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Abstract (60 words)
GANE proposes that local glutamate-norepinephrine interactions enable “winner-take-more”
effects in perception and memory under arousal. A diverse range of commentaries addressed
both the nature of this ‘hotspot’ feedback mechanism and its implications in a variety of

psychological domains, inspiring exciting avenues for future research.



GANEing Traction: The Broad Applicability of NE Hotspots to Diverse Cognitive and

Arousal Phenomena

We proposed the Glutamate Amplifies Noradrenergic Effects (GANE) model to fill a gap in our
understanding: What are the brain mechanisms that allow arousal to simultaneously enhance
processing of salient or high priority stimuli and impair processing of inconspicuous or low priority
stimuli? In our model, local level of glutamatergic neurotransmission signifies the priority of an
activated representation. When glutamate spillover from activated synapses activates NMDA
receptors on nearby segments of a LC neuron around the same time that the LC neuron is
depolarized, this leads to more local release of NE, which further amplifies glutamate release and
the activation of the information the highly excited neurons are representing. Elsewhere, lower
glutamate levels fail to ignite hotspots and undergo greater suppression via NE-induced inhibition.
We proposed that, in addition to enhancing activation of prioritized representations, the NE-
glutamate hotspots effects selectively recruit metabolic resources, enhance neuronal oscillations,
and trigger synaptic plasticity processes that enhance long-term memory of prioritized

information.

Across the commentaries discussing GANE’s relevance to cognitive and neural processes,
several important themes emerged (see Table 1). Generally, the responses can be grouped as
having one of two foci (with some exceptions): behavioral and cognitive aspects of the arousal by

priority interaction relevant to GANE or the NE hotspot mechanism itself.

To predict which information will be selectively enhanced or impaired by arousal, it is important to
focus on the two key factors necessary to ignite a hotspot: 1) an arousing-inducing stimulus that
can stimulate LC activity (NE), and 2) a stimulus that has high priority (glutamate). As outlined in
Table 1, several of the commentaries elaborated on these two factors, as well as on other issues
and themes. We discuss the issues raised in the commentaries here in our response, starting

with the topic of arousal.



1. Arousal

A number of commentaries raise questions regarding arousal.

1.1. Nature of arousal. In our view, the LC-NE system is not the only brain system involved in a
generalized arousal response (see Pfaff, 2006 for a review of arousal pathways in the brain), but
its activation is a common theme that runs through all different modes of arousal. For instance,
NE inputs to cells in the ventromedial hypothalamus are critical for initiating sexual arousal (Pfaff,
2006; of relevance for Mouras’ commentary), while noradrenergic input to the amygdala is critical
for enhancing memory for emotionally arousing stimuli (see Roozendaal et al. commentary and

the section below on the role of the amygdala).

What is arousal? At the most basic level, we have the contrast between sleep and wakefulness.
NE is low during most sleep states (see Becchetti & Amadeo). Then during wakefulness, being
physically active increases NE (Carter et al., 2010). But in addition to these broad-scale changes,
the arousal system is also exquisitely sensitive and can adapt rapidly to small changes in the

environment or internal goals.

These arousal responses can be detected by measuring pupil dilation. NE system activity
increases pupil dilation, as NE released by the LC inhibits pupil constriction (Koss, Gherezghiher,
& Nomura, 1984; Wilhelm, 2008). During sleep, pupils are constricted compared to waking (Yoss,
Moyer, & Hollenhorst, 1970). During wakefulness, aerobic exercise (Ishigaki, Miyao, & Ishihara,
1991) or muscular exertion (Nielsen & Mather, 2015; Nielsen, Barber, Chai, Clewett, & Mather,
2015) increase pupil dilation. Arousal induced by stimuli or tasks also increase pupil dilation. For
instance, emotionally arousing scenes (Bradley, Costa, & Lang, 2015), sexually arousing stimuli
(Bradley et al., 2015), surprise, uncertainty, loud noises and cognitive effort all increase pupil
dilation. Subjective arousal ratings given for emotional images correlate with pupil diameter

during viewing (Bradley, Miccoli, Escrig, & Lang, 2008). These consistencies across different



elicitors of arousal provides an important starting point to elucidate the underlying mechanisms by
which encountering emotionally arousing stimuli modulates cognitive and brain processing. Eldar,
Cohen and Niv review a recent line of work in which they used pupil dilation as a marker of NE
activity and found that indices of high NE function are associated with increased selectivity in
learning, perception and memory, consistent with their neural network models in which NE was
modeled as global increase in gain. GANE complements and extends this approach by providing

hypotheses about how NE implements neural gain.

We agree with Mouras and Kaspar regarding the relevance of sexual arousal and internal
sources of arousal (such as from one’s thoughts). Our point of view is that these different types
and sources of arousal can be accommodated by the GANE model, as evidence suggests that

LC activation is a common theme for all of them.

1.2. How the heartbeat influences LC activity. The LC is influenced not only by external stimuli
and one’s own thoughts, but also by interoceptive signals. For instance, distension of the bladder
or colon increases LC activity (Elam, Thorén, & Svensson, 1986), whereas an increase in blood
pressure decreases LC activity (Elam, Yoa, Svensson, & Thoren, 1984). LC neurons also show a
cardiac periodicity. For instance, in cats LC neurons are most likely to fire 80-180 ms after the
peak of the cardiac r-wave (during diastole) and least likely to fire 40 ms before to 60 ms after the

r-wave (during systole) (Morilak, Fornal, & Jacobs, 1986).

Critchley and Garfinkel have shown that stimuli detection and memory encoding differ during
the systole (contraction) and diastole phases of the heartbeat. During systole, participants are
better able to detect fear (but not neutral) faces in an attentional blink paradigm and rate them as
more intense (Garfinkel et al., 2014). When words are the T2 stimuli in an attentional blink
paradigm, later memory for the words depends on both the confidence with which they were
originally detected and at what heartbeat phase they were detected (Garfinkel et al., 2013).

Words detected with high confidence during systole have a memory advantage whereas words



detected with low confidence during systole have a memory disadvantage. Thus, during systole,
highly salient stimuli such as fear faces and clearly detected target words get a boost in
processing or later consolidation. But why would this GANE-like pattern occur during systole
when the LC neurons are less likely to fire? This surprising aspect of the findings suggests the
possibility that LC activity and salient glutamatergic representations may interact best when they

are offset slightly in time.

Critchley and Garfinkel argue that the GANE notion that LC-NE activity amplifies salience is not
sufficient to account for their findings because their cardiac cycle effects sometimes appear to be
driven by fear rather than arousal more generally. However, as shown in their figure, there was
not a significant difference between fear and disgust or happy faces, and the disgust and happy
faces showed trends towards enhancement where neutral faces showed a trend towards
impairment at diastole. Fear faces are often more salient than happy or disgust faces (Anderson,
Christoff, Panitz, De Rosa, & Gabrieli, 2003; Mather & Knight, 2006), thus, we think more work is
needed before a specific-emotion account must be invoked in place of a salience mechanism

such as that provided by GANE.

2.3. How arousal may amplify the salience of negative stimuli. Kaspar makes the case that
negative stimuli may be more likely than positive stimuli to ignite neuronal hotspots due to
evolutionary pressure not to miss potential threats. One challenge is how to test this hypothesis,
as negative stimuli on average induce more arousal than positive stimuli (Griihn & Scheibe,
2008), and so any differences in processing or memory between negative and positive stimuli
could be due to different levels of arousal when processing them rather than to different levels of
priority. To try to address this question, we recently ran a study in which we induced arousal
independently by having participants squeeze a ball in their hand as hard as they could before
they viewed emotional pictures and examined how the resulting increases in arousal influenced
memory for the pictures (Nielsen et al., 2015). We were interested in hormone effects and all

participants were younger female women. Consistent with Kaspar’s predictions, we found that



handgrip-induced arousal enhanced memory for the negative but not the positive pictures. This
effect was most pronounced for women with low estrogen and progesterone levels at the time of

testing.

Kaspar also suggested that, due to declines in the LC-NE system, negative stimuli lose their
arousing potential as people age. However, the evidence suggests that the older adults’ positivity
effect is not due to a lack of bottom-up salience for negative stimuli. Like younger adults, older
adults look first at arousing stimuli regardless of their valence (Knight et al., 2007) and notice
arousing or threatening stimuli more quickly than other types of stimuli (Leclerc & Kensinger,
2008; Mather & Knight, 2006). Bottom-up affective salience should play less of a role in
influencing processing for low arousal pictures, and indeed, the positivity effect appears to be
stronger among valenced stimuli low rather than high in arousal (Kensinger, 2008). In addition,
we found that arousal induced by handgrip selectively benefited memory encoding of negative
pictures (compared with positive or neutral pictures) in older women not taking hormone
supplements as well as in younger women with low estrogen and progesterone levels (Nielsen,
Chai, & Mather, in preparation). Thus, evidence suggests that arousing negative pictures have

similar bottom-up salience for older adults as they do for younger adults.

2.4. Relation to appraisal theory. Based on appraisal theory, Montagrin & Sander raise a
question about how arousal and priority interact. They argue that arousal and goal-relevance are
not independent and stimuli that are relevant for individuals’ goals, needs and values induce
strong arousal and amygdala activity. We agree with them: Given that the LC shows phasic
activity to goal-relevant stimuli (Aston-dones & Cohen, 2005; Aston-Jones, Rajkowski, & Cohen,
1999), it seems possible that goal-relevant stimuli become arousing. However, the appraisal
theory approach they discuss does not detail the neural mechanisms by which arousal induced
by goal-relevant stimuli helps people memorize (Montagrin, Brosch, & Sander, 2013) and
prioritize attention to those stimuli (Pool, Brosch, Delplanque, & Sander, 2015). In contrast, our

GANE model can explain their findings of enhanced processing of goal-relevant stimuli: once the



amygdala and/or higher cortical regions detect goal-relevant stimuli and recruit the LC, NE
hotspots will be generated in circuits transmitting goal-relevant information and, in turn, hotspots
will enhance memory and perception for those stimuli. Thus GANE does not contradict the

appraisal model but instead extends it.

2.5. Emotion regulation. Hull argues that the role of arousal in GANE is relevant for
understanding impairments in emotion regulation. In particular, when stuck on a particular
representation associated with negative emotions, decreases in arousal may be necessary to
allow for less emotionally disturbing representations to be prioritized. Although not addressed in
Hull’'s commentary, a related point is the relevance of GANE for disorders such as post-traumatic
stress disorder (PTSD) where intrusive thoughts are a problem. A particular disturbing thought or
memory may induce arousal, which in turn enhances attention to and memory reconsolidation of
that particular representation. Based on GANE, beta-blockers during initial encoding or retrieval
of the memory should attenuate the immediate strength of its activation and its long-term synaptic
strength. Consistent with this are some observational findings suggesting that beta-blockers may
help prevent intrusive thoughts or PTSD (Krauseneck et al., 2010; Lindgren et al., 2013),
although random assignment has yielded some null effects (Stein, Kerridge, Dimsdale, & Hoyt,

2007).

2. Priority

Other commentaries focused on physiological and psychological aspects of priority, a key factor

in GANE.

2.1. Perspectives on physiological mechanisms of priority. Larkum and Phillips describe a
novel physiological mechanism for contextual information to modulate pyramidal cell activity.
Neocortical pyramidal cell bodies have an apical trunk that ascends to a dendritic branching

pattern called an apical tuft which resides in a different cortical layer than the cell body and the



basal dendrites around it. The long distance of the apical tuft from the cell body sets it up to serve
a modulatory role in driving cell activity (Phillips, 2015). Apical amplification could, for example,
provide top-down priority selection of a quiet bottom-up auditory input to cortical output circuits. In
their figure they show the interaction of GANE and apical amplification priority, providing an
experimentally testable physiological model. Houghton argues that, computationally, the mossy
cell hilar circuit in hippocampus would set priority for hippocampal processing and suggests
heavy hilar NE innervation is consistent with GANE ampilification of that mechanism. Becchetti
and Amadeo make the interesting point that conscious (thus prioritized) oneiric processing
occurs during REM sleep, likely supported by high acetylcholine modulation. But with active
suppression of LC-NE during REM, there is little or no memory of those priority events, also

consistent with GANE.

2.2. Fluency may be related to priority. Carbon & Albrecht point out that fluency (i.e.,
processing information more easily) is an important factor which determines stimulus priority.
Greater fluency can arise because of perceptual salience (e.g., reading a word printed in a clear
and high contrast font more quickly than a blurry word) or because of prior knowledge or
experience (e.g., reading a familiar word more easily than an unfamiliar word). Previous findings
had suggested that people feel more positively about stimuli that they process more fluently (e.g.,
Winkielman & Cacioppo, 2001). In a recent study, Albrecht and Carbon (2014) showed affective
pictures that were either preceded (507 ms earlier) by that same image or by a different image
shown for only 7 ms and asked participants to rate the valence of the pictures. There was no
main effect of valence, but instead an amplification effect, with highly positive pictures rated more
positively when they had been primed and highly negative pictures rated more negatively when
they had been primed. Insofar as fluently processed stimuli yield higher glutamatergic activity
than less fluently processed stimuli (something that seems plausible but remains to be tested)
and that the emotional stimuli elicited arousal, their findings that valence judgments of emotional

stimuli are amplified by fluency fit nicely with GANE.



3. Predictive utility of GANE

Commentaries by Huntsinger & Storbeck and Talmi & Barnacle argued that GANE does not
provide clear predictions concerning whether the presentation of emotionally arousing stimuli
would enhance or impair cognitive processing of stimuli that appear nearby in time or space.
Huntsinger & Storbeck state that GANE can provide post-hoc explanations about the effects of
emotional stimuli in a range of situations, but question GANE’s predictive utility. Talmi &
Barnacle also argue that because we don’t know exactly how long emotional stimuli dominate
competition for representation, we can explain either the enhanced or impaired effects of

emotional stimuli on nearby neutral stimuli by GANE.

We agree with them that it is hard to determine priority when comparing emotional vs. neutral
stimuli. As discussed in our target article, emotional stimuli tend to have higher priority than
neutral stimuli due to their goal relevance, bottom-up salience and emotional salience. Thus, in
the hypothetical experiment Huntsinger & Storbeck mention, where emotional stimuli are
presented as distractors with task-relevant neutral stimuli, emotional distractors can have higher
priority than neutral goal-relevant stimuli. This could be especially the case when the top-down
control mechanisms are not strong enough to establish the goal relevance of neutral stimuli (see

Warren, Murphy, & Nieuwenhuis).

Talmi & Barnacle suggest that one can get around the issue of the different salience between
emotional and neutral stimuli by having a long interval between emotional and subsequent neutral
stimuli. But having a long interval would not increase the priority of neutral stimuli as high as that
of emotional stimuli; it is likely that emotional stimuli still have higher priority than neutral stimuli
when they are presented randomly even with a long interval. In addition, since high arousal can
impair top-down prioritization (Arnsten, 2011; Kuhbandner & Zehetleitner, 2011), top-down control
mechanisms might fail to increase the priority of neutral stimuli presented after emotional stimuli.

These considerations suggest that in their EEG study (Barnacle, Schaefer, Tsivilis, & Talmi, in



prep), neutral stimuli intermixed with emotional stimuli still had lower priority than neutral stimuli
presented in a neutral list, which led to the impaired processing of neutral stimuli in the intermixed
condition as predicted by GANE. Furthermore, having a long interval has the disadvantage that
the effects of phasic arousal and NE release might not last for a long duration (see Section 9 in

our target article).

In summary, it is difficult to test GANE in experimental settings where researchers simply include
emotionally arousing stimuli and neutral stimuli without a clear manipulation of priority. In our
view, to test GANE, it is important to manipulate the priority of neutral stimuli, independently from
arousal (Lee, Sakaki, Cheng, Velasco, & Mather, 2014; Sakaki, Fryer, & Mather, 2014;
Sutherland & Mather, 2012). One way to achieve this in the context of Barnacle et al. (in prep)
would be to have high-priority neutral images and low-priority neutral images in the mixed list
condition. Similar changes can be made in the bridge study mentioned by Huntsinger and
Storbeck (Dutton & Aron, 1974); GANE predicts that arousal induced by the scary bridge will
enhance memory for nearby high priority stimuli (e.g., a woman seen on the bridge if the
participant were asked to approach a woman and ask her something) while impairing memory for
nearby low priority stimuli (e.g., a man on the bridge who has no task relevance or particular

interest). In summary, GANE can provide clear predictions as long as the experiment is set up

properly.

4. Alternatives to GANE proposed in commentaries
Several of the commentaries propose alternatives to GANE to explain the mechanisms by which

arousing stimuli affect cognitive processing.
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Figure 1. (A) Arousing negative sounds heard after seeing either a background scene alone or
superimposed with a foreground object (B) impaired memory for the scene only when it was seen
behind the object and therefore was somewhat suppressed by that competitor (Ponzio & Mather,

2014).

4.1. NE-only model. Strange and Galarza-Vallejo propose that the glutamate aspect of the
model is not necessary -- that a simpler model is that priority is coded by phasic NE release in the
brain. They work through an example from research on the emotional oddball - 1 (E-1) effect, in
which emotional oddballs (words or pictures) impair memory for the immediately preceding item

on the list if that item was low priority for the participant but enhance it if that item was high



priority (e.g., Sakaki, Fryer, et al., 2014). A problem with their NE-only model is that it is not clear
how phasic NE release can selectively “tag” the E-1 item and not other items. Perhaps in the
simple set-up they describe, in which one word or object appears at a time in the list, phasic NE
release could mark activated neural networks via a temporal tagging process. However, they do
not consider findings that when multiple items are shown simultaneously, whether and how much
memory for them is enhanced or impaired by a subsequent emotional item depends on their
priority. For example, in an experiment in which a scene was either shown alone or with an object
superimposed on it (Figure 1A), if the image was followed by an emotional sound, there was
impaired memory for the scene later--but only if it had been made lower priority by being in the
background (Figure 1B; Ponzio & Mather, 2014). Likewise, in another study in which participants
saw four items at the same time that were then followed by a tone that was either conditioned to
predict a shock (CS+) or no shock (CS-), having a subsequent arousing tone affected later
memory for the simultaneously shown items differently depending on the relative priority of the
items (Lee, Greening, & Mather, 2015). The model Strange and Galarza-Vallejo propose does not
explain how phasic LC activation could have different effects on items shown at the same time. In
our view, this is the main contribution of GANE -- by positing a mechanism for local cortical
modulation of NE, it provides the only explanation to date of how arousal can have simultaneous

differential effects on items based on their priority.

4.2. Amygdala-based model. Roozendaal et al. argue that the amygdala is necessary for NE to
enhance selective processing and memory consolidation of arousing stimuli. We agree that the
amygdala plays a critical role, but that its role in mediating the effects of NE is only necessary
when the amygdala is the primary site of the neural representation in question.

Data from individuals with amygdala lesions helps reveal which types of representations depend
on the amygdala and which types can be supported by other brain regions. Compared with
controls, unilateral amygdala patients showed as much enhanced visual cortex activity when
viewing emotionally salient images (Edmiston et al., 2013), as much of an advantage for

detecting emotional targets (Piech et al., 2010), and as much emotional capture by emotional



stimuli during an attentional blink task (Piech et al., 2011). Two individuals with selective bilateral
amygdala lesions showed a significant advantage in recalling aversive (compared with neutral)
words during an attentional blink task, and this advantage was as large as that seen for matched
control participants (Bach, Talmi, Hurlemann, Patin, & Dolan, 2011). Someone with complete
bilateral amygdala lesions who could not recognize fear from faces still showed normal rapid
detection of those faces (Tsuchiya, Moradi, Felsen, Yamazaki, & Adolphs, 2009). Thus, the
amygdala is not necessary for the initial selective attention and encoding advantages seen for
emotionally arousing stimuli, suggesting that NE-glutamate hotspots in sensory brain regions can

occur even in the absence of the amygdala.

In addition, highly salient sensory stimuli yield normal physiological responses in people missing
amygdalae (e.g., Tranel & Damasio, 1989). For instance, in studies of fear conditioning,
individuals with amygdala lesions show normal skin conductance responses to aversive stimuli
such as loud noises (Bechara et al., 1995; Klumpers, Morgan, Terburg, Stein, & van Honk, 2014).
Likewise, three patients with bilateral amygdala lesions each had a panic attack when inhaling
35% CO2 (Feinstein et al., 2013), indicating that amygdala lesion patients still experience fear in
response to interoceptive alarming cues. These intact responses to interoceptive or external
sensory stimuli contrast with the lack of fear shown by amygdala patients in response to
experiences or visual stimuli (e.g., a haunted house or a live snake) that typically elicit fear

because of their association with danger (Feinstein, Adolphs, Damasio, & Tranel, 2011).

This pattern of findings suggests the amygdala is essential for anticipatory physiological
responses to stimuli that predict something aversive. This possibility is supported by fear
conditioning studies with individuals with amygdala lesions (Bechara et al., 1995; Klumpers et al.,
2014). These individuals lacked skin conductance responses to CS+ cues that predicted loud
noises, even though they acquired explicit knowledge about the CS+ contingency. In contrast, an
individual with bilateral hippocampal lesions failed to acquire explicit knowledge about the

contingency but showed skin conductance responses to the CS+ (Bechara et al., 1995). Thus,



amygdala lesions impair physiological responding but not explicit learning about which cues
predict threat. Amygdala lesions also impair physiological responding to simulated monetary
rewards and losses in the context of a gambling game (Bechara, Damasio, Damasio, & Lee,
1999), indicating that the amygdala is necessary for an abstract stimulus predicting something

positive or negative to yield a physiological affective response.

The findings that patients with amygdala lesions no longer have physiological responses to
predictive cues despite as much explicit knowledge about the contingencies as normal controls
suggests that: 1) there are amygdala-based neural representations of associations between
neutral cues and potential affectively relevant outcomes; and 2) these amygdala-based
representations are necessary to trigger signals to sympathetic pathways to mount a
physiological response, possibly in part via amygdala projections to the LC (Cedarbaum &
Aghajanian, 1978).

Likewise, the finding that an individual with a hippocampal lesion lacked explicit knowledge about
fear conditioning contingencies despite showing a skin conductance response to the CS+
suggests that there also are amygdala-independent hippocampal-based neural representations of
associations between CS and US. However, in people with intact amygdalae and hippocampi,
these separate representations in the two regions are likely to have close interactions, in part
supported by a direct glutamatergic pathway from the basolateral amygdala to the CA1 region of

the hippocampus (Rei et al., 2015).

One domain in which the noradrenergic contributions to interactions between amygdala and
hippocampus have been examined is in one-trial learning to avoid a shock (Mcintyre et al., 2005).
In this paradigm, the beta-adrenergic receptor agonist clenbuterol is infused into the basolateral
complex of the amygdala shortly after a rat learns that moving from a brightly lit compartment of
an alley through a door to a dark compartment is associated with a shock. The beta-adrenergic
stimulation of the amygdala increases Arc expression (indicating more synaptic changes

occurred) in the hippocampus in the 45 minutes after the shock. Of particular relevance in this



context, however, are findings that the increased Arc expression depends not only on greater NE
activity in the amygdala itself, but also on arousal levels more generally (McReynolds, Anderson,
Donowho, & Mclintyre, 2014). Specifically, whereas basolateral amygdala infusions of a beta-
agonist increased Arc protein levels for the inhibitory avoidance shock task as seen in previous
studies and also for a “high arousal” version of an object recognition task, NE activity in the
amygdala was not sufficient to increase Arc in the hippocampus when the object recognition task
was not arousing. These findings suggest that glutamate-NE feedback loops in the amygdala can
be intensified by within-amygdala local beta-adrenergic activation (Figure 2A). This hotspot
activity increases glutamatergic signaling to the hippocampus (Figure 2B) but does not directly
increase NE levels in the hippocampus. However, the increased glutamatergic activity in the
hippocampus can stimulate local release of NE via NMDA receptor activity at LC neuron
varicosities if the LC is depolarized (Figure 2C; see target article for more details on hotspot
mechanisms). In summary, McReynolds’ data suggests that NE can influence hippocampal
activity either indirectly via glutamatergic pathways from the amygdala, or directly via local
release from LC varicosities. More generally, we posit that NE action within the amygdala has
important glutamatergic modulatory effects elsewhere in the brain (in particular in the
hippocampus) but that NE also modulates excitation and inhibition directly in these other brain
regions via local release. The critical experiments to test this have not been done yet (see

relevant proposed study in Table 2).



A. Beta-agonists increase hot spot activity in
the amygdala.

Beta-
agonist
infusion

C. If the locus coeruleus is depolarized, the
amygdala-induced glutamatergic activation in
the hippocampus stimulates local NE release
Glutamatergic excitatory activity at neurons and further amplifies glutamatergic activation
representing arousing information via glutamate-NE hot spot mechanisms.

B. Amygdala glutamate-NE hot spots
increase glutamatergic excitatory signals to
the hippocampus.

Glutamatergic pathway

Figure 2. Glutamate-NE hotspots originating in the amygdala modulate hippocampal activity via

glutamatergic pathways. However, local NE release within the hippocampus also has an impact.

Roozendaal et al. also argue that “the impairing effects of amygdala-NE interactions on memory
of non-salient/non-arousing information involve an active process that is dependent on the
amygdala.” They make this case based on Lovitz and Thompson (2015), whom they interpret as
showing that intra-BLA infusion of a beta-adrenergic agonist (clenbutorol) decreases hippocampal
excitability in non-IA trained control animals. However, their interpretation appears to be incorrect,
as in that study, there was no significant difference between vehicle and clenbutorol in the

untrained rats.

5. The role of NE hotspots in long-term memory formation
Some commentaries raise questions concerning the role of NE hotspots in memory. First,
Hurlemann, Nauerm & Scheele point out the importance of cortisol in addition to NE and

glutamate in explaining the effects of arousal on memory. Combining neuroimaging with a



psychopharmacological approach, Hurlemann and colleagues demonstrated that NE and
glucocorticoids interact during processing of emotional stimuli (Hurlemann, 2008; Kukolja et al.,
2008; Kukolja, Klingmuller, Maier, Fink, & Hurlemann, 2011). In particular, their work suggests
that NE interacts with cortisol to enhance learning of emotional information within the amygdala-

hippocampal network.

Acute stress and administration of glucocorticoids lead to enhanced glutamate release both in the
amygdala (Reznikov et al., 2007) and hippocampus (Moghaddam, Bolinao, Stein-Behrens, &
Sapolsky, 1994) via mechanisms mediated by glucocorticoid receptors (GR) and
mineralocorticoid receptors (MR; for reviews see Popoli, Yan, McEwen, & Sanacora, 2012; Sandi,
2011). In the amygdala and hippocampus, interactions between glucocorticoids and NE have
been observed as well (for reviews Joéls, Fernandez, & Roozendaal, 2011; Krugers, Karst, &
Joels, 2012). These results suggest the interesting possibility that glucocorticoids help NE create
hotspots in the amygdala-hippocampus circuit by enhancing glutamatergic activity. One question
is whether the NE-cortisol interaction goes beyond the amygdala-hippocampus circuit. While
most previous research focuses on the effects of glucocorticoids either in the amygdala-
hippocampus pathway or the PFC, glucocorticoids might also amplify NE hotspots in other
cortical regions, given that GRs are widely expressed in brain (Morimoto, Morita, Ozawa,
Yokoyama, & Kawata, 1996). Furthermore, elevated cortisol and NE levels tend to impair goal-
directed attentional processes in the PFC (Schwabe, Tegenthoff, Héffken, & Wolf, 2012), which
should enhance the impact of the bottom-up, salience-driven hotspots predominant in sensory

brain regions.

Second, Ritchey, Murty & Dunsmoor state that the tag-and-capture model is better able than
GANE hotspot mechanisms to explain the effects of arousal on memories for events that
happened minutes to hours before the arousing event. For example, initially weak memories can
be strengthened by a subsequent salient signal, such as novelty or aversive events (Dunsmoor,

Murty, Davachi, & Phelps, 2015; Redondo & Morris, 2011). The tag-and-capture model explains



these results by asserting that memory traces are tagged during initial learning, which allows for
subsequent plasticity-related proteins mediated mechanisms to capture those tagged traces to
create long-term memories. Ritchey et al. also argue that the effects of arousal on protein

synthesis processes are mediated by dopaminergic neuromodulation.

While in our target article we focused mainly on the immediate effects of NE hotspots, we believe
that evidence indicates a role of these hotspots in tag-and-capture scenarios. B-adrenergic
receptor activity stimulates protein synthesis and gene expression alterations associated with
long-term potentiation maintenance (Maity, Jarome, Blair, Lubin, & Nguyen, 2015; O'Dell,
Connor, Gelinas, & Nguyen, 2010). NE hotspots should play a role in tag-and-capture by
elevating local NE levels to activate B-adrenergic receptors as well as by increasing glutamatergic
activation of NMDA receptors. Both 3-adrenergic and NMDA activity (in addition to dopamine
D1/D5 receptor activity) are essential to “set the learning tag” for an initial weak memory and (3-
adrenergic receptor activation is required during exposure to the modulating novel event
occurring an hour later (Moncada, Ballarini, Martinez, Frey, & Viola, 2011). A particularly
intriguing finding is that the behavioral tagging phenomena requires the initial weak event and the
subsequent novel event to occur in the same sensory modality, thereby activating the same
general population of neurons (Ballarini, Moncada, Martinez, Alen, & Viola, 2009). Likewise,
Dunsmoor et al. (2015) found that fear conditioning enhanced memory for previously learned
images only when those images are semantically related to a fear-conditioned category; when
images of animals were fear-conditioned, memories for previously learned animals were
enhanced, whereas when images of tools were fear-conditioned, memories for previously learned
tools were enhanced. This is consistent with the local nature of NE hotspots and raises the
interesting question of just how widely the plasticity-related proteins stimulated via 3-adrenergic
receptor activation at NE hotspots modulate interconnected memory circuitries. The behavioral
findings (Ballarini et al., 2009; Dunsmoor et al., 2015) suggest that they do not have an influence
much beyond a local region that represents the same category or sensory modality of item. While

much still needs to be worked out about the potentially complementary roles of dopamine and



norepinephrine on tag-and-capture phenomena, we believe that thinking about the local nature of

the B-adrenergic activity induced by arousing modulatory events will be fruitful.

6. How GANE amplifies prioritized representations during a “network reset”

According to a prominent theory, NE release orchestrates a “network reset” that reorients
attention and, consequently, re-organizes underlying representational networks during a sudden
and unexpected change in environmental imperatives (Bouret & Sara, 2005; Sara & Bouret,
2012). We agree with Susan Sara’s perspective that GANE is complementary to the ‘reset’
hypothesis. From the perspective of GANE, whether this type of reorienting occurs will depend on
whether there are currently representations with high glutamatergic activity or not. If there are no
current strongly active representations, both GANE and the network reset theory predict that the
predominant effect of an increase in LC activity would be to enhance reorienting to new salient
stimuli. However, when there is already a highly active representation, GANE predicts that an
increase in LC activity will further enhance processing of that representation (e.g., Anderson,
Wais, & Gabrieli, 2006; Knight & Mather, 2009; Sakaki, Fryer, et al., 2014), which appears to be
the opposite of a network reset effect. Based on these findings, in our target article we argued
that the network reset perspective fails to account for the ability of arousal to enhance memory of
preceding high priority information. Sebastian Bouret responded by suggesting that enhanced
memory for a preceding event could be consistent with a network reset if, when an arousing
event occurred, the preceding salient event was now represented in a qualitatively different way

that was integrated with the arousing event.

One domain with evidence related to the “altered” representation view is the fear/evaluative
conditioning paradigm; events repeatedly followed by emotional outcomes acquire emotional
properties (for a review see Baeyens, Field, & Houwer, 2005). Our previous research also
demonstrates that when individuals are presented with neutral cues followed by emotional or
neutral outcomes, emotional outcomes facilitate memory for neutral cues only when they are

aware of the cue-outcome contingency (Mather & Knight, 2008; Sakaki, Ycaza-Herrera, &



Mather, 2014). These results are in line with Bouret’'s argument that arousal enhances memory

for preceding information when the preceding information is integrated with the arousing events.

However, there is also evidence consistent with the idea that arousal strengthens original
representations for high-priority information. Empirical evidence suggests that emotional arousal
enhances the veracity of the original representation, or detail memory, rather than gist alone
(Sakaki, Fryer, et al., 2014). To address the important question raised by Bouret about whether
arousal changes the nature of representations, future research should probe the effects of
arousal on the specificity of mental and neuronal representations. At least one recent study
suggests active sensory representations are strengthened rather than altered by noradrenergic

system activation (Shakhawat et al., 2015).

7. Alternative ways to trigger LC activity
While most of the target article focused on how emotionally arousing stimuli shape cognitive
processing, hon-emotional stimuli can also activate the LC and thereby influence cognition. In this

section, we discuss how prediction errors, uncertainty and competition each influence LC activity.

7.1. Prediction errors activate LC. Prediction is a central feature of efficient cognitive
processing. As described by Fernando Ferreira-Santos, GANE fits well with ‘predictive coding’
frameworks of cognition: sudden mismatches between predicted and actual sensory and affective
inputs represent an important form of conflict and competition that can elicit arousal and LC
activity. Supporting this view, pupil dilation has been linked to the occurrence of prediction errors
(Braem, Coenen, Bombeke, van Bochove, & Notebaert, 2015; Preuschoff, Marius’t Hart, &
Einhauser, 2011). Furthermore, in monkeys, phasic LC activity ceases to signal the occurrence of
reward once it follows a specific action predictably (Sara & Segal, 1991). Emotional arousal likely
elicits the most robust biased competition effects, because it represents the “net sum” of several
types of prediction error, including sensory, affective, and task-related mismatches (Barrett &

Simmons, 2015; Vogel, Shen, & Neuhaus, 2015).



7.2. Uncertainty activates LC. As pointed out by Nassar, Bruckner and Eppinger (as well as
by Bouret), it is important to consider the purpose of having different levels of arousal change
cognitive processing. When is it useful for cognitive processing to remain focused on previously
salient information and when will it be advantageous to be open to new prioritized information?
Nassar and colleagues argue that during times of uncertainty, it is especially important not just to
focus on current prioritized cues but to amplify incoming prioritized sensory information (Yu &
Dayan, 2005). They review findings that pupil diameter is larger during periods of uncertainty than
when expectations are reliable. Thus, tonically higher levels of NE should decrease the threshold
for new salient stimuli to ignite hotspots. They suggest that older adults’ deficits in learning under

conditions of uncertainty may be linked with age-related declines in LC function.

7.3. Conflict activates LC and is related to gamma and theta oscillations. As highlighted by
Hans Phaf, there is much evidence that competition and conflict between representations can
induce arousal. These stimuli/events are likely to produce hotspots too, based on evidence that
conflict - along with novelty, target detection, uncertainty, and performance errors - elicit LC
activity (for reviews see Berridge & Waterhouse, 2003; Nieuwenhuis, Aston-Jones, & Cohen,
2005; Ullsperger, Harsay, Wessel, & Ridderinkhof, 2010; Yu & Dayan, 2005). Fundamentally,
GANE predicts that any stimulus that activates the LC-NE system will produce hotspots in an
activity-dependent manner, regardless of whether NE release is triggered by something
emotional or not. If competition elicits arousal, it could very well be an effect driven by prediction
errors (i.e., significant discrepancies between feedforward and feedback inputs) initiating a

network reset via the LC.

One particularly useful contribution to GANE is Phaf’s description of the distinct but
complementary roles of theta and gamma oscillations in signaling and resolving stimulus conflict,
respectively. According to Phaf, theta arises from conflict, is a substrate of arousal, and helps

select dominant representations via inter-cortical communication. Subsequently, gamma



oscillations facilitate a resetting and stabilization of “winning” representations. We also agree with

his assertion that competition begets arousal, as conflict can elicit LC responses.

His description is consistent with Susan Sara’s empirical data. In her commentary, Sara
describes evidence that stimulating the LC briefly suppresses gamma oscillations for 200ms,
which is followed by a near doubling of the gamma power immediately after, as well as an
increase in theta power (Sara, 2015). Interestingly, in an early report of conflict activating LC, the
absence of expected reward elicited a specific theta band increase (~7.7 Hz) in hippocampus
(Gray & Ball, 1970). This effect was later demonstrated to require forebrain norepinephrine (Gray,
McNaughton, James, & Kelly, 1975). It could be useful to re-examine this theta signature of LC
activation (for more recent support see Walling, Brown, Milway, Earle, & Harley, 2011) and its
role in synchronizing activity for prioritized representations. Another interesting question is
whether (as suggested in the target article) NE hotspots enhance local gamma power via a beta-

adrenergic pathway, thereby increasing selective attention.

8. Additional mechanistic considerations/complications for GANE

As noted by several commentators, GANE is necessarily a simplification of a complex reality. It
does not, for example, incorporate the function of post-synaptic alpha2 receptors, the
subthreshold input promoting role of alpha1 receptors, the synergistic role of alpha1 with beta-
adrenergic receptors or recently described astrocytic functions of alpha1 receptors. The co-
release of peptides from LC varicosities is not considered nor are the probable role of other
neuromodulators known to be elevated in various forms of arousal discussed. This is a beginning
that will, ideally, lead to a more veridical model of cortical self-regulation and the role of arousal in
engaging self-regulatory mechanisms. Below we discuss some of the mechanistic issues raised

in the commentaries.

8.1. Varied effects of adrenoceptors. As highlighted in several commentaries, the GANE model

does not incorporate all known adrenoreceptor functions. These omissions include the role of



postsynaptic alpha2 receptors that play important roles in the PFC (see commentaries by
Abdallah et al. and Todd et al.) and which also occur in other areas of neocortex (Venkatesan,
Song, Go, Kurose, & Aoki, 1996). Navarra and Waterhouse and Gaucher and Edeline point out
that alpha1-adrenoreceptors have more varied actions, including synergies with beta-
adrenoreceptor effects, potentiating effects on their own, and astrocytic actions. In particular, they
highlight that the role of alpha1-adrenoreceptor in sensory cortex may be facilitatory: when
activated, these receptors appear to potentiate postsynaptic excitatory responses and can boost
subthreshold inputs (for a review see Berridge & Waterhouse, 2003). Furthermore, Ding et al.,
(2013) have shown that global astrocytic calcium waves are initiated via LC-NE activation of
astrocytic alpha1-adrenoreceptors (Ding et al., 2013), consistent with a model in which LC-NE

global effects recruit both alpha1- and alpha2-adrenoreceptors.

8.2. NE has mainly suppressive effects in sensory regions. Gaucher and Edeline emphasize
the suppressive actions of exogenous NE on processing in auditory cortex as being inconsistent
with GANE. But their finding that a small population of auditory neurons encoding natural stimuli
are enhanced by NE (Gaucher & Edeline, 2015) and contribute to discrimination is similar to
newer findings in olfactory cortex that LC-NE modulation is essential for difficult natural odor
discrimination and increases the stability of small distributed odor representations (Shakhawat et

al., 2015), as predicted by GANE.

8.3. Differential effects of adrenergic receptors in the prefrontal and posterior cortex.
Chadi Abdallah and colleagues highlight the differences between the actions of NE on classic
sensory synapses in subcortical and posterior sensory regions and newly evolved circuits in layer
3 of the DLPFC. Based on animal and human research, they suggest hotspot effects are most
likely to occur in sensory and limbic (e.g., amygdala, hippocampus) synapses where beta-
adrenoreceptors promote glutamate responses and LTP. In the PFC, in contrast to “classic”
sensory areas, beta-adrenoreceptor activation has been shown to impair rather than enhance

postsynaptic function via increased cAMP signaling (Arnsten, Raskind, Taylor, & Connor, 2015;



Ramos & Arnsten, 2007). Like beta-adrenoreceptors, alpha1- and alpha2-adrenoreceptors also
appear to have contrasting influences on neuronal activity in the PFC versus sensory cortices:
whereas alpha1 receptors enhance sensory neuron firing, they tend to impair PFC function and
working memory (Ramos & Arnsten, 2007); on the other hand, whereas alpha2 receptors
enhance inhibitory signals and suppress noisy activity in the posterior cortex, their activation
strengthens DLPFC functional network connectivity and promotes working memory (Arnsten,

Wang, & Paspalas, 2012).

These inverted rules of adrenoreceptor function in the PFC have important implications for how
GANE influences cognitive processing during sudden arousal. Whereas an arousal-induced
surge of NE may disrupt working memory representations in the DLPFC (e.g., current event
models), it should also transiently enhance the throughput of strong glutamatergic signals in the
hippocampus (Brown, Walling, Milway, & Harley, 2005). Thus DLPFC impairments may facilitate
reorienting during arousal to information that has bottom-up salience and is associated with

hotspots of high activity in sensory regions but not in PFC.

8.4. Relative timing of arousal and prioritization process. The key distinction outlined in the
previous section between the effects of NE in sensory cortices and limbic regions versus in the
PFC accords well with the timing hypotheses proposed by Warren et al. In their commentary,
Warren and colleagues present evidence that the relative strength of bottom-up and top-down
(cognitive control) priority inputs changes rapidly within a single trial. Whereas bottom-up salience
dominates the competition for mental resources early on, cognitive control processes take longer
to develop and overcome the initial dominance of perceptual salience. Warren et al. suggest that
this time-variant model of salience determines whether phasic arousal enhances or impairs task

relevant (but not perceptually salient) information.

Indeed, the GANE model predicts that arousal-induced NE release will bias competition in favor

of whatever information has the highest priority at that moment. Experiencing arousal while a



representation is highly active should amplify the effects of priority in perception and memory
regardless of whether the priority occurred via top-down goals or bottom-up salience, since
cognitive control goals have had sufficient time to strengthen goal-relevant representations
elsewhere in cortex before any potential disruption of PFC due to moderate-to-high levels of NE
occurs (Ramos & Arnsten, 2007). In contrast, the source of priority may matter more when
experiencing arousal before a stimulus is perceived. While pre-stimulus arousal should amplify
the effects of bottom-up salience, it might actually diminish the effects of top-down priority if, as
outlined in the previous section, working memory processes that help maintain and implement

processing goals are impaired by the arousal (Ramos & Arnsten, 2007).

Data from our lab provide clear evidence that pre-stimulus arousal enhances the impact of
bottom-up salience (Lee, Itti and Mather, 2013; Sutherland and Mather, 2011; Sutherland and
Mather, 2015), while post-stimulus arousal enhances the impact of top-down prioritization (Lee,
Greening and Mather, 2015; Sakaki et al., 2014). Whether arousal enhances priority for the other
two combinations remains to be seen. We have not yet tested scenarios in which something
perceptually salient is followed by something arousing, but GANE would predict that as long as
the representation associated with that perceptually salient item were still strongly active when
arousal increased, it would benefit further from the arousal. In contrast, as outlined above, the
situation in which arousal occurs before top-down prioritization occurs could show the reverse
effect -- insofar as arousal disrupts PFC ability to prioritize an otherwise non-salient stimulus,
arousal should diminish the impact of top-down priority because the goal-relevant representation
isn’t highly activated. Consistent with this, we have found that playing an emotional sound before
a brief display of letters makes it harder for participants to selectively report the letters in the high
point value color (Sutherland, Lee, & Mather, in preparation). Based on the impairing effects of
high NE on DLPFC, in order for a pre-stimulus arousal to enhance processing of a goal-relevant
item, the goal prioritization process would need to be relatively independent of PFC, perhaps

because it is automatic or habitual.



8.5. Inverted-U relationship between LC firing and cognitive selectivity. Aston-Jones and
Cohen (2005) proposed an inverted-U model of tonic NE function, in which low tonic LC activity
promotes being inattentive and non-alert, moderate LC activity promotes being focused, and high
tonic LC activity promotes distractibility. In their commentary, Navarra and Waterhouse bring up
the question of where along the inverted-U function the glutamate-NE interactions proposed in
GANE would operate. Their question is in part inspired by data from Devilbiss and Waterhouse
(2000), who simultaneously administered glutamate and NE into in vitro rat barrel field cortex
slices. They found that some cells showed a monotonic suppression of the excitatory post-
synaptic response to glutamate, as NE increased. Other cells showed an inverse U shape, in
which there were increasing glutamate-evoked discharges as NE increased to 5 nA but then
decreasing glutamate-evoked discharges as NE tonic levels were further increased (10-30 nA).
These findings suggest that tonic levels of NE modulate post-synaptic responses to glutamatergic
input, which is quite interesting. In particular, it seems that high tonic levels of NE would quiet
activity in neurons exhibiting this post-synaptic NE suppression, which could contribute to the
general decrease in neural noise seen under arousal (one interesting side note is that they found
that, unlike in layers Il/lll, NE-induced facilitation of glutamate-evoked responses was the
predominant response in layer V, which may connect with the apical amplification ideas of
Larkum and Phillips). However, the in-vitro preparation of the study eliminated the LC from the
equation and so did not provide the opportunity to observe the glutamate-evoked local release of
NE proposed in GANE. As outlined in Table 2, more research is needed measuring in vivo
interactions of glutamate and NE, as the GANE hotspot mechanism involves interactions between

the LC and distant cortical representations.

8.6. Individual differences. Geva points out that tonic levels of arousal predict whether infants
orient towards novel or familiar stimuli and suggests that infancy is an interesting test case for
GANE as, unlike in later stages of development, infants lack “established neural network(s)” and

aren’t, “set with implicit “know-how’s” that provide the glutamatergic priority signal necessary to

ignite hotspots under arousal. Differences at the other end of life are also relevant, as Nassar et



al. point out. Genetic variation in adrenergic receptors also may matter, as Todd et al. make the

case that ADRA2b deletion carriers have reduced inhibitory autoreceptor function.

9. Conclusion

As evinced by the diverse range of commentary, the NE hotspot mechanism goes beyond just the
emotion-cognition literature to explain how arousal influences different forms of cognitive
selectivity. One of GANE’s most vital contributions is that it showcases the ability of the cortex to
regulate its own processing efficiency. Such local control of cognition represents a fundamental
mechanism of adaptive brain function that has the potential to explain a variety of cognitive
phenomena. As GANE exemplifies, synaptic activity isn’t just passively modified by
neuromodulators. Instead, under situations of arousal that demand our attention, such as threat

or excitement, salient brain signals recruit the ingredients necessary to form lasting memories.



Table 1. General topics raised in commentaries.

What elicits LC
activity?

Higher levels of arousal associated with uncertainty may help new
salient information gain priority via hotspot mechanisms whereas lower
levels of arousal may protect existing strong predictions from distracting
information under conditions of high certainty (Nassar, Bruckner &

Eppinger).

Prediction errors may trigger a phasic NE response that facilitates the
selective updating of predictions in the prioritized manner outlined by
GANE (Ferreira-Santos).

Competition elicits arousal, which leads to an increase in theta and
gamma oscillations that select and stabilizing “winning” representations
(Phaf).

Negative stimuli might evoke more arousal than positive stimuli (Kaspar).

Forms of priority

Fluently processed stimuli yield a stronger signal (or are more salient)
and so GANE can explain how arousal amplifies responses to these
stimuli. (Carbon)

How does GANE
operate in relation to
specific aspects of
brain function?

Commentators discussed dendritic integration (Larkum & Phillips),
relative timing of oscillatory patterns (Phaf), the role of the dentate
gyrus in memory selection (Houghton), and genetic variations in the
ADRAZ2B gene (Todd, Ehlers & Anderson).

The spatial extent of
hotspots

Eldar et al. recognize that in the GANE model hotspots would be co-
extant with distributed cortical representations, while Gaucher and
Edeline are expecting more spatially extensive loci. This difference in
visualization highlights the need for tools to identify active hotspot
elements. Immediate early genes may be useful in this regard.

What are the
adaptive functions of
the neural effects of
NE?

GANE may be a general purpose function that cuts across a variety of
cognitive and behavioral effects (Hull)

Salient events trigger the LC to release NE cortically, which facilitates a
‘network reset’ that promotes quick changes in cortical states and
adaptive behavioral responses (Sara).

Salient stimuli may predict threatening or significant stimuli (Bouret)

Relevance of GANE
in various domains

Stress. Endocrine signals, in particular cortisol, work in tandem with NE
to promote long-term adaptive changes and memories (Hurlemann,
Maier, & Scheele).

Sleep and memory. Acetylcholine is likely to have different hotspot
properties than NE and so low NE and high acetylcholine during REM
sleep may help explain lack of memory for dreams (Becchetti & Amadeo).

Early development. The LC shows developmental changes during
infancy and early development and early life stress shapes glutamate and
GABA responses in ways that should be considered in the GANE model
(Geva).

Responses to sexual stimuli. Contrary to expectations of posture
showing approach/avoidance biases, people viewing either threatening or
sexual stimuli show a freezing-like reaction in which they are more




immobile (Mouras).

Emotion regulation. Arousal levels should influence the ability to alter
behavioral responses (Hull).

Appraisal theory. Stimuli that are relevant for individuals’ goals, needs
and values induce strong arousal and amygdala activity (Montagrin &
Sander)

Factors that should
be addressed

Commentators pointed out that GANE needs further development to
specify timing (Talmi & Barnacle; Navarra & Waterhouse; Warren,
Murphy, & Nieuwenhuis), address different effects in prefrontal cortex
(Abdallah et al.), role of context and individual differences in
determining salience (Huntsinger & Storbeck), the role of alpha-1
receptors (Navarra & Waterhouse). and again the role of timing in beat-
to-beat the functional effects LC firing modulation and cortical activity
modulation (Critchley).

Alternatives to GANE

Priority is coded by phasic NE release and so there is no need for
glutamate to signal priority (Strange & Galarza-Vallejo; see response in
section 4.1)

The amygdala is necessary for NE to enhance selective processing and
memory consolidation of arousing stimuli (Roozendaal, Luyten, de Voogd,
& Hermans; see response in section 4.2)

The tag-and-capture model is better able than GANE hotspot
mechanisms to explain the effects of arousal on memories for events that
happened minutes to hours before the arousing event (Ritchey, Murty, &
Dunsmoor; see response in section 5).

Countering the target article’s argument that a ‘network reset’ model
could not account for enhanced memory for well-attended items seen
before an arousing event, Bouret argued that such enhanced memories
could be accounted for by network reset if the qualitative nature of the
representation changed (see discussion in section 6).




Table 2. Data needed to test hypotheses and better understand arousal-priority or NE-glutamate

interactions.

Can we measure GANE-
proposed neurotransmitter
mechanisms in laboratory
animals?

Direct measurements of local glutamate levels and NE or beta
adrenergic receptor activation levels in awake cortex with
arousal/cue manipulations would make it possible to test our
physiological GANE model. New techniques make it possible
to track extra-synaptic glutamate activity (Okubo et al., 2010)
and researchers are getting closer to being able to monitor
levels of NE and G-couple protein receptor activation at
spatial resolutions corresponding to a representational
network (Muller, Joseph, Slesinger, & Kleinfeld, 2014).

Does NE interact with
apical amplification priority
signaling?

The Larkum and Phillips hypothesis that NE modulates apical
amplification in the output neurons of cortex as the mediator
of top down or cortico-cortical priority signals can be
examined both in vitro and in vivo. Evidence for such gating
would significantly expand the GANE model.

Is ‘network reset’ a general
motor-sensory or a
structure-specific effect?

Immediate early genes with the ability to reveal two brain
activation sequences separated by a temporal interval could
test the reset (reorganizing) versus amplification effects of
phasic LC activation. We predict evoked sensory
representations would be enhanced and stabilized by phasic
glutamatergic activation of LC while hippocampal and
possible prefrontal representations would be reconfigured.
Tonic effects of NE would not evoke reset.

How close in time does
phasic arousal need to be
in order to modulate the
priority of another event?

Initial behavioral data suggest that arousal induced by one
event can modulate processing of other events occurring
within a few seconds (see target article for review). Previous
work indicates glutamate activation of NMDA receptors has
slow decay that can last hundreds of milliseconds (Lester,
Clements, Westbrook, & Jahr, 1990), but more work is
needed to quantify the timing of glutamate and NE actions at
hotspots (allowing for formal modeling, as highlighted by
Warren et al. in their commentary).

Can we measure GANE-
proposed neurotransmitter
mechanisms in humans?

Advances in human magnetic resonance spectroscopy (MRS)
enable the measurement of glutamate metabolites in vivo, but
with poor spatial and temporal resolution. One straightforward
test of GANE would be to examine whether an arousing
stimulus can elicit a local, activity-dependent increase in
glutamate levels for a prioritized stimulus.

Test of NE hotspots in
humans

During task-related fMRI involving an arousal x priority
manipulation, trial-by-trial estimates of pupil dilation to the
arousing stimulus could be used to scale BOLD responses in
cortical representational regions underlying the high priority
stimulus. Thus, this would provide an estimate of how LC
responses selectively modulate local cortical activity.

Test Roozendaal et al.’s
argument that NE effects
on memory rely on the
amygdala.

The fact that the hippocampus has many NE receptors
suggests that NE can modulate memory consolidation in the
hippocampus directly, without amygdala modulation (while NE
release in the amygdala can lead to glutamatergic activation
of hippocampus, it does not directly increase NE in the




hippocampus; see Figure 2). A simple experiment would be to
attempt to modulate consolidation of a hippocampally
represented memory such as learning the context of a novel
object by infusing NE into the hippocampus (as has been
done with NE infused into the amygdala Barsegyan,
McGaugh, & Roozendaal, 2014)

The inverted U curve

A direct examination of inverted U curve effects with
norepinephrine would be of interest. It is not clear if the
functional shift seen at high levels of arousal is uniquely, or
even critically, due to high NE levels or is a multifactorial
effect depending on co-activation of other systems.
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