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Abstract. Blanket bog occupies approximately 6 % of the
area of the UK today. The Holocene expansion of this hy-
peroceanic biome has previously been explained as a conse-
quence of Neolithic forest clearance. However, the present
distribution of blanket bog in Great Britain can be predicted
accurately with a simple model (PeatStash) based on sum-
mer temperature and moisture index thresholds, and the same
model correctly predicts the highly disjunct distribution of
blanket bog worldwide. This finding suggests that climate,
rather than land-use history, controls blanket-bog distribution
in the UK and everywhere else.

We set out to test this hypothesis for blanket bogs in
the UK using bioclimate envelope modelling compared with
a database of peat initiation age estimates. We used both
pollen-based reconstructions and climate model simulations
of climate changes between the mid-Holocene (6000 yr BP,
6 ka) and modern climate to drive PeatStash and predict areas
of blanket bog. We compiled data on the timing of blanket-
bog initiation, based on 228 age determinations at sites where
peat directly overlies mineral soil. The model predicts that
large areas of northern Britain would have had blanket bog
by 6000 yr BP, and the area suitable for peat growth extended
to the south after this time. A similar pattern is shown by
the basal peat ages and new blanket bog appeared over a
larger area during the late Holocene, the greatest expansion
being in Ireland, Wales, and southwest England, as the model
predicts. The expansion was driven by a summer cooling

of about 2°C, shown by both pollen-based reconstructions
and climate models. The data show early Holocene (pre-
Neolithic) blanket-bog initiation at over half of the sites in
the core areas of Scotland and northern England.

The temporal patterns and concurrence of the bioclimate
model predictions and initiation data suggest that climate
change provides a parsimonious explanation for the early
Holocene distribution and later expansion of blanket bogs
in the UK, and it is not necessary to invoke anthropogenic
activity as a driver of this major landscape change.

1 Introduction

Blanket bog is a distinctive type of peatland confined to areas
with cool and extremely wet climates. The name derives from
the fact that the peat covers sloping ground and hilltops, as
well as basins, thus “blanketing” the landscape. Blanket bogs
are widespread in the west and north of the UK (Great Britain
and Northern Ireland) and occupy about 6 % of its land area
(Jones et al., 2003). They are locally important (under var-
ious names) in other hyperoceanic regions of the world, al-
though in total they cover only about 0.1% of the Earth’s land
surface (Gallego-Sala and Prentice, 2013).

The global distribution of blanket bogs today is confined
to cool, wet climates (Gallego-Sala and Prentice, 2013).
The initiation of blanket bog formation during the Holocene
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130 A. V. Gallego-Sala et al.: Climate-driven expansion of blanket bogs

is regionally asynchronous, and in most regions has been
found to coincide with a shift towards cooler, wetter climates
(Zaretskia et al., 2001; Dirksen et al., 2012). However, there
has been considerable debate about the cause of Holocene
blanket-bog initiation in the UK.

There is a long-standing hypothesis, first proposed by
Moore (1973), that it was a consequence of land use by Ne-
olithic human populations, and in particular land clearing
practices at the time of the “elm decline” (often taken as
a stratigraphic marker of Neolithic land use (Parker et al.,
2002), as well as heavy stock grazing that changed the soil
hydrological balance enough to initiate the inception of blan-
ket bogs between about 6000 and 5000 yr BP (Moore, 1975,
1993; Merryfield and Moore, 1974; Robinson and Dickson,
1988; Huang, 2002). Evidence of removal of the shrub and/or
tree cover by fire at the onset of blanket bog formation,
and pollen analytical studies suggesting intensive agricul-
tural practices by Neolithic people support this hypothesis
(Merryfield and Moore, 1974; Smith and Cloutman, 1988;
Robinson and Dickson, 1988; Simmons and Innes, 1988). A
recent investigation of initiation of upland blanket bogs in
Ireland also pointed to land use as a principal cause of palud-
ification (Huang, 2002). However, a number of authors have
suggested the initiation of blanket bogs at specific locations
solely as a result of a climatic shift during the mid Holocene
“Atlantic” period in Scotland (Ellis and Tallis, 2000; Char-
man, 1992; Tipping, 2008) the Faroe Islands (Lawson et al.,
2007), and Ireland (Mitchell and Conboy, 1993; Dwyer and
Mitchell, 1997). Tipping (2008) suggested that farming com-
munities only settled in the Scottish Highlands after the land-
scape had already been covered by blanket bogs. Other au-
thors have adopted a more complex view in which both cli-
matic shifts and human activities played a role (Smith, 1970;
Keatinge and Dickson, 1979; Tallis, 1991). Soil-forming pro-
cesses, including leaching of base cations and consequent
acidification and podsolization of soils, were also proposed
to have been influential (Bennett et al., 1992; Charman, 1992;
Smith and Green, 1995), giving rise to the term “pedogenic
peats” (Simmons and Innes, 1988).

It is difficult to resolve such arguments about causality on
the basis of timing alone. Lack of coincidence could be due to
idiosyncratic local factors while synchroneity could arise by
chance or because both events result from a common under-
lying cause. Under these circumstances, process-based mod-
elling can offer a way forward. Globally, blanket bogs oc-
cur where the mean annual temperature (MAT) >—1°C, the
mean temperature of the warmest month (MTWA) <14.5°C
and the ratio of mean annual precipitation to equilibrium
evapotranspiration (moisture index, MI) >2.1 (Gallego-Sala
and Prentice, 2013). These limits ensure that the site is out-
side the permafrost zone and therefore not subject to cryotur-
bation, that summer temperatures are not too high for Sphag-
num growth, and that there is sufficient moisture throughout
the year to sustain peat growth on sloping ground. These lim-
its have been used to construct a simple bioclimatic model,
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PeatStash (Gallego-Sala et al., 2010). In addition to predict-
ing accurately the present-day distribution of blanket bog in
Great Britain, PeatStash correctly predicts the highly disjunct
global distribution of blanket bogs (Gallego-Sala and Pren-
tice, 2013), including its occurrence in places such as New-
foundland and Kamchatka that have experienced very differ-
ent land-use histories from Great Britain and Ireland. This
finding strongly suggests that the present-day distribution, at
least, of blanket bogs everywhere is controlled by climate. If
so, it is natural to hypothesize that climate change was re-
sponsible for the Holocene expansion of blanket bogs.

Here we use PeatStash to simulate the UK distribution of
blanket bogs in the mid-Holocene (6000 years ago, 6 ka).
We compare these simulations with a new compilation of
blanket-bog initiation dates, in order to explore whether cli-
mate change could plausibly account for the expansion of
blanket bogs during the later Holocene.

2 Methods

We predicted the distribution of blanket bog at 6 ka using
PeatStash (Gallego-Sala et al., 2011) with climate inputs de-
rived from (a) climate model simulations of the 6ka cli-
mate and (b) pollen-based climate reconstructions. The cli-
mate models provide predictions of a mutually consistent
set of meteorological variables; using multiple climate mod-
els allows us to encompass the uncertainty resulting from
differences between models. The climate models were run
at relatively coarse resolution (Table 1) and there may be
systematic biases that afflict all of the models (Harrison et
al., 2013). Pollen-based reconstructions provide an indepen-
dent source of information. However, their distribution is
not continuous across the whole of the UK and the neces-
sity to interpolate between reconstructions at individual sites
could introduce uncertainty (Bartlein et al., 2011). Neverthe-
less, this information provides a useful check of the relia-
bility of the simulated climates at the location of the sites
and an alternative scenario of climate change. We therefore
used both the climate-model ensemble and the pollen-based
reconstructions to obtain mid-Holocene climate estimates to
drive PeatStash. We then compared the PeatStash projections
with a new compilation of data on the timing of blanket-bog
initiation in the UK.

2.1 The PeatStash Model

PeatStash simulates the potential distribution of blanket bog
(Gallego-Sala et al., 2010) based on mean annual tem-
perature (MAT), mean temperature of the warmest month
(MTWA) and a moisture index (MI) calculated from long-
term monthly means of temperature, precipitation, and frac-
tional sunshine hours. The definition of MI follows UNEP
(United Nations Environment Programme, 1992):

MI = P/PET 1)
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where P is the mean annual precipitation (mm) and PET is
the mean annual potential evapotranspiration (mm). We sub-
stitute equilibrium evapotranspiration (E,), calculated from
monthly net radiation and temperature, for PET in Eq. (1).
E, is given by AE, = [s/(s +y)] R, where A is the latent

~ =59 &9 heat of vaporization of water, s is the slope of the Clausius-
g g g § b= § a9 Clapeyron relationship, y is the psychrometer constant and
g < e S’ “aS =88 R, is net radiation, calculated from latitude, season and frac-
8% SCg8ts== tional sunshine hours. The use of E, instead of PET affects
8 T 0 "c;g g T_; 2233 only the absolute magnitude of MI, because PET as com-
g |85 EZ5EgBcLEE puted by the Priestley-Taylor equation is directly propor-
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2 838 853235883 tional to E,. PeatStash requires M1>2.1, MAT > —1°C and
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2= The model predicts the distribution of blanket bog in Great
% 2 Britain with reasonably high accuracy (Fig. 1; Gallego-Sala
R et al., 2010). Detailed comparison for Northern Ireland was
X i not possible because of the lack of accurate high-resolution
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55|88 aale oSS published maps suggest that the broadscale patterns are also
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- BCEM and blanket peat
BCEM no blanket peat
Blanket peat no BCEM
No blanket peat no BCEM

Figure 1. The area of blanket peat predicted by the bioclimatic en-
velope model (BCEM) PeatStash using a baseline climate period
(UKCIP02: 1961-90) overlain on the mapped 5km gridded data
of observed blanket peat presence (®Crown Copyright/database
right 2009. An Ordnance Survey/EDINA supplied service. Met Of-
fice/lUKCIP gridded climate data. UKCIP02 ©Crown Copyright
2002).

period of years, « can be related to MI using the Budyko
hydrological relationship, which can be expressed as follows
(Wang et al., 2012; Zhang et al., 2004):

a=1+m—(l+mw)1/w, 2

where m = MI and w is a parameter. To estimate anomalies
of MI (Am) from anomalies of @ (A«), we set w = 3 (Zhang
et al., 2004), take the derivative of Eq. (2) and apply the ap-
proximation Aa ~ Am(da/dm), where

do/Om =1 —[m/(1+m™)/v L, (3)

2.4 PeatStash 6 ka simulations

We ran PeatStash using output from each of the 10 climate
models. Given model-dependent differences in the simulated
climates (Harrison et al., 2013), the ensemble of simulations
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is used to provide an estimate of the probability that suitable
climates for blanket bog existed by 6 ka in specific regions
based on the consistency between the 10 projections. Peat-
Stash simulations were also driven by pollen-based climate
reconstructions of climate anomalies, which were superim-
posed on the higher-resolution UKCIP grid.

We present the results of the 6 ka PeatStash simulations as
anomalies from present. Wherever blanket bog is simulated
for 6 ka, we predict that climate conditions were suitable for
early initiation. Where blanket bog is simulated for P1 but not
for 6 ka, we predict that blanket bog initiation occurred after
6 ka. Where blanket bog is simulated for 6 ka but not for PI,
we predict that conditions became unsuitable for blanket bog
growth after 6 ka.

2.5 Basal Age data set

We assembled basal radiocarbon dates from blanket bogs
throughout Great Britain and Northern Ireland. We adopted
a stringent exclusion criterion, accepting only sites where
blanket-bog formation commenced directly over mineral par-
ent material and not as a change from a minerotrophic peat-
land (i.e. we have only included ombrogenous peatlands). We
recorded the different topographic positions (saddle, bottom
of the valley, slope, top) and altitudes of each site, when-
ever possible. The data set includes 64 records of pollen-
analytically determined dates of peat initiation based on re-
gional correlation of dated pollen-stratigraphic events. The
remaining 164 records have either been directly dated from
basal peat deposits, or there were sufficient radiocarbon dates
to develop an age-depth model allowing the basal age to be
well constrained. The extrapolated dates may provide more
accurate estimates of basal ages than radiocarbon assays of
basal peats, which often yield young ages because of contam-
ination by mobile humic acids and root penetration (Smith
and Cloutman, 1988; Charman, 1992). Any errors associ-
ated with the age modelling are expected to be considerably
less than the 1000-year windows used in mapping peatland
changes in our analyses. A total of 228 basal age estimates
(see Supplement) were assembled but the full data comple-
ment was not available for all of these.

There is a difference between peat initiation and peat
spread, and the latter cannot strictly be inferred from a sin-
gle sampled point. There is local variability in peat initiation
depending on topographic position, slope gradient, and alti-
tude (Charman, 1992) and so a single sampled site may not
capture the oldest peat initiation date. Blanket bog does not
necessarily grow by uniform spread of peat but probably co-
alesces from different foci (Tipping, 1994). Furthermore, we
are reliant on published and unpublished data collected for
a variety of reasons that may have biased sampling towards
deeper or shallower locations. Despite these known limita-
tions in using basal dates to infer initiation, these effects will
be similar for all regions and our data set is sufficiently large
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Figure 2. PeatStash simulations of blanket peat extent at 6 ka using
(a) simulated palaeoclimate and (b) pollen-based reconstructions of
palaeoclimate.

and regionally comprehensive to provide information on the
patterns of peat initiation in different regions.

3 Results and discussion

The climate-model simulations consistently show summers
warmer than today’s over most of northern Europe. Mean
annual precipitation (MAP) was slightly reduced in north-
ern Britain and slightly increased in southern Britain com-
pared to today. Conditions suitable for blanket bog are pre-
dicted at 6 ka across much of Scotland and northern Eng-
land (Fig. 2a), but warmer than present summers restricted
blanket-bog distribution in southwest Scotland, Northern Ire-
land and Wales. Southwest England was almost entirely un-
suitable for blanket-bog formation at 6 ka, at least at the spa-
tial resolution of the model grid, but became more suitable
for blanket-bog development after the mid-Holocene.

The suitability of different regions for blanket bog is ex-
amined in more detail using the high-resolution PeatStash
simulations driven by quantitative palaeoclimate reconstruc-
tions. The pollen-based reconstructions (Bartlein et al., 2011)
confirm that the climate over Great Britain and Ireland was
slightly wetter at 6 ka than today (Fig. 3), with consider-
ably warmer (approximately 2 °C) summers. As a result of
the warmer summers, the bioclimatic envelope suitable for
blanket bog was 14 % smaller at 6 ka (Fig. 2b). Larger areas
of western Scotland, Ireland, and Wales have become suit-
able for blanket bog since 6 ka. Southwest England acquired
three separate centres of predicted peat growth, correspond-
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Figure 3. Average climate anomalies at 6 ka from pollen-based
reconstruction: (a) moisture index, (b) mean annual temperature
(MAT), and (c) temperature of the warmest month (MTWA).
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ing to Dartmoor, Exmoor, and Bodmin Moor, as a direct con-
sequence of late Holocene cooling.

These simulations are consistent with observations of re-
gional timing in the formation of blanket bogs (Fig. 4a).
Analysis of basal dates on blanket bogs shows a grad-
ual increase in blanket-bog formation throughout the early
Holocene and a broad peak in initiation dates between 8000
and 4000 BP during the Mid-Holocene. There is a decline in
the number of ages after 3-4000 BP. Regional patterns sug-
gest that initiation occurred earliest in the north and most
of the dates between 10000 and 7000 BP are from sites in
Scotland and northern England (Fig. 4a). Sites in Wales also
have some early ages, but with a major increase in initia-
tion dates after 8000 BP continuing throughout the rest of the
Holocene. Sites in Ireland and southwest England are gener-
ally later to develop and have a peak at 3000 BP, later than
the other regions. The initiation dates show that large areas
of northern Britain were climatically suitable for blanket-bog
formation before 6 ka, and remain so now. The regional dif-
ferences in timing of initiation indicate a gradual increase in
the area with suitable climate after 6 ka, especially in Wales,
Ireland, and southwest England.

There are some discrepancies between the simulated and
observed patterns of blanket-bog growth. Most of the excep-
tions are occurrences of initiation dates > 6 ka in areas such as
Dartmoor that are only predicted to become suitable for peat
growth after 6 ka. This may be an issue of resolution; some
blanket bogs may have developed in localities with suitable
microclimates that are smaller than our model can resolve,
given the resolution of the climate inputs. It is also possi-
ble that this reflects a sampling bias. Older locations tend
to be over-sampled because deep peat deposits are generally
favoured in order to generate longer palaeorecords (Fyfe and
Woodbridge, 2012). These may not have been laterally ex-
tensive or typical of the wider landscape.

We model a slight contraction in the area of suitable cli-
mate for blanket bog since 6 ka in eastern Britain (Fig. 2). If
this model result is correct, there should be areas of eastern

Clim. Past, 12, 129-136, 2016
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Figure 4. Assembled basal calibrated radiocarbon dates from blan-
ket bogs over Great Britain and Ireland: (a) regional graphs of ini-
tiation dates through time binned every 500 years; (b) map of indi-
vidual initiation dates; and (c) map of initiation dates summarized
per region.

Britain supporting relict blanket bog with no active peat for-
mation. Although peat initiation occurred in these areas be-
tween 4 and 2 ka (Fig. 4a), post-6 ka accumulation rates are
low (Simmons and Innes, 1988) suggesting that conditions
indeed became less favourable for peat growth. Peat growth
may continue for some time on an established peat bog due
to local edaphic and hydrological conditions, despite climate

Clim. Past, 12, 129-136, 2016

Table 2. Region by region break down of percentage of (a) cores
with basal dates younger than 6 ka (b) sites with basal dates exclu-
sively younger than 6 ka (c) % gridcells that PeatStash predicts to
have initiated after 6ka when run with the pollen-based climate re-
constructions.

Region % cores with  %sites with basal % gridcells with
basal date date exclusively basal date
<6ka <6ka <6ka
N Scotland 54 35 24
C Scotland 18 20 31
S Scotland 17 33 41
N England 28 32 38
Wales 20 48 64
N Ireland 93 93 42
SW England 73 38 95
All 44 43 48

being unsuitable for peat initiation. The existence of relict
peats is not susceptible to testing using only initiation dates
and this prediction would need to be explicitly tested by field
sampling for cessation or slowing of peat growth.

Our analysis of basal peat ages shows that blanket bogs
have been developing in some regions of Great Britain and
Ireland from the early Holocene onwards. The fact that blan-
ket bogs developed later in the west and south of the coun-
try can be explained simply by the fact that regions with
warmer and/or drier climates (Fig. 3) were less suitable for
peat formation during the early Holocene. Blanket bogs only
developed in these areas as climate became cooler and wet-
ter. Blanket-bog formation accelerated in the mid- to late
Holocene, but this occurred later than the “elm decline” event
in many locations and proceeded continuously, which makes
it unlikely that it was causally linked to human activities. The
simulations (Fig. 2) indicate that a large part of Great Britain
and Ireland was suitable for blanket-bog formation before the
main period of human impact.

Climatic control of blanket-bog formation in the UK is
consistent with evidence from other parts of the world that
blanket-bog initiation occurred in response to climate change
and that their current distribution is strongly controlled by
climatic conditions. It raises an important issue about the fate
of this unique ecosystem under future climate change. Our
work supports previous analyses that suggest they will re-
quire careful management given that their continued growth
may be threatened by large-scale shifts in climate in some
regions of the UK (Clark et al., 2010; House et al., 2010;
Gallego-Sala et al., 2010) and worldwide (Gallego-Sala and
Prentice, 2013).

Taken together, these lines of evidence indicate that the
history of blanket-bog growth in Great Britain and Ireland
can be explained as a threshold response to a changing cli-
mate. In an area with a rich human history, such as Great
Britain and Ireland, almost all Holocene palaeoecological
records show signs of human impact at various stages. How-

www.clim-past.net/12/129/2016/



A. V. Gallego-Sala et al.: Climate-driven expansion of blanket bogs 135

ever, our analyses suggest that no human intervention was re-
quired to initiate blanket-bog formation in Great Britain and
Ireland.

The Supplement related to this article is available online
at doi:10.5194/cp-12-129-2016-supplement.
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