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Abstract. Blanket bog occupies approximately 6 % of the

area of the UK today. The Holocene expansion of this hy-

peroceanic biome has previously been explained as a conse-

quence of Neolithic forest clearance. However, the present

distribution of blanket bog in Great Britain can be predicted

accurately with a simple model (PeatStash) based on sum-

mer temperature and moisture index thresholds, and the same

model correctly predicts the highly disjunct distribution of

blanket bog worldwide. This finding suggests that climate,

rather than land-use history, controls blanket-bog distribution

in the UK and everywhere else.

We set out to test this hypothesis for blanket bogs in

the UK using bioclimate envelope modelling compared with

a database of peat initiation age estimates. We used both

pollen-based reconstructions and climate model simulations

of climate changes between the mid-Holocene (6000 yr BP,

6 ka) and modern climate to drive PeatStash and predict areas

of blanket bog. We compiled data on the timing of blanket-

bog initiation, based on 228 age determinations at sites where

peat directly overlies mineral soil. The model predicts that

large areas of northern Britain would have had blanket bog

by 6000 yr BP, and the area suitable for peat growth extended

to the south after this time. A similar pattern is shown by

the basal peat ages and new blanket bog appeared over a

larger area during the late Holocene, the greatest expansion

being in Ireland, Wales, and southwest England, as the model

predicts. The expansion was driven by a summer cooling

of about 2 ◦C, shown by both pollen-based reconstructions

and climate models. The data show early Holocene (pre-

Neolithic) blanket-bog initiation at over half of the sites in

the core areas of Scotland and northern England.

The temporal patterns and concurrence of the bioclimate

model predictions and initiation data suggest that climate

change provides a parsimonious explanation for the early

Holocene distribution and later expansion of blanket bogs

in the UK, and it is not necessary to invoke anthropogenic

activity as a driver of this major landscape change.

1 Introduction

Blanket bog is a distinctive type of peatland confined to areas

with cool and extremely wet climates. The name derives from

the fact that the peat covers sloping ground and hilltops, as

well as basins, thus “blanketing” the landscape. Blanket bogs

are widespread in the west and north of the UK (Great Britain

and Northern Ireland) and occupy about 6 % of its land area

(Jones et al., 2003). They are locally important (under var-

ious names) in other hyperoceanic regions of the world, al-

though in total they cover only about 0.1% of the Earth’s land

surface (Gallego-Sala and Prentice, 2013).

The global distribution of blanket bogs today is confined

to cool, wet climates (Gallego-Sala and Prentice, 2013).

The initiation of blanket bog formation during the Holocene
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is regionally asynchronous, and in most regions has been

found to coincide with a shift towards cooler, wetter climates

(Zaretskia et al., 2001; Dirksen et al., 2012). However, there

has been considerable debate about the cause of Holocene

blanket-bog initiation in the UK.

There is a long-standing hypothesis, first proposed by

Moore (1973), that it was a consequence of land use by Ne-

olithic human populations, and in particular land clearing

practices at the time of the “elm decline” (often taken as

a stratigraphic marker of Neolithic land use (Parker et al.,

2002), as well as heavy stock grazing that changed the soil

hydrological balance enough to initiate the inception of blan-

ket bogs between about 6000 and 5000 yr BP (Moore, 1975,

1993; Merryfield and Moore, 1974; Robinson and Dickson,

1988; Huang, 2002). Evidence of removal of the shrub and/or

tree cover by fire at the onset of blanket bog formation,

and pollen analytical studies suggesting intensive agricul-

tural practices by Neolithic people support this hypothesis

(Merryfield and Moore, 1974; Smith and Cloutman, 1988;

Robinson and Dickson, 1988; Simmons and Innes, 1988). A

recent investigation of initiation of upland blanket bogs in

Ireland also pointed to land use as a principal cause of palud-

ification (Huang, 2002). However, a number of authors have

suggested the initiation of blanket bogs at specific locations

solely as a result of a climatic shift during the mid Holocene

“Atlantic” period in Scotland (Ellis and Tallis, 2000; Char-

man, 1992; Tipping, 2008) the Faroe Islands (Lawson et al.,

2007), and Ireland (Mitchell and Conboy, 1993; Dwyer and

Mitchell, 1997). Tipping (2008) suggested that farming com-

munities only settled in the Scottish Highlands after the land-

scape had already been covered by blanket bogs. Other au-

thors have adopted a more complex view in which both cli-

matic shifts and human activities played a role (Smith, 1970;

Keatinge and Dickson, 1979; Tallis, 1991). Soil-forming pro-

cesses, including leaching of base cations and consequent

acidification and podsolization of soils, were also proposed

to have been influential (Bennett et al., 1992; Charman, 1992;

Smith and Green, 1995), giving rise to the term “pedogenic

peats” (Simmons and Innes, 1988).

It is difficult to resolve such arguments about causality on

the basis of timing alone. Lack of coincidence could be due to

idiosyncratic local factors while synchroneity could arise by

chance or because both events result from a common under-

lying cause. Under these circumstances, process-based mod-

elling can offer a way forward. Globally, blanket bogs oc-

cur where the mean annual temperature (MAT) >−1 ◦C, the

mean temperature of the warmest month (MTWA) < 14.5 ◦C

and the ratio of mean annual precipitation to equilibrium

evapotranspiration (moisture index, MI) > 2.1 (Gallego-Sala

and Prentice, 2013). These limits ensure that the site is out-

side the permafrost zone and therefore not subject to cryotur-

bation, that summer temperatures are not too high for Sphag-

num growth, and that there is sufficient moisture throughout

the year to sustain peat growth on sloping ground. These lim-

its have been used to construct a simple bioclimatic model,

PeatStash (Gallego-Sala et al., 2010). In addition to predict-

ing accurately the present-day distribution of blanket bog in

Great Britain, PeatStash correctly predicts the highly disjunct

global distribution of blanket bogs (Gallego-Sala and Pren-

tice, 2013), including its occurrence in places such as New-

foundland and Kamchatka that have experienced very differ-

ent land-use histories from Great Britain and Ireland. This

finding strongly suggests that the present-day distribution, at

least, of blanket bogs everywhere is controlled by climate. If

so, it is natural to hypothesize that climate change was re-

sponsible for the Holocene expansion of blanket bogs.

Here we use PeatStash to simulate the UK distribution of

blanket bogs in the mid-Holocene (6000 years ago, 6 ka).

We compare these simulations with a new compilation of

blanket-bog initiation dates, in order to explore whether cli-

mate change could plausibly account for the expansion of

blanket bogs during the later Holocene.

2 Methods

We predicted the distribution of blanket bog at 6 ka using

PeatStash (Gallego-Sala et al., 2011) with climate inputs de-

rived from (a) climate model simulations of the 6 ka cli-

mate and (b) pollen-based climate reconstructions. The cli-

mate models provide predictions of a mutually consistent

set of meteorological variables; using multiple climate mod-

els allows us to encompass the uncertainty resulting from

differences between models. The climate models were run

at relatively coarse resolution (Table 1) and there may be

systematic biases that afflict all of the models (Harrison et

al., 2013). Pollen-based reconstructions provide an indepen-

dent source of information. However, their distribution is

not continuous across the whole of the UK and the neces-

sity to interpolate between reconstructions at individual sites

could introduce uncertainty (Bartlein et al., 2011). Neverthe-

less, this information provides a useful check of the relia-

bility of the simulated climates at the location of the sites

and an alternative scenario of climate change. We therefore

used both the climate-model ensemble and the pollen-based

reconstructions to obtain mid-Holocene climate estimates to

drive PeatStash. We then compared the PeatStash projections

with a new compilation of data on the timing of blanket-bog

initiation in the UK.

2.1 The PeatStash Model

PeatStash simulates the potential distribution of blanket bog

(Gallego-Sala et al., 2010) based on mean annual tem-

perature (MAT), mean temperature of the warmest month

(MTWA) and a moisture index (MI) calculated from long-

term monthly means of temperature, precipitation, and frac-

tional sunshine hours. The definition of MI follows UNEP

(United Nations Environment Programme, 1992):

MI= P/PET (1)

Clim. Past, 12, 129–136, 2016 www.clim-past.net/12/129/2016/
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where P is the mean annual precipitation (mm) and PET is

the mean annual potential evapotranspiration (mm). We sub-

stitute equilibrium evapotranspiration (Eq ), calculated from

monthly net radiation and temperature, for PET in Eq. (1).

Eq is given by λEq = [s/(s+ γ )] Rn where λ is the latent

heat of vaporization of water, s is the slope of the Clausius-

Clapeyron relationship, γ is the psychrometer constant and

Rn is net radiation, calculated from latitude, season and frac-

tional sunshine hours. The use of Eq instead of PET affects

only the absolute magnitude of MI, because PET as com-

puted by the Priestley-Taylor equation is directly propor-

tional to Eq . PeatStash requires MI > 2.1, MAT >−1 ◦C and

MTWA < 14.5 ◦C to determine the presence of blanket bog.

The model predicts the distribution of blanket bog in Great

Britain with reasonably high accuracy (Fig. 1; Gallego-Sala

et al., 2010). Detailed comparison for Northern Ireland was

not possible because of the lack of accurate high-resolution

data on blanket-bog distribution. However, comparisons with

published maps suggest that the broadscale patterns are also

captured there (Gallego-Sala and Prentice, 2013).

2.2 Simulated climate data

We used output from 10 climate models (Table 1) that had

performed Mid-Holocene (6 ka) and pre-industrial (PI) sim-

ulations as part of the Coupled Modelling Intercomparison

Project (CMIP5). The 6 ka simulations were driven by ap-

propriate changes in insolation and greenhouse gas concen-

trations (Taylor et al., 2011), Anomalies (6 ka minus PI) of

precipitation, temperature and fractional sunshine hours were

bi-linearly interpolated from the original model grid to a

common 0.5◦ grid. These anomalies were then added to a

baseline modern climate, derived from the CRU CL2.0 long-

term mean climatology (temperature, precipitation, frac-

tional sunshine hours) for the period 1931–1960 (New et al.,

2000).

2.3 Pollen-based climate reconstruction

We used reconstructions of MAT, MTWA, mean annual pre-

cipitation (MAP), and α (the ratio of actual to equilibrium

evapotranspiration, calculated as in (Cramer and Prentice,

1988)) from the Bartlein et al. (2011) data set. Bartlein et

al. (2011) provided a harmonized compilation of pollen-

based climate reconstructions, where individual site-based

reconstructions were aggregated to provide estimates of

mean conditions (with their uncertainties) on a 2◦× 2◦ grid.

Anomalies of each climate variable were interpolated from

the original resolution grid to the 10× 10 km grid of the UK-

CIP_02 baseline climatology (http://www.cru.uea.ac.uk). We

do not account for reconstruction uncertainties in this appli-

cation because they are smaller than the differences between

the climate-model scenarios.

PeatStash was run using MAT and MTWA as direct inputs,

while MI was calculated from MAP and α. Assessed over a

www.clim-past.net/12/129/2016/ Clim. Past, 12, 129–136, 2016
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BCEM and blanket peat
BCEM no blanket peat
Blanket peat no BCEM
No blanket peat no BCEM

Figure 1. The area of blanket peat predicted by the bioclimatic en-

velope model (BCEM) PeatStash using a baseline climate period

(UKCIP02: 1961-90) overlain on the mapped 5 km gridded data

of observed blanket peat presence (©Crown Copyright/database

right 2009. An Ordnance Survey/EDINA supplied service. Met Of-

fice/UKCIP gridded climate data. UKCIP02 ©Crown Copyright

2002).

period of years, α can be related to MI using the Budyko

hydrological relationship, which can be expressed as follows

(Wang et al., 2012; Zhang et al., 2004):

α = 1+m− (1+mw)1/w, (2)

where m=MI and w is a parameter. To estimate anomalies

of MI (1m) from anomalies of α (1α), we set w = 3 (Zhang

et al., 2004), take the derivative of Eq. (2) and apply the ap-

proximation 1α ≈1m(∂α/∂m), where

∂α/∂m= 1− [m/(1+mw)1/w
]
w−1. (3)

2.4 PeatStash 6 ka simulations

We ran PeatStash using output from each of the 10 climate

models. Given model-dependent differences in the simulated

climates (Harrison et al., 2013), the ensemble of simulations

is used to provide an estimate of the probability that suitable

climates for blanket bog existed by 6 ka in specific regions

based on the consistency between the 10 projections. Peat-

Stash simulations were also driven by pollen-based climate

reconstructions of climate anomalies, which were superim-

posed on the higher-resolution UKCIP grid.

We present the results of the 6 ka PeatStash simulations as

anomalies from present. Wherever blanket bog is simulated

for 6 ka, we predict that climate conditions were suitable for

early initiation. Where blanket bog is simulated for PI but not

for 6 ka, we predict that blanket bog initiation occurred after

6 ka. Where blanket bog is simulated for 6 ka but not for PI,

we predict that conditions became unsuitable for blanket bog

growth after 6 ka.

2.5 Basal Age data set

We assembled basal radiocarbon dates from blanket bogs

throughout Great Britain and Northern Ireland. We adopted

a stringent exclusion criterion, accepting only sites where

blanket-bog formation commenced directly over mineral par-

ent material and not as a change from a minerotrophic peat-

land (i.e. we have only included ombrogenous peatlands). We

recorded the different topographic positions (saddle, bottom

of the valley, slope, top) and altitudes of each site, when-

ever possible. The data set includes 64 records of pollen-

analytically determined dates of peat initiation based on re-

gional correlation of dated pollen-stratigraphic events. The

remaining 164 records have either been directly dated from

basal peat deposits, or there were sufficient radiocarbon dates

to develop an age-depth model allowing the basal age to be

well constrained. The extrapolated dates may provide more

accurate estimates of basal ages than radiocarbon assays of

basal peats, which often yield young ages because of contam-

ination by mobile humic acids and root penetration (Smith

and Cloutman, 1988; Charman, 1992). Any errors associ-

ated with the age modelling are expected to be considerably

less than the 1000-year windows used in mapping peatland

changes in our analyses. A total of 228 basal age estimates

(see Supplement) were assembled but the full data comple-

ment was not available for all of these.

There is a difference between peat initiation and peat

spread, and the latter cannot strictly be inferred from a sin-

gle sampled point. There is local variability in peat initiation

depending on topographic position, slope gradient, and alti-

tude (Charman, 1992) and so a single sampled site may not

capture the oldest peat initiation date. Blanket bog does not

necessarily grow by uniform spread of peat but probably co-

alesces from different foci (Tipping, 1994). Furthermore, we

are reliant on published and unpublished data collected for

a variety of reasons that may have biased sampling towards

deeper or shallower locations. Despite these known limita-

tions in using basal dates to infer initiation, these effects will

be similar for all regions and our data set is sufficiently large

Clim. Past, 12, 129–136, 2016 www.clim-past.net/12/129/2016/



A. V. Gallego-Sala et al.: Climate-driven expansion of blanket bogs 133

Number of model runs
predicting expansion of
blanket peat since 6Ka

0 2 10864

Number of model runs
predicting shrinkage of
blanket peat since 6Ka

0 1 2 3 54

Expansion since 6Ka
Initiation prior to 6Ka
Shrinkage since 6Ka
No blanket peat

(a) (b)

Figure 2. PeatStash simulations of blanket peat extent at 6 ka using

(a) simulated palaeoclimate and (b) pollen-based reconstructions of

palaeoclimate.

and regionally comprehensive to provide information on the

patterns of peat initiation in different regions.

3 Results and discussion

The climate-model simulations consistently show summers

warmer than today’s over most of northern Europe. Mean

annual precipitation (MAP) was slightly reduced in north-

ern Britain and slightly increased in southern Britain com-

pared to today. Conditions suitable for blanket bog are pre-

dicted at 6 ka across much of Scotland and northern Eng-

land (Fig. 2a), but warmer than present summers restricted

blanket-bog distribution in southwest Scotland, Northern Ire-

land and Wales. Southwest England was almost entirely un-

suitable for blanket-bog formation at 6 ka, at least at the spa-

tial resolution of the model grid, but became more suitable

for blanket-bog development after the mid-Holocene.

The suitability of different regions for blanket bog is ex-

amined in more detail using the high-resolution PeatStash

simulations driven by quantitative palaeoclimate reconstruc-

tions. The pollen-based reconstructions (Bartlein et al., 2011)

confirm that the climate over Great Britain and Ireland was

slightly wetter at 6 ka than today (Fig. 3), with consider-

ably warmer (approximately 2 ◦C) summers. As a result of

the warmer summers, the bioclimatic envelope suitable for

blanket bog was 14 % smaller at 6 ka (Fig. 2b). Larger areas

of western Scotland, Ireland, and Wales have become suit-

able for blanket bog since 6 ka. Southwest England acquired

three separate centres of predicted peat growth, correspond-

1.5 1.8 2.1 2.4 2.7

MAT anomaly (°C)

-0.2-0.4-0.6 0

Moisture index
anomaly (unitless)

1.5 1.8 2.1 2.4 2.7 3

MTWA anomaly (°C)

(a) (b) (c)

Figure 3. Average climate anomalies at 6 ka from pollen-based

reconstruction: (a) moisture index, (b) mean annual temperature

(MAT), and (c) temperature of the warmest month (MTWA).

ing to Dartmoor, Exmoor, and Bodmin Moor, as a direct con-

sequence of late Holocene cooling.

These simulations are consistent with observations of re-

gional timing in the formation of blanket bogs (Fig. 4a).

Analysis of basal dates on blanket bogs shows a grad-

ual increase in blanket-bog formation throughout the early

Holocene and a broad peak in initiation dates between 8000

and 4000 BP during the Mid-Holocene. There is a decline in

the number of ages after 3–4000 BP. Regional patterns sug-

gest that initiation occurred earliest in the north and most

of the dates between 10 000 and 7000 BP are from sites in

Scotland and northern England (Fig. 4a). Sites in Wales also

have some early ages, but with a major increase in initia-

tion dates after 8000 BP continuing throughout the rest of the

Holocene. Sites in Ireland and southwest England are gener-

ally later to develop and have a peak at 3000 BP, later than

the other regions. The initiation dates show that large areas

of northern Britain were climatically suitable for blanket-bog

formation before 6 ka, and remain so now. The regional dif-

ferences in timing of initiation indicate a gradual increase in

the area with suitable climate after 6 ka, especially in Wales,

Ireland, and southwest England.

There are some discrepancies between the simulated and

observed patterns of blanket-bog growth. Most of the excep-

tions are occurrences of initiation dates > 6 ka in areas such as

Dartmoor that are only predicted to become suitable for peat

growth after 6 ka. This may be an issue of resolution; some

blanket bogs may have developed in localities with suitable

microclimates that are smaller than our model can resolve,

given the resolution of the climate inputs. It is also possi-

ble that this reflects a sampling bias. Older locations tend

to be over-sampled because deep peat deposits are generally

favoured in order to generate longer palaeorecords (Fyfe and

Woodbridge, 2012). These may not have been laterally ex-

tensive or typical of the wider landscape.

We model a slight contraction in the area of suitable cli-

mate for blanket bog since 6 ka in eastern Britain (Fig. 2). If

this model result is correct, there should be areas of eastern
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Figure 4. Assembled basal calibrated radiocarbon dates from blan-

ket bogs over Great Britain and Ireland: (a) regional graphs of ini-

tiation dates through time binned every 500 years; (b) map of indi-

vidual initiation dates; and (c) map of initiation dates summarized

per region.

Britain supporting relict blanket bog with no active peat for-

mation. Although peat initiation occurred in these areas be-

tween 4 and 2 ka (Fig. 4a), post-6 ka accumulation rates are

low (Simmons and Innes, 1988) suggesting that conditions

indeed became less favourable for peat growth. Peat growth

may continue for some time on an established peat bog due

to local edaphic and hydrological conditions, despite climate

Table 2. Region by region break down of percentage of (a) cores

with basal dates younger than 6 ka (b) sites with basal dates exclu-

sively younger than 6 ka (c) % gridcells that PeatStash predicts to

have initiated after 6ka when run with the pollen-based climate re-

constructions.

Region % cores with %sites with basal % gridcells with

basal date date exclusively basal date

< 6 ka < 6 ka < 6 ka

N Scotland 54 35 24

C Scotland 18 20 31

S Scotland 17 33 41

N England 28 32 38

Wales 20 48 64

N Ireland 93 93 42

SW England 73 38 95

All 44 43 48

being unsuitable for peat initiation. The existence of relict

peats is not susceptible to testing using only initiation dates

and this prediction would need to be explicitly tested by field

sampling for cessation or slowing of peat growth.

Our analysis of basal peat ages shows that blanket bogs

have been developing in some regions of Great Britain and

Ireland from the early Holocene onwards. The fact that blan-

ket bogs developed later in the west and south of the coun-

try can be explained simply by the fact that regions with

warmer and/or drier climates (Fig. 3) were less suitable for

peat formation during the early Holocene. Blanket bogs only

developed in these areas as climate became cooler and wet-

ter. Blanket-bog formation accelerated in the mid- to late

Holocene, but this occurred later than the “elm decline” event

in many locations and proceeded continuously, which makes

it unlikely that it was causally linked to human activities. The

simulations (Fig. 2) indicate that a large part of Great Britain

and Ireland was suitable for blanket-bog formation before the

main period of human impact.

Climatic control of blanket-bog formation in the UK is

consistent with evidence from other parts of the world that

blanket-bog initiation occurred in response to climate change

and that their current distribution is strongly controlled by

climatic conditions. It raises an important issue about the fate

of this unique ecosystem under future climate change. Our

work supports previous analyses that suggest they will re-

quire careful management given that their continued growth

may be threatened by large-scale shifts in climate in some

regions of the UK (Clark et al., 2010; House et al., 2010;

Gallego-Sala et al., 2010) and worldwide (Gallego-Sala and

Prentice, 2013).

Taken together, these lines of evidence indicate that the

history of blanket-bog growth in Great Britain and Ireland

can be explained as a threshold response to a changing cli-

mate. In an area with a rich human history, such as Great

Britain and Ireland, almost all Holocene palaeoecological

records show signs of human impact at various stages. How-
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ever, our analyses suggest that no human intervention was re-

quired to initiate blanket-bog formation in Great Britain and

Ireland.

The Supplement related to this article is available online

at doi:10.5194/cp-12-129-2016-supplement.
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