 2007) 

  Correction coefficient for root and shoot 1 (Trapp & Matthies, 1995) 

  Shoot volume 40 (Mckone & Enoch, 2002) 

  Leaf surface area  40 (Mckone & Enoch, 2002) 

  g (conductance) 100 (Rikken et al., 2001) 

Parameters related to volatilisation   

  Boundary layer thickness 100 (Spencer et al., 1988) 

  Dilution velocity in air 40 (Mckone & Enoch, 2002) 

Parameters related to aerosol deposition 

  
  Surface of aerosol 100 (Bidleman, 1988) 

  Deposition velocity  100 (Rikken et al., 2001) 

Parameters related to soil-particle deposition   

  Fraction dry matter leaf 100 (Mckone & Enoch, 2002) 

Parameters related to cattle ingestion   

  Daily intake of organic matter 20 (National Research Council, 1987) 

  Fraction of soil ingestion 67 (Duarte-Davidson & Jones, 1996) 

  

4-3-4 Goodness of Fit Statistics 

Two goodness of fit tests were chosen for evaluating the accuracy of the models against the 

experimental data: the residual sum of squares (RSS) as an indication of absolute differences between 

observed and estimated values, the standard errors (Se) for normalising the differences of sample 

numbers(Hendriks et al. 2007); 

 

𝑅𝑆𝑆 =∑(𝑚𝑖 − 𝑟𝑖)
2

𝑁

𝑖=1

 (4-1)      



 

𝑆𝑒 = √∑(𝑚𝑖 − 𝑟𝑖)
2

𝑁

𝑖=1

/(𝑁 − 1) (4-2)      

where 𝑁 = sample number, 𝑚 = simulated logarithm concentration in milk, 𝑟 = observed logarithm 

concentration in milk. 

4-4 Results and Discussion 

4-4-1 Scenario of Polluted Soil and Air  

The model estimations of AgriCom, AgriSim, and EUSES compared against experimental observation 

for the concentration of hydrophobic pollutants in milk derived from polluted soil and air are shown in 

Figure 4-2a and 4-3a (McLachlan 1996). Each model reproduced the observed concentration in milk well 

but the goodness of fits test showed AgriCom was better than the others (Se = 0.58 for AgriCom, 0.75 for 

AgriSim, and 0.76 for EUSES) (Table 4-3). When focusing on the estimation of each pollutant, only 

AgriCom did not underestimate over one order of magnitude. In terms of regulatory exposure assessment, 

model operators take underestimation more seriously to avoid false-negative decisions(Collins et al. 2006). 

AgriCom therefore presented a better performance in this case. In addition, HCB in milk mainly came via 

soil-air-shoot-cow pathway in the AgriCom simulation (Figure 4-4a) because of its higher KAW and lower 

KOC than those of other pollutants (US EPA 2012). It is suggested that this is the reason EUSES, which did 

not include that pathway, underestimated the HCB contamination. Figure 4-4a also showed that soil-cow 

pathway increased the contribution with increasing the number of chlorination and hydrophobicity.
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Figure 4-2 Observed and simulated POPs concentration in milk (black diamond: estimation by AgriCom, 

white square: by AgriSim, grey triangle: by EUSES) for four different scenarios: a) polluted soil and air 

scenario by McLachlan (1996), b) polluted soil scenario by Mamontova et al. (2007), c) highly polluted soil 

surface scenario by Batterman et al. (2009), d) different elevations scenario by Shunthirasingham et al. 

(2013)  
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c) highly polluted soil surface scenario              d) different elevations scenario 

 

Figure 4-3 Observed and simulated POPs concentration in milk in Observed-Predicted chart (black diamond: 

estimation by AgriCom, white square: by AgriSim, grey triangle: by EUSES) for four different scenarios: a) 

polluted soil and air scenario by McLachlan (1996), b) polluted soil scenario by Mamontova et al. (2007), c) 

highly polluted soil surface scenario by Batterman et al. (2009), d) different elevations scenario by 

Shunthirasingham et al. (2013)  
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Figure 4-4 Contribution of each pathway from contaminated sources to cow in AgriCom for pollutants in four 

different scenarios: a) polluted soil and air scenario by McLachlan(Michael S. McLachlan, 1996), b) polluted soil 

scenario by Mamontova et al.(Mamontova et al., 2007), c) highly polluted soil surface scenario by Batterman 

et al.(Batterman et al., 2009), d) different elevations scenario by Shunthirasingham et al.(Shunthirasingham 

et al., 2013)  
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TABLE 4-3. Goodness of fits between observed and simulated logarithm POPs concentration. 

Models n Estimated versus Observed 

RSS S
e
 

a) Polluted soil and air scenario 

AgriCom 24 7.8 0.58 

AgriSim 24 13.1 0.75 

EUSES 24 13.3 0.76 

b) Polluted soil scenario 

AgriCom 21 2.4 0.35 

AgriSim 21 3.9 0.44 

EUSES 21 31.8 1.26 

b) Highly polluted soil surface scenario 

AgriCom 16 8.2 0.74 

AgriSim 16 27.4 1.35 

EUSES 16 36.5 1.56 

AgriSim* 16 17.2 1.07 

b) Different elevations scenario 

AgriCom 26 14.7 0.77 

AgriSim 26 55.5 1.49 

EUSES 26 53.6 1.46 

Goodness of fit of the models is characterized by the residual sum of squares (RSS) and the standard errors 

(Se). 

* the concentration in surface soil was used for shoot uptake 

 

 

4-4-2 Scenario of Polluted Soil 

Model estimations were compared against experimental data of PCBs concentration in autumn milk 

produced with grazing on pasture from polluted soil (Figure 4-2b, 4-3b) (Mamontova et al. 2007). 

AgriCom and AgriSim reproduced the observed PCBs contamination in milk well (Se = 0.35 for AgriCom, 

0.44 for AgriSim) but EUSES showed severe underestimation (Se = 1.26) (Table 4-3). EUSES does not 

have soil-air-shoot and soil particle-shoot pathways for shoot uptake while the main contaminated source 



was soil in this scenario. It has been suggested that the soil-air-shoot pathway is dominant for shoot uptake 

for organic compounds with higher values of KAW than 10
-4

 (Ryan et al. 1988; Duarte-Davidson and Jones 

1996; Collins and Finnegan 2010; Undeman et al. 2009). All the PCBs in this scenario have the values of 

KAW > 10
-4 

(US EPA 2012), and AgriCom also simulated soil-air-shoot-cow pathway as dominant (Figure 

4-4b). The lack of the soil-air-shoot pathway would thus lead to such an underestimation. AgriSim 

incorporated an empirical equation of plant uptake from soil to stem, namely, all the shoot uptake pathways 

including the soil-air-shoot are included in the empirical equation.  

The standard errors of AgriCom and AgriSim in this scenario were smaller than those in the first 

scenario. This scenario has simpler exposure pathways with fewer contamination sources, only one 

category of the contaminants (PCBs), and the milk and soil were sampled on the same farm unlike in the 

first scenario. 

4-4-3 Scenario of Highly Polluted Soil Surface  

Model estimations were compared against observed PCBs concentrations in milk produced through 

grazing at a site with much higher concentrations at the surface than in the sub-soil (Figure 4-2c, 4-3c). 

AgriCom reproduced the observed milk contamination well while the other two models severely 

underestimated (Se = 0.74 for AgriCom, 1.35 for AgriSim, 1.56 for EUSES, Table 4-3). Since the soil 

surface was highly polluted and the KAW of all the PCBs was higher than 10
-4

, the main pathway for shoot 

uptake was implied to be the soil-air-shoot and the AgriCom simulation supported this hypothesis (Figure 

4-4c). The lack of the pathway within the EUSES model would therefore account for the underestimation 

of the milk concentration.  The performance of AgriSim was improved when the concentration in surface 

soil was used instead of the concentration in soil below surface for shoot uptake (Se = 1.07, Table 4-3). The 

simulated air concentration from volatilisation for AgriCom was about one order of magnitude higher than 

the observed air concentration. This implied that the air concentration near the ground where the pasture 

was exposed was higher than the background air concentration because of the volatilisation from highly 

polluted surface soil. This result indicated the importance of the surface soil concentration and following 

soil-air-shoot-cow pathway. Measuring and reducing the concentration particularly in surface soil was 

revealed to be important for the understanding of the contamination risk in milk exactly and the reduction 

of it.  



4-4-4 Scenario of the Different Altitudes  

The model estimations for each altitude were compared against experimental data (Figure 4-2d, 4-3d). 

AgriCom reproduced the observed concentration in milk better than AgriSim and EUSES; RSS for 

AgriCom was just around 28% of RSS for the other two models (Table 4-3).  

At each of the three elevations, EUSES substantially underestimated for milk concentration of the three 

pollutants (α-HCH, γ-HCH, endosulfan sulfate), which were less hydrophobic than the others (logKOW < 

4). For estimating the cattle transfer EUSES incorporated a KOW-regression, which estimates positive 

correlation between KOW and the cattle transfer(Travis and Arms 1988), but the cattle transfer of an organic 

compound was reported to be correlated with the transformation rather than hydrophobicity(Hendriks et al. 

2007). The consequence of this was that EUSES failed to estimate the cattle transfer for persistent and less 

hydrophobic compounds(Hendriks et al. 2007).  

AgriSim generally underestimated the milk contamination, possibly because it lacks the air/aerosol-

shoot-cow pathway, which was the main pathway for the majority of the pollutants according to AgriCom 

simulation (Figure 4-4d). When that pathway was not major in AgriCom simulation (PCBs at low altitude, 

Figure 4-4d), AgriSim reproduced the milk contamination well.  

Adjusting vapour pressure for each altitude in AgriCom contributed to its good performance (Se : 0.77 

for the adjusted vapour pressure, 1.07 for the non-adjusted vapour pressure(at 25°C)). AgriCom 

underestimated the milk contamination by more than one order of magnitude for endosulfan sulfate at 

every altitude, PCB99 and PCB138 at high altitude, and α-HCH at middle and low altitudes. The milk 

contamination of γ-HCH was reproduced well by AgriCom. This difference between the two optical 

isomers would appear to come from the different transfer factors into milk between the two. For example, 

the observed carry-over rate of α-HCH from pasture to milk has been reported 3-6 times higher than γ-

HCH(McLachlan 1993). Introducing the observed transfer factor in milk of α-HCH improved the AgriCom 

estimation of the milk contamination (Figure 4-5).  



 

Figure 4-5 Observed and simulated concentration of α-HCH in milk in the different altitudes scenario. Two 

simulated concentration was expressed; one was estimated with using the simulated BTF of α-HCH and the 

other with using the observed BTF. 

According to the sensitivity analysis, the shoot growth rate was the most sensitive parameter for 

endosulfan sulfate, PCB99 and PCB138, whose milk contaminations were underestimated particularly at 

high altitude (Figure 4-6). When optimising the growth rate of shoot for minimising the residual errors at 

each altitude, the performance was improved further (Se: 0.77 → 0.40) and the optimised growth rates at 

the high and middle altitudes were lower than that at the low altitude (0.0006 (high), 0.0005 (middle), 

0.002 (low), day
-1

). This result seemed reasonable because the lower temperature at the higher altitude 

could inhibit the grass growth. When considering the milk contamination at different altitudes, the grass 

growth could be as much important factor as the vapour pressure.  
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Figure 4-6 The results of sensitivity analysis for estimating milk concentration by AgriCom. The sensitivity of 

each parameter is described for the approximation of the contribution to the variance (%).  
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4-4-5 Uncertainty and sensitivity  

Although AgriCom reproduced the observed concentrations of contaminants in milk for all the 

scenarios, the uncertainty analysis of the three scenarios of polluted soil and air, polluted soil, and highly 

polluted soil surface, showed high uncertainty of the model simulation; the averaged 90% confidence 

interval was up to two orders of magnitude (APPENDIX VI). The sensitivity analysis showed that the most 

sensitive parameter was soil organic carbon content for all the pollutants in the polluted soil scenario and 

highly polluted soil surface scenario, and for over 50% of the pollutants in the polluted soil and air 

scenario. Soil organic carbon content was particularly sensitive when the main contamination pathway was 

from soil via shoot in AgriCom simulation (Figure 4-6). Measuring the site specific value of soil organic 

carbon content would therefore be effective for reducing the model uncertainty and improving the 

performance. Since, in the different elevation scenario, the soil organic carbon content was measured at 

each elevation, the uncertainty was much smaller than the other scenarios, and the averaged 90% 

confidence interval was approximately one order of magnitude (APPENDIX VI). Shoot growth rate was 

the most sensitive parameter for over 60% of the pollutants in the different elevation scenario (Figure 4-6) 

and was particularly sensitive when the air/aerosol-shoot-cow pathway was dominant. The contribution of 

pathways was closely related to the identity of the sensitive parameter. 

4-5 Conclusion 

The outcomes from the four case studies showed that EUSES and AgriSim did not estimate milk 

concentration well in situations where the soil-air-shoot-cow and air/aerosol-shoot-cow pathways were 

dominant respectively due to the absence of the relevant pathway in each model. EUSES also did not 

reproduce the observed milk concentration of less hydrophobic POPs due to the limitation of the KOW 

regression model of cattle transfer. Though EUSES and the Technical Guidance Document (European 

Commission 2003) were not developed originally for an assessment of contaminated soil, these are often 

used or referred to for assessing the risk of contaminated soil by regulatory agencies(Elert 2008; VKM 

2009). These limitations in EUSES and TGD will produce inaccurate regulatory assessments. Two 

recommendations are made. The first is that the soil-air-shoot and ambient air-shoot pathway should be 

calculated separately. The second is that the KOW regression of transfer factor to milk used in EUSES be 



replaced with the cattle biotransfer models using metabolic rate predicted by QSAR biodegradation models 

as is done in the AgriCom model. AgriCom satisfies these recommendations and showed the highest 

performance for all the scenarios. However, the disadvantage of AgriCom was its complexity since a 

simpler model with fewer model parameters is often preferable in regulatory risk assessment(Trapp and 

Schwartz 2000). The appropriate model selection will depend on the contamination scenario and the 

requirement of the assessment.  

The uncertainty analysis demonstrated that the 90% confidence interval was often higher than two 

orders of magnitude, and soil organic carbon content contributed to the variance the most in AgriCom. 

Measuring a site specific value of soil organic carbon content is effective to reduce its uncertainty. This is a 

routine measure within the suite used for the evaluation of an agricultural soil.  

The model performances of almost all components of AgriCom have been checked against experimental 

data of hydrophobic organic pollutants and the observed bioconcentrations and transfers of the pollutants 

have been reproduced well: soil-root crops (Takaki et al. 2014), soil-leafy crops (Takaki et al. 2014), air-

leafy crops (C. D. Collins and Finnegan 2010), feed-cow milk (Takaki et al. 2015), feed-beef (Takaki et al. 

2015), and soil/air-grass-cow milk (this study). This model is therefore recommended for adoption into 

regulatory risk assessment tools as a part of exposure assessment of agricultural food chains. 


