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Abstract We assess Indian summer monsoon seasonal 26
forecasts in GloSea5-GC2, the Met Office fully coupled 2
subseasonal to seasonal ensemble forecasting system. 2s
Using several metrics, GloSea5-GC2 shows similar skill 2
to other state-of-the-art forecast systems. The predic- s
tion skill of the large-scale South Asian monsoon cir-

culation is higher than that of Indian monsoon rain-*
fall. Using multiple linear regression analysis we evalu-*
ate relationships between Indian monsoon rainfall and

five possible drivers of monsoon interannual variability.

Over the time period studied (1992-2011), the El Nifo- 5
Southern Oscillation (ENSO) and the Indian Ocean

dipole (IOD) are the most important of these drivers,,
in both observations and GloSea5-GC2. Our analysis s
indicates that ENSO and its teleconnection with the s
Indian rainfall are well represented in GloSeab-GC2. 5,
However, the relationship between the IOD and Indian s
rainfall anomalies is too weak in GloSea5-GC2, which s
may be limiting the prediction skill of the local mon-,
soon circulation and Indian rainfall. We show that this,;
weak relationship likely results from a coupled mean ,,
state bias that limits the impact of anomalous wind ,;
forcing on SST variability, resulting in erroneous IOD ,,
sst anomalies. Known difficulties in representing con- 4
vective precipitation over India may also play a role.,
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Since Indian rainfall responds weakly to the 10D, it
responds more consistently to ENSO than in observa-
tions. Our assessment identifies specific coupled biases
that are likely limiting GloSea5-GC2 prediction skill,
providing targets for model improvement.

Keywords Indian monsoon, seasonal forecasting,
Indian Ocean dipole

1 Introduction

Analysis of intraseasonal and interannual modes of In-
dian summer monsoon rainfall variability suggests that
there is a significant seasonally persisting component
of Indian monsoon rainfall anomalies forced by slowly
varying boundary conditions (Charney and Shukla, 1981;
Krishnamurthy and Shukla, 2000, 2007). For variabil-
ity in boundary conditions to be a useful source of sea-
sonal predictability, anomalies must be large and persis-
tent, they must interact with monsoon rainfall through
a consistent physical mechanism and the response of
monsoon rainfall must be large enough to distinguish
from the intrinsic variability of the atmosphere (Kang
and Shukla, 2006). Studies have investigated the pre-
dictability gained from many sources, including modes
of sea surface temperature (SST) variability, variabil-
ity of soil moisture and interannual variability of snow
cover (e.g. Palmer and Anderson, 1994; Goddard et al,
2001).

For the Indian summer monsoon, the most signif-
icant and well known source of predictability is the
El Nino-Southern Oscillation (ENSO, e.g. Shukla and
Paolino, 1983). A developing El Nino event warms SST's
in the east Pacific, shifting the Walker circulation such
that anomalous subsidence occurs over the Maritime
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Continent and Indian Ocean, reducing monsoon rain-in
fall. A developing La Nina event has the opposite effectu
(e.g. Webster and Yang, 1992; Ju and Slingo, 1995).:
Recent work suggests that the zonal location of theus
warm SSTs alters the strength of the relationship byus
altering the location of the anomalous subsidence. Cen-i
tral Pacific El Nifio events are consequently more likelyu7
to strongly suppress monsoon rainfall than east Pacificis
El Nino events (Krishna Kumar et al, 2006). 119

Another important known source of predictability2
is the the Indian Ocean dipole (IOD, also known agz
the Indian Ocean Zonal mode). The I0OD is a coupledi
mode of SST variability in the equatorial Indian ocean2s
analogous to ENSO in many ways. In a positive IQD24
event, anomalous easterlies develop in spring off thew=s
coast of Sumatra which increase upwelling, shoal theis
thermocline and create cool SST anomalies that ex-27
tend into the eastern equatorial Indian Ocean (EEIO).2s
These are often accompanied by warm SST anoma-2
lies in the western equatorial Indian Ocean (WEIQO).z
This changes the zonal equatorial SST gradient, andi
consequently reinforces equatorial zonal easterly wind
anomalies. An IOD event continues to develop throughss
July and August and peaks in the autumn (Saji et aljs
1999; Webster et al, 1999; Annamalai et al, 2003). Us-3
ing an atmospheric GCM (AGCM), Ashok et al (2001 )
demonstrated that a positive IOD event drives anoma-137
lous low-level atmospheric convergence in the WEIOss
and divergence in the EEIO that strengthens the Southis
Asian monsoon circulation, increasing rainfall over In-14
dia. i

Kucharski et al (2007, 2008) identify a component*
of Indian monsoon interannual variability that is forced*
by the Atlantic Nifio, an ENSO-like mode of SST vari-*
ability in the southeastern tropical Atlantic. Atlantic**®
Nino SST anomalies extend from the Angola coast to™*
the Gulf of Guinea in spring and summer (Chang et a
2006). Using AGCM experiments, Kucharski et al (2007;*
2008) demonstrate that cool SSTs (Atlantic Nifa) drive®
a stationary wave response that creates a low-level cy-"*
clone over India, bringing increased moisture to India™
and increasing seasonal monsoon precipitation. 152

1,147

Many studies have explored the role of snow over"
Asia in driving monsoon rainfall interannual variabil-""
ity (see references in Fasullo, 2004). Sensitivity experi-
ments in atmospheric GCMs (Turner and Slingo, 2011)™
and the ECMWF seasonal forecast system 4 (Senan
et al, 2015), demonstrate a mechanism linking snow,
over the Himalayas and Tibetan Plateau (HimTP) with
the timing and intensity of the Indian monsoon. Theyis,
show that increased snow cover over the HimTP in
spring and summer reduces surface sensible and long-ise
wave heating as proposed by Blanford (1884), whichueo

57

delays the onset of the monsoon and significantly re-
duces monsoon rainfall in June. As HimTP snow cover
decreases rapidly through the spring and early summer,
interannual snow variability has little impact on rainfall
variability later in the monsoon season.

Despite these many sources of predictability, Indian
monsoon rainfall prediction skill is modest in state-of-
the-art coupled seasonal prediction systems (Kim et al,
2012; Rajeevan et al, 2012; Nanjundiah et al, 2013).
The DEMETER sample of six seasonal forecast sys-
tems had a multimodel mean interannual correlation
skill of 0.28 (p > 0.1) over 1960-2001. The more recent
ENSEMBLES sample, which uses updated versions of
the DEMETER systems, improved to 0.45 (p < 0.05)
over the slightly longer time period of 1960-2005. Mean
state biases in boundary conditions, poor representa-
tion of coupled teleconnections with monsoon rainfall,
large ensemble spread and the lack of seasonal pre-
dictability of intraseasonal variability are some of the
challenges that face monsoon seasonal prediction (Sper-
ber et al, 2000; Krishnamurthy and Shukla, 2007; Kim
et al, 2012; Rajeevan et al, 2012; Sperber et al, 2013).

Here, we assess Indian summer monsoon seasonal
forecasts in GloSeab-GC2, the Met Office fully cou-
pled subseasonal to seasonal ensemble forecasting sys-
tem. We assess the representation of the tropical mean
state, the prediction skill of monsoon rainfall (all In-
dia rainfall, AIR) and representation of relationships
between monsoon rainfall and ENSO, the IOD, the At-
lantic Nifio and HimTP snow cover. In this publica-
tion we focus on the interannual variability of monsoon
rainfall; a future publication will focus on intraseasonal
variability (Jayakumar et al, 2016).

In Section 2 we describe the forecast system, the in-
tegrations analysed and our analysis techniques. In Sec-
tion 3 we describe the global properties of the forecast
system, including mean state biases and maps of en-
semble signal-to-noise ratios. In Section 4 we assess the
interannual prediction skill of Indian summer monsoon
rainfall. In Section 5 we use multiple regression analy-
sis to assess the representation of relationships between
AIR and sources of predictability. Where the regression
analysis indicates these relationships are poorly repre-
sented, we explore the mechanisms behind these rela-
tionships in more detail, to determine the source of the
errors. We conclude in Section 6.

2 Methodology
2.1 GloSea5-GC2

Full details of the GloSea5-GC2 configuration are de-
scribed in Williams et al (2015), so we limit our descrip-
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tion here to a brief introduction of the componant mod-2
els. GloSea5-GC2 uses the MetUM global atmospherexs
6.0 (GAG6.0) configuration at N216 resolution (0.833° xau
0.556°) with 85 vertical levels (Walters et al, 2015). Ites
includes a stochastic physics scheme, Stochastic Kineticas
Energy backscatterv2 (SKEB2, Bowler et al, 2009), toxr
represent unresolved stochasticity. SKEB2 introduces:s
small grid-level perturbations throughout the integra-:
tions to create ensemble spread. The global land 6.0k
(GL6.0) configuration of JULES (Best et al, 2011; Wal-x
ters et al, 2015) with four vertical soil levels is “tightlys.
coupled” to the MetUM: integrated on the MetUM gridxs
as part of the same executable. The MetUM is cou-
pled on a three-hourly time scale to ocean and sea icexs
models using the OASIS3 coupler (Valcke, 2013). Thexs
global ocean 5.0 (GO5.0) configuration of the Nucleus,,
for European Modelling of the Ocean (NEMO) modebs
is integrated on the ORCA 0.25° tripolar grid with 75y
vertical levels. The level thickness is a double tanh func-s,
tion of depth such that the level spacing increases froms
1 m near the surface to 200 m at 6000 m (Megann,,
et al, 2014). The global sea ice 6.0 configuration of the,;
Los Alamos sea ice model (CICE) is tightly coupled to,,
NEMO on the NEMO grid (Rae et al, 2015; Meganmn,,
et al, 2014) and integrated with five sea-ice thickness,
categories. 237
238
239

2.2 Hindcast set

240

The hindcast set we assess here is composed differently**
than the ensemble used for operational seasonal fore?*
casts and from the hindcasts used to bias correct the op*
erational forecast. For comparison, we describe the op>*
erational forecast system before describing the dataset
we use here.

In the operational forecast system, two seasonal fore-ss
cast ensemble members are initialised every day and
integrated for 210 days. Three weeks of ensemble mem-s
bers are combined to create the operational seasonal
forecast, a total of 42 ensemble members in each fore-s
cast. These are bias corrected using a 14 year (1996-s
2009), three ensemble member hindcast set initialisedzo
on the 1,9, 17 and 25th of each month. The four nearestso
weeks of hindcasts, a total of 12 ensemble members, ares:
weighted, combined, and then used to bias correct thes.
forecasts. The GloSea5-GC2 operational forecast sys-ss
tem is fully described in MacLachlan et al (2015). 254

The hindcast set in this study contains 20 years obss
hindcasts, spanning 1992 to 2011, which are initialisedess
on three start dates, 25 April, 1 May and 9 May. Theyss:
are integrated for 140 days, ending on 11, 17 and 25ss
September. To assess seasonal monsoon rainfall, we val-ssoe
idate JJA values, leaving a forecast lead time of ap-o

proximately one month. For years 1992 through 1995,
2010 and 2011 eight ensemble members are initialized
on each start date, resulting in 24 members for each
hindcast year. For 1996 through 2009, five ensemble
members are initialized on each start date, resulting
in 15 members for each hindcast year.

The MetUM and JULES are initialised from daily
ERA-Interim reanalysis (gridded to 0.75 x 0.75°, Dee
et al, 2011). JULES soil moisture is initialised from a
JULES re-analysis climatological seasonal cycle of soil
moisture calculated (1989 to 2011). NEMO and CICE
are initialised from the GloSeab Ocean and Sea ice anal-
ysis using the GloSea5 global ocean 3.0 system (here-
after referred to as the GloSea5-GO3 analysis), which is
driven by ERA-Interim reanalysis and incorporated us-
ing the NEMOVAR data assimilation scheme (Blockley
et al, 2014). NEMOVAR is based on NEMO and CICE
using the same resolution and similar parametrisations
as the forecast model configurations (Mogensen et al,
2009).

A climatological seasonal cycle of solar forcing is
prescribed. Climate forcings such as COs are set to ob-
served values until the year 2005, and subsequently fol-
low the Intergovernmental Panel on Climate Change
RCP4.5 scenarios. Other aerosols are updated every
five days and use a climatological seasonal cycle derived
from previous versions of the MetUM. Ozone concentra-
tions are updated every 30 days and are set to the ob-
servational climatology of the Stratosphere-troposphere
Processes And their Role in Climate (SPARC, Cionni
et al, 2011) dataset (1994 to 2005). Further details are
described in MacLachlan et al (2015) and Williams et al
(2015).

2.3 Analysis techniques
2.3.1 Multiple linear regression analysis

To assess relationships between Indian rainfall and slowly
varying boundary conditions, we perform multiple lin-
ear regression analysis. We use the “regress” function
in IDL8.2 (modified version of “regres” in Bevington,
1969), which uses all independent variables to minimise
the overall residual and give the best fit. We assess
goodness of fit using the coefficient of determination,
or R?, value. In the case of a perfect fit, R? = 1; in the
case of no relationship, R? = 0. In addition to the re-
gression coefficients (the slopes of the regression lines)
we analyse the standard error of the regression fit. The
standard error is the sampling error in the regression
coefficient assuming the data is normally distributed
about the fit.
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2.8.2 Forward selection of parameters 31

312
To diagnose the relative importance of independent variss
ables in our multiple regression analysis, we use for-
ward selection (Wilks, 2006). First, a single linear re-;s
gression is calculated between the dependent variabless
and each independent variable in turn. The indepen-u,
dent variable with the highest R? is noted. Then a twoss
parameter regression is calculated using this indepen-o
dent variable and each of the remaining independentss
variables in turn. The regression with the highest RZ%,
is kept and so on, until all independant variables have
been included in the fit. The change in the R? value
as each independent variable is added to the regression
indicates the importance of each of the independent
variables to the final regression.

322

2.8.8 Samples of ensemble members
323
To validate GloSea5-GC2 against observations, it is cru-2
cial that we do not solely analyse the ensemble mean 32
Observations contain chaotic noise as well as variabilitys2s
forced by slowly varying components of the climate sys-=27
tem (e.g. Palmer and Anderson, 1994; Goddard et alzs
2001). Ensemble averaging reduces noise, reducing thes»
total atmospheric variability and increasing the relativesso
contribution of forced variability to the total variabil-,,
ity. To accurately compare GloSea5-GC2 variability to,,
observed variability and to reduce the risk of mistak-,
ing noise in observations for forced variability, we must,,,
compare individual ensemble members from the hind-,
cast set to observations. To accomplish this we repeat,,,
our statistical calculations, such as the regression analy-,
sis in Section 5, on many samples of ensemble members,,,
and compare a distribution of the resulting values, such,,,
as regression coefficients, to a single observed value. ,,,

In this article, most metrics require a twenty year

JJA time series from the hindcast set. We create many341
JJA time series for our statistical calculations by com-"
bining different ensemble members from different years’™
Ensemble members with the same start date are ini-"
tialised identically, so any combination ensemble mem-"
bers with the same start date can be used. .
The first step is to create five time series for each of "
the start dates by randomly sampling ensemble mem-
bers with the same start date from each hindcast yealr349
without replacement. In years with five members for
each start date, each of the five ensemble members is”
used in one of these time series. In years with eight en-
semble members for each start date, five of the eightsss
members are used in these five time series. There ares+
three start dates in the hindcast set, so this processss
results in 15 time series. We then repeat this processss

N times. We raised N until raising it further did not
change the results, to N = 2000, creating 3 x 10* JJA
time series which we refer to as “hindcast samples.”
In these samples, every ensemble member in the years
with five ensemble members for each start date is used
an equal number of times. In the years with eight en-
semble members for each start date, each individual
member is used fewer times and it is also possible that
some members are used more than others. Given the
large value of N we would not expect this to affect our
results.

2.4 Observational and reanalysis datasets

To assess precipitation we use the Global Precipitation
Climatology Project (GPCP) Version 2.2 Monthly Pre-
cipitation Analysis (Adler et al, 2003). GPCP is a 2.5°
gridded merged analysis that incorporates precipitation
estimates from low-orbit satellite microwave data, geo-
stationary satellite infrared data and surface rain gauge
observations. GloSea5-GC2 data are bilinearly interpo-
lated to the GPCP grid for comparison.

We assess winds using the European Centre for Medium-
Range Weather Forecasts (ECMWF) ERA-Interim at-
mospheric reanalysis product gridded to 0.70 x 0.70°
(Dee et al, 2011). Fields were interpolated to the Me-
tUM grid and compared on equivalent pressure lev-
els. We assess snow using snow water equivalent (snow
mass) from ERA-Interim/Land, a global land surface
reanalysis dataset driven by ERA-Interim (Balsamo et al,
2015), which is also interpolated to the MetUM grid for
comparison.

SST is assessed using the GloSea5-GO3 analysis used
to initialise the NEMO ocean model, as described in
Section 2.2, interpolated to the MetUM grid. The ocean
temperature profile is assessed using the EN4.1.1 anal-
yses (1° x 1°, Good et al, 2013). This analysis includes
ocean temperature and salinity profiles from many sources,
including the Global Temperature and Salinity Profile
Program and the Argo dataset, which are quality con-
trolled before creating the analysis. An updated version
of the Gouretski and Reseghetti (2010) bias correction
is then applied. Profiles are compared on their native
levels.

All fields are compared over 1992 to 2011. In the
rest of this paper, when a combination of observations
and reanalysis are used to validate the model they will
be collectively referred to as “observations.”
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b) Ensemble mean JJA SST and wind stress
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Fig. 1 Ensemble mean JJA (a) precipitation and 850 hPa winds in GloSea5-GC2, (b) SST and surface wind stress in GloSea5-
GC2, (c) precipitation and 850 hPa winds bias with respect to GPCP and ERA-Interim, (d) SST and surface wind stress bias

with respect to GloSea5-GO3 analysis and ERA-Interim.

3 Forecast system global performance 375
376
3.1 Ensemble mean bias 3
378

379

The GloSea5-GC2 ensemble mean JJA precipitation
and 850 hPa winds are shown in Figure la alongside
their bias with respect to GPCP and ERA-Interim in_,
Figure 1c. Precipitation biases in the Indo-Pacific are_
similar to those seen in the CMIP5 models (Sperber,
et al, 2013) and state-of-the-art seasonal forecast SyS-,,,
tems (Rajeevan et al, 2012; Kim et al, 2012), with ex-
cess precipitation over the WEIO and western north
Pacific and a deficit of precipitation over India, the
Maritime Continent and the EEIO. The deficit of pre-
cipitation over India (AIR deficit of 0.72 mm dayfl)390
is largely due to a climatologically late onset of the |
monsoon in GloSea5-GC2, which reduces the precipita-
tion over and around India in May and June. Precip-o.
itation is similar to the observed climatology in Julyses

and August (not shown). Monsoon westerlies, whichse

7

1

extend from the Arabian Peninsula across the Indian
and Indochina peninsulas, are overly strong in GloSea5-
GC2, in contrast to the CMIP5 multi-model mean weak
bias (Sperber et al, 2013). This is likely associated with
the overly strong precipitation and convergence in the
western north Pacific in GloSea5-GC2 and a smaller
Arabian Sea cold bias than is generally seen in the
CMIP5 models (Levine et al, 2013). The well docu-
mented Arabian Sea cold SST bias in coupled GCMs
tends to weaken the monsoon circulation and monsoon
precipitation, but initialisation in May prevents the growth
of a large bias (Levine and Turner, 2012; Levine et al,
2013, personal communication R. Levine). The excess
precipitation bias in the western north Pacific seen in
GloSeab-GC2 is also associated with the cyclonic wind
bias over the western north Pacific and east Asia (Bush
et al, 2015).

GloSea5-GC2 JJA SST and wind stress are shown
alongside their biases in Figure 1b and Figure 1d. The
eastern side of each ocean basin shows an equatorial
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cold bias. Equatorial cold biases are common in cou-us
pled models (e.g. Li and Xie, 2012, 2014) and seasonalas
forecast systems (Kim et al, 2012; Vanniere et al, 2013) s
especially in the Pacific. GloSea5-GC2 also has a coldus
SST bias associated with the western north Pacific ex-
cess precipitation bias and a warm bias in the west-us
ern Indian Ocean opposite the cold bias in the EEIO a0
Large wind stress biases are associated with many ofiso
the cold SST biases in the warm pool region, includings:
the EEIO, Bay of Bengal, South China Sea and west-
ern north Pacific. We address how these Indian Ocean
biases may be impacting the monsoon rainfall forecastss
skill in Section 5.2.2.

453

454

3.2 Ensemble spread

455

456

To quantify the ensemble spread in the forecast sys-

tem, we calculate the signal-to-noise ratio (S/N) of JJA_
anomalies, defined as the ratio of the variance of the en-,,

semble mean anomaly time series to the average vari-

ance of the ensemble member anomalies in each year,

(Rowell et al, 1995; Kang and Shukla, 2006). If S/N > 1

then the interannual variability in the ensemble mean,

is greater than the average ensemble spread. In Fig-
ure 2 we show S/N maps for JJA precipitation and, _
zonal vertical wind shear (850-200 hPa), which is a di-,
agnostic of the large-scale monsoon circulation related,
to the strength of the monsoon diabatic heating (Gill,
1980; Webster and Yang, 1992). In both metrics, there,
is lower S/N in the Indian Ocean than in the other_
ocean basins. JJA precipitation S/N > 1 is confined,
to the equatorial Pacific and Maritime Continent, in-_,
dicating that the precipitation anomalies most dilrectly473
forced by ENSO SST anomalies have the highest S/N._
S/N can also be expressed as a theoretical limit__
on the correlation skill, using the expression Ryt =
S/N

SN (Kang and Shukla, 2006). A Rjimit = 0.5 con-,

tour is shown on both panels of Figure 2. The precip-s
itation Rjmit exceeds 0.5 over most of the equatoriakme
oceans and the circulation Rjjni; exceed 0.5 throughoutsso
the tropics. This indicates that the S/N of GloSeab5-s
GQC2 is high enough to permit precipitation and circu-e:
lation correlation skill greater than 0.5 over much of thesss

9

tropics. 184
485
486
3.3 Anomaly correlations .
To assess the global forecast skill, in Figure 3 we show:z
the grid point anomaly correlations of GPCP JJA pre-
cipitation and the ERA-Interim vertical wind shear Wit}}‘91
their GloSea5-GC2 ensemble mean equivalents. In both
fields, significant skill (0.44, p < 0.05) is restricted to

the tropics, consistent with other state-of-the-art sea-
sonal forecasting systems (Kim et al, 2012). Precipita-
tion prediction skill is lower than circulation prediction
skill. In both circulation and precipitation, the lowest
skill in the tropics is located in the Indian Ocean, sug-
gesting difficulties in seasonal prediction of the South
Asian monsoon system. In the next section we exam-
ine the prediction skill of Indian monsoon precipitation
and the South Asian monsoon circulation in detail.

4 Indian summer monsoon forecast skill

JJA AIR is a commonly used measure of seasonal mon-
soon rainfall (e.g. Rajeevan et al, 2012; Nanjundiah
et al, 2013) and is reported in seasonal forecasts issued
by the Indian Meteorological Department!. The inter-
annual variation of AIR does not necessarily reflect the
regional detail of the interannual variation of Indian
rainfall (e.g. Thara et al, 2007), but AIR is convenient
for conducting a first-order assessment of monsoon sea-
sonal prediction skill. JJA AIR anomalies in GPCP and
GloSeab-GC2 are shown in Figure 4. The box plots rep-
resent the minimum, median, maximum and interquar-
tile range of the ensemble, while the diamond represents
the ensemble mean. In some years, such as 2008, the
forecast is very good, with tight ensemble spread. In
other years, such as 1997, all of the ensemble members
predict the incorrect sign of the precipitation anomaly.
Overall, the ensemble spread is large compared to the
size of the anomalies, consistent with the S/N map in
Figure 2a. It is rare that all ensemble members predict
anomalies of the same sign.

JJA anomalies of the Webster-Yang dynamical in-
dex, an index representing the strength of the large-
scale monsoon circulation using the vertical zonal wind
shear over a large domain (difference between 850 hPa
and 200 hPa over 40° to 110°E, 0° to 20°N; Webster
and Yang, 1992), are also shown in Figure 4. There is
not a one-to-one relationship between correctly predict-
ing Indian precipitation anomalies and correctly pre-
dicting the large scale circulation anomalies. In some
years, such as 1997, the circulation anomaly is well pre-
dicted while the precipitation anomaly is poorly pre-
dicted. In other years, such as 1996, the precipitation is
well predicted and the circulation is poorly predicted. In
GloSea5-GC2, the monsoon circulation and precipita-
tion over India are strongly related, with the ensemble
mean correlating at 0.67 (p < 0.01). However, in the
observations, they are quite unrelated, with a correla-
tion of 0.18 (p > 0.1). This indicates precipitation over
India is too directly forced by the large scale circulation

1 http://www.imd.gov.in/pages/monsoon_main.php
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Fig. 2 Maps of GloSea5-GC2 JJA signal-to-noise ratio (see Section 3.2) for (a) precipitation and (b) zonal vertical wind shear
(850 hPa - 200 hPa). A signal-to-noise ratio greater than one is indicated by the dark solid contour. A theoretical correlation

limit (Riimit) of 0.5 is indicated by the red contour.
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Fig. 3 Grid-point anomaly correlations of GPCP JJA precipitation and ERA-Interim JJA vertical wind shear with their
GloSea5-GC2 ensemble mean equivalents. Significant skill (0.44, p < 0.05) is shaded, while lower skill is contoured at 0.2 and

0.4.

in GloSea5-GC2. Ensemble spread in the Webster-Yangsor
index is still large compared to the magnitude of theses
mean anomaly, but less so than in JJA AIR, consistentsos
with the S/N maps in Figure 2.

510

511
A simple measure of forecast skill is the correlation,

of observed and ensemble mean anomaly time series,

such as those shown in Figure 4. We have listed thesess
correlations in Table 1. The correlation of the GPCPsia
and GloSea5-GC2 ensemble mean JJA AIR anomalysis
time series is 0.41 (p < 0.1). This indicates a mod-ws
est level of skill, consistent with other forecast systemssr
(Rajeevan et al, 2012). The Wang-Fan dynamical indexs:s
represents the strength of the local Indian monsoon cir-sio
culation in the northern Indian Ocean and over Indiaso
itself using horizontal shear in the 850 hPa zonal winds

(difference between 40° to 80°E, 5° to 15°N and 70° to
90°E, 20° to 30°N Wang and Fan, 1999). The Wang-
Fan index shows a very similar correlation value (0.36,
p > 0.1) to AIR, suggesting modest skill in predicting
the local Indian monsoon circulation is related to the
modest skill in predicting AIR.

The Webster-Yang dynamical index has a higher
correlation of 0.66 (p < 0.01). This indicates that the
large scale South Asian monsoon circulation is better
predicted than the local Indian monsoon circulation
and rainfall over India, consistent with the global corre-
lation maps (Figure 3). However, this skill in predicting
the Webster-Yang index is lower than that seen over a
longer time period (1982-2009) with similar lead times
and numbers of ensemble members in CfSv4 (0.74, p <
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GPCP =
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Fig. 4 JJA AIR (top) and Webster-Yang dynamical index (bottom) anomalies in GloSea5-GC2 (red), GPCP (top, black) and
ERA-Interim (bottom, black). Box plots represent minimum, median, maximum and interquartile ranges of the ensemble, and
the red diamond represents the ensemble mean. The Webster-Yang dynamical index subtracts the 850 hPa winds from the 200
hPa winds over 40° to 110°E and 0° to 20°N (Webster and Yang, 1992).

Table 1 Evaluating the GloSea5-GC2 skill in representing JJA monsoon precipitation and circulation index anomalies (indices
defined in the text). Column 1 lists the correlation of observed JJA anomalies with GloSea5-GC2 ensemble mean anomalies.
Columns 2 and 3 compare the observed interannual standard deviation (o) to the hindcast sample median ¢ in mm day—?!
(see Figure 5).

Correlation of | Observations | Hindcast sample

ensemble mean | interannual o median o
AIR 0.41 0.69 1.06
Wang-Fan index 0.36 0.66 0.89
Webster-Yang index 0.66 1.21 1.62

0.01) and ECMWF System 4 (0.78, p < 0.01, Kim et alsss
2012). -

To evaluate the interannual variance, we calculate::
standard deviations (o) of the JJA time series of AIR,
Wang-Fan dynamical index and Webster-Yang dynam-
ical index. Ensemble averaging enhances the compo-
nent of interannual variability forced by slowly vary-s,
ing components of the climate system relative to at-.,
mospheric noise, likely artificially lowering the interan-
nual variance relative to observations. Accordingly, wess
do not compare the ensemble mean o to the observa-sas
tions. Instead we create distributions of o for each indexsss
(Figure 5) using the hindcast samples described in Sec-sss
tion 2.3.3 and compare the median to the observed os«

in Table 1. We find that in all indices, the variance in
GloSeab-GC2 is too high, with the observed o well sep-
arated from the hindcast sample distribution. This is
consistent with the high ensemble spread seen in Fig-
ures 2 and 4.

5 Relationship between AIR and drivers of
monsoon interannual variability

Slowly evolving boundary conditions such as SST, snow
and soil moisture provide sources of tropical rainfall
seasonal prediction skill (Charney and Shukla, 1981).
In this section, we assess the representation of relation-
ships between AIR and slowly evolving boundary con-
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Fig. 5 Histograms of the standard deviation (o) of JJA
anomalies of monsoon precipitation and circulation indices
in the hindcast sample time series. Medians of these distri-
butions are compared to observed o in Table 1. The hindcast
samples are described in Section 2.3.3.

ditions in GloSea5-GC2. We perform a multiple linear
regression analysis of AIR in observations and GloSea5-
GC2 using indices representing modes of variability such
as ENSO and the IOD as independent variables. We
use the regression coefficients as a diagnostic of the re-
lationships and explore sources of error in relationships
that are poorly represented. Correcting these errors has_
potential to improve forecast skill, making them impor-

582
tant targets for model development. e

584

5.1 Indices >
586

We use five indices of slowly varying boundary condi-=*
tions in our analysis. Four indices represent three modes™
of SST variability: ENSO, the IOD and the Atlantic®
Nino. The final index represents interannual variability®®
in snow mass over the HimTP. Each index has published®*
proposed physical mechanisms that link their interan-=%
nual variability to interannual variability in AIR (see®
review in Section 1). Table 2 defines the indices used**
JJA anomalies are calculated relative to the time pe-os
riod covered by the hindcast set, 1992 to 2011, and aresss
not standardised. 507

In Figure 6, regions used to calculate SST indicessss
(Table 2) are overlaid on a JJA interannual correlationse
map of GloSeab5-GO3 analysis SST and GloSea5-GC20w0
ensemble mean SST. GloSea5-GC2 has much highersn
prediction skill for SST than it does for precipitationse
or the circulation (Figure 3). There are significant cor-ss
relation values across the globe, but the highest valuessos
are in the tropics. We use the Nino-3.4 index to repre-sos
sent the overall amplitude of ENSO and a trans-Nifoss
index (TNTI), calculated by subtracting the Nino-4 indexsor

60N

10D
Atlantic
TNI

30N

308
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60W 30W O 30E 60E 90E 120E 150E 180 150W 120W 90W
BT [ T [ [ .
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Fig. 6 Interannual correlation map of GloSea5-GO3 analy-
sis and GloSea5-GC2 ensemble mean JJA SST. Grid points
where the correlation is significant (0.44, p > 0.05) are
shaded, while lower values are contoured. Most correlations
are significant. The regions used as indices to represent modes
of SST variability are outlined on this figure and listed in
Table 2. Note that the Nino-4 region used to calculate the
TNI index overlaps with the Nifio-3.4 region from 120°W to
150°W.

from the Nino-1.2 index, to represent the zonal position
of the heating. TNI has a positive value in an east Pa-
cific El Nino, and a negative value in a central Pacific
El Nino (Trenberth and Stepaniak, 2001). The IOD is
represented by the IOD index (Saji et al, 1999), and the
Atlantic Nino is represented by averaging SST anoma-
lies over the region used in Kucharski et al (2007, 2008)
(note this is the negative of the index used in Kucharski
et al, 2007, 2008). The correlations of the GloSea5-GO3
analysis and the GloSea5-GC2 ensemble mean SST in-
dices are is listed in Table 2. All four correlation val-
ues are high and significant (p < 0.01) and the ENSO
indices (Nifo-3.4 and the TNI) have the highest val-
ues. The GloSea5-GC2 skill in predicting these indices
should generate AIR prediction skill if the mechanism
linking them is well represented.

Following Turner and Slingo (2011), who showed
that snow cover over HImTP is the most relevant to
ATR interannual variability, we adopt their HImTP in-
dex (Table 2). Figure 7 shows this region, as well as
the JJA climatological snow mass over the HImTP in
GloSea5-GC2 (Figure 7a), the JJA bias against ERA-
Interim/Land (Figure 7b) and the JJA interannual cor-
relation map with ERA-Interim/Land (Figure 7c). In
ERA-Interim/Land, not much snow is present in JJA;
the climatological HImTP JJA snow depth is only 2.56
cm of snow water equivalent (SWE). However, GloSea5-
GC2 is missing 37% of the ERA-Interim/Land snow
mass; a bias of -0.96 cm SWE. The correlation map
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Table 2 Definition of JJA indices used as independent variables in the regression analysis, including the quantity and averaging
domain. Also listed are the interannual standard deviations (o) of the JJA indices in GloSea5-GO3 analysis and ERA-
Interim/Land, and the interannual correlation of the indices with the GloSea5-GC2 ensemble mean indices.

Index Quantity Domain Reanalysis o Correlation
Nino-3.4 SST 120°- 170°W, 5°S - 5°N 0.68 (°C) 0.87
10D SST difference between 0.49 (°C) 0.71
50° - 70°E, 10°S - 10°N and
90° - 110°E, 10°S - 0°
ATL SST 30°W - 10°E, 20°S - 0° 0.40 (°C) 0.79
TNI SST difference between 1.30 (°C) 0.91
80° - 90°W, 10°S - 0° and
160°E - 150°W, 5°S - 5°N
HimTP | Snow water equivalent (SWE) | 67.5° - 100°E, 27.5°- 40°N | 0.07 (cm SWE) 0.46
a) Ensemble mean JJA snow depth  b) JJA bias c) JJA Correlation map
S N T T
b
30N 1
20N H
/
10N - D Q D
70E 80E 90E 100E 70E 80E 90E 100E 70E 80E 90E 100E
\ [ I [
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Snow water equivalent (cm)
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Correlation

Fig. 7 a) Climatological JJA snow depth in GloSea5-GC2. b) JJA bias against ERA-Interim/Land. Also shown, as the dashed
line, is the region used to calculate the HImTP index (Table 2). ¢) JJA interannual correlation map of ERA-Interim/Land and
GloSea5-GC2 ensemble mean SWE. Grid points where the correlation is significant (0.44, p > 0.05) are shaded, while lower

values are contoured at 0.0, 0.2 and 0.4. Most correlations are in

shows that the interannual prediction skill of GloSea5-2s
GC2 snow mass in the region is low, though it tends toso
be higher in the locations with the most snow. The in-s:
terannual correlation of the HImTP index is 0.46 (p <en
0.05, Table 2), indicating modest skill. Consequentlygs
even if the mechanism linking HimTP snow to AIR isss
well represented in GloSea5-GC2, HimTP snow mayssa
contribute little to the overall prediction skill of AIR. ess

636

637
5.2 Regression 638
639
To assess the relationship between AIR and the indicesso
listed in Table 2, we perform a five parameter multiplesa
regression analysis with each index included as an inde-s
pendent variable. We first perform this analysis on thess
observed and ensemble mean indices. However, ensem-s
ble averaging enhances the component of interannualss
variability forced by slowly varying boundary condi-ss
tions relative to atmospheric noise, so comparing thess
relationships in the ensemble mean to the relationshipsss
in observations is unfair. To make a fair comparison s
we perform our regression analysis on the many indi-sso

this domain insignificant.

vidual 20 year JJA series selected from our ensemble
members, as described in Section 2.3.3. We use the re-
gression coefficients for each index, the standard error
for each coefficient (a measure of uncertainty in the re-
gression coefficient), and the final R? value for the fit in
our analysis (see Section 2.3.1 for a detailed description
of each of these statistics). Performing the regression
analysis on the hindcast samples creates a distribution
of each statistic, which illustrates the ensemble spread,
to compare to the single value from the observations.
The median of each distribution is listed in Table 3 with
the statistics from the observed and ensemble mean re-
gressions. We also show the hindcast sample distribu-
tions for the regression coefficients and the R? value in
Figure 8.

The ensemble mean R? (Table 3) is much higher
than the observed R?, demonstrating that ensemble av-
eraging enhances the forced component of the variabil-
ity relative to the noise. In the rest of our analysis,
we only compare the statistics from the hindcast sam-
ples to the observations. The hindcast sample median
R? is lower than that of the observations, indicating
there could be predictability from these indices that is
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unexploited in the GloSea5-GC2 system. However, therwo
observed R? value falls well within the R? distributione
in Figure 8, suggesting the R? values of the observa-o
tions and GloSea5-GC2 are consistent within the en-wos
semble spread in GloSeab-GC2. We will now examineros
the regression coefficient from each index in turn, aswos
a diagnostic of the relationship between AIR and thatrws
index. 707
708

5.2.1 ENSO 0
710

As expected, the observations show a negative regres
sion between Nino-3.4 and AIR in Figure 8, indicating™?
that a positive Nino-3.4 anomaly, i.e. El Nino condi-®
tions, reduces AIR. The GloSea5-GC2 hindcast sample
peak matches the observed value well, indicating the™s
relationship between AIR and Nifio-3.4 is well repre-
sented. Regression maps of SST and precipitation on to™”
the Nifio-3.4 index confirm that the ENSO teleconnec-
tions in observations and GloSea5-GC2 hindcasts areg?®
spatially very similar (not shown). This is likely the
main source of the prediction skill in the Webster-Yang™
large-scale dynamical index (Figure 4). o
The observations show a weak negative relationshiprs
between TNI and AIR, suggesting that an East Pa-
cific El Nino decreases AIR more than a central Pa-2s
cific El Nino, which disagrees with Krishna Kumar et alz
(2006). However, the regression is weak, with a 1o variz
ation in TNI resulting in a reduction in AIR of 0.14s
mm day~! (using Tables 2 and 3). There are also onlyrs
three El Nifio years in our hindcast set (JJA Nino-3.40
anomaly > 0.5°C), and one of them is the very larges
east Pacific El Nino event of 1997, which likely domi-s
nates the relationship. Consequently, it is not surprisingss
that the relationship between TNI and AIR is weak overrss
this time period. The hindcast set replicates this weakiss
relationship, with the peak of the distribution aligningss
with the observed value. This analysis indicates thatrr
the relationship between ENSO and AIR is well repre-ss
sented in GloSea5-GC2. 730

740

5.2.2 Indian Ocean dipole “
742

As expected, the observations show a large positive re-us
gression between the IOD index and AIR, indicating ace
positive IOD increases AIR. The hindcast samples alsors
show a positive regression, but at a much smaller valueus
and the value derived from observations falls in the ex—
treme tail of the hindcast sample distribution. This sug-s
gests the relationship between the IOD and AIR is toorus
weak in GloSea5-GC2. 750
To confirm this interpretation and diagnose any re-s:
lated errors in GloSea5-GC2, we calculate a multiplers:

regression with the same independent variables at each
grid point in JJA maps of SST, land precipitation and
850 hPa zonal and meridional winds. In Figure 9, the
IOD index regression coefficient is shown for the ob-
servations, analogous to the dashed line on the 10D
panel of Figure 8, and for the hindcast sample median,
analogous to the median of the distribution in the IOD
panel of Figure 8. In the observations, the expected
IOD SST anomalies are clear, with warm anomalies in
the WEIO and cool anomalies in the EEIO, especially
off the coast of Sumatra and Java (Saji et al, 1999;
Webster et al, 1999). The SST anomalies are associ-
ated with wind anomalies, including a strengthening of
equatorial easterly winds and strengthening of the west-
erlies across the Arabian Sea, India and Indochina. This
brings increased moisture transport to India, increasing
monsoon precipitation (Ashok et al, 2001). In GloSea5-
GC2, the EEIO anomalies are too cold and extend to
70°E, too far west. The WEIO SST anomalies are not
warm enough, reducing the anomalous zonal SST gradi-
ent. The circulation anomalies and Indian precipitation
anomaly are also weak.

Using wind stress correction experiments in HIGEM,
an older version of the coupled MetUM (Shaffrey et al,
2009), Marathayil (2013) demonstrated that similar er-
rors in IOD SST anomalies were due to a coupled mean
state bias in the Indian Ocean. Stronger than observed
mean state easterlies in the EEIO, which are related
to errors in convective precipitation in the WEIO, lead
to cooler than observed EEIO SSTs and increased up-
welling, shoaling the thermocline in the east. The erro-
neously cool EEIO SSTs and erroneously warm WEIO
SSTs reinforce the erroneously strong easterlies. This
is consistent with the GloSea5-GC2 precipitation, SST
and winds biases shown in Figure 1. We show the en-
semble mean 1O vertical temperature profile averaged
from 3°S to 3°N in GloSea5-GC2 compared to EN4
analysis in Figure 10. The 20°C isotherm is highlighted
as a proxy for thermocline depth. The thermocline is
slightly too deep in the WEIO, and much too shallow
in the EEIO in GloSea5-GC2, also consistent with the
HiGEM bias (Marathayil, 2013).

This coupled mean state bias results in errors in the
representation of the IOD. The shallower thermocline
makes the EEIO SSTs more susceptible to wind anoma-
lies during IOD initiation, leading to erroneously cool
SST anomalies. The erroneous SST anomalies cause er-
rors in the anomalous circulation and Indian precipi-
tation, which could be further exacerbated by known
errors in the representation of convective precipitation
over the WEIO and India (Figure 1 and e.g. Bush et al,
2015). Marathayil (2013) demonstrated that mean state
wind stress corrections in the EIO decrease these mean
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Fig. 8 Regression coefficients and R? from the five parameter JJA AIR multiple regression analysis. The dashed lines are the
regression coefficients from observations, and the distributions in the solid lines show the results from many JJA series selected
from the ensemble members in the GloSea5-GC2 hindcast set (Section 2.3.3).
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Fig. 9 Maps of the IOD regression coefficient from the five parameter regression analysis computed at each grid point of JJA
SST, land precipitation and 850 hPa winds in (a) GloSea5-GO3 analysis, GPCP and ERA-Interim and (b) GloSea5-GC2. For
GloSeab-GC2, the regression is calculated for each hindcast sample and the median is taken at each grid point. The map in
(a) is equivalent to the dotted line in the IOD panel of Figure 8 at each grid point and the map in (b) is equivalent to the
median of the distribution in the IOD panel of Figure 8 at each grid point.
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Table 3 The regression coefficient and standard error for each independent variable in the multiple regression analysis of
JJA indices with JJA AIR. The R? value for the regression is also listed. The statistics from the multiple regression analysis
of the observations, statistics from the multiple regression analysis of the ensemble mean and the median of the hindcast
sample statistics (median regression coefficient and median standard error) are all shown. The final line shows only the HimTP
regression coefficient and standard error from a multiple regression analysis of June indices with June AIR. The units of
regression coefficients and standard errors for SST indices are mm day~! °C —!. The units of regression coefficients and

standard errors for the HimTP snow indices are mm day ! cm SWE —1.

Obs and Analysis | Ensemble mean | Ensemble median

Nino-3.4 —0.82+0.21 —0.68 = 0.13 —0.74 £ 0.24
10D 1.22 +£0.26 0.31 +0.18 0.31 £0.28
Atlantic —0.64 +0.33 0.41 +0.38 0.15£0.61

TNI —0.10 £ 0.09 —0.02 £0.08 —0.03 £ 0.16

HimTP Snow 1.45 +1.62 —1.06 +2.13 —0.35+3.15

R? 0.66 0.79 0.56
June HImTP Snow —1.54+1.21 —2.14 + 2.63 —2.18 £4.70

a) EN4 analysis

b) GloSea5-GC2 ensemble mean
88
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Fig. 10 Vertical profiles of Indian Ocean temperature at the equator, averaged from 3°N to 3°8S, in (a) GloSea5-GO3 SST
analysis and EN4 subsurface analysis and (b) the GloSea5-GC2 ensemble mean. Each dataset is plotted on a similar set of its
own levels which are listed on the y-axis. The solid line marks the 20°C isotherm, a proxy for thermocline depth. The white

gap in the GloSea5-GC2 hindcast data is due to missing data at the location of the Andaman Islands.

state biases and result in a better representation of thereo
IOD SST anomalies in HIGEM. Improving this cou-o
pled mean state bias would likely improve AIR predic-n
tion skill and prediction skill in the Indian Ocean basin
more broadly. 73

774

5.2.8 Atlantic Nino 775

776

As suggested by Kucharski et al (2007, 2008), the ob-r
servations show a negative regression between the At-rs
lantic index and AIR, indicating warm tropical Atlanticize
SSTs decrease AIR or, conversely, that cool tropical At-rs
lantic SSTs increase AIR. However, the hindcast sam-s
ples show a wide distribution created by the ensemblers:
spread in GloSeab-GC2, that peaks at a slightly positiverss
value and has tails extending to +2 mm day ! °C ™!
While the Nino-3.4 and IOD regression coefficients ingss
GloSeab-GC2 have similar standard errors to the stan-ss

dard errors derived from observations (Table 3), the
Atlantic index regression coefficient has nearly double
the standard error in the hindcast samples than in the
observations, indicating that the regression values are
not as constrained in GloSea5-GC2 as they are in the
observations. These results motivate a more detailed
analysis of the representation of the mechanism linking
Atlantic SST anomalies to AIR in GloSea5-GC2.

Kucharski et al (2007, 2008) use an ensemble of at-
mospheric GCM integrations, coupled only in the In-
dian Ocean, to compare experiments forced by interan-
nually varying Atlantic SSTs with control integrations
forced by climatological Atlantic SSTs. Their experi-
ments show an equatorial Rossby wave response to At-
lantic Nino anomalies which creates a quadrupole struc-
ture in upper level eddy stream function and modifies
the low level circulation in the Indian Ocean (Kucharski
et al, 2007, Figure 6). Cool anomalies create anomalous
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Fig. 11 Maps of regression coefficients of precipitation (shading, a and b), 850 hPa eddy stream function (contours, a and
b), 200 hPa eddy stream function (contours, ¢ and d) and velocity potential (shading, ¢ and d) regressed against the Atlantic
index in GPCP, ERA-interim and the GloSea5-GC2 hindcast samples that are within 0.05 of the observed Atlantic regression
value in Figure 8. First, each grid point of each of these fields was regressed against the Nino-3.4 index. Then the residual was
regressed against the Atlantic Nifo index, creating the regression coefficients shown here. 850 hPa stream function contours
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low level cyclones in the equatorial Indian Ocean on ei-sow
ther side of the equator which increase moisture con-sio
vergence and precipitation over India (Kucharski et algu
2008, Figure 3) 812

To determine whether this mechanism is acting in™”
GloSea5-GC2, we regressed maps of the precipitation,”
850 and 200 hPa eddy stream function, and 200 hPa ve-"
locity potential against the Atlantic index. The Kucharski
et al (2007, 2008) study included the effects of ENSO in’’
both the experiments and the control, so the effects of
ENSO should be excluded from their results. To anal-""*
yse as similar a diagnostic as possible, we first regress™
the GloSea5-GC?2 fields against the Nino-3.4 index and™

then regress the residual against the Atlantic index. To™

clarify the response, we calculate the regression maps”
individually for 768 of the 3 x 10* GloSea5-GC2 hind-**

cast samples which have Atlantic regression coefficients™
between -0.59 and -0.69 (within 0.05 of the observed™

value, Figure 8). We averaged the sample regression’

maps to create the final maps shown in Figure 11. We™

. . . 829
also show the equivalent regression maps derived from

GPCP and ERA-Interim. 830

As the hindcast samples were selected based on the
proximity of their rainfall regression value to the ob-
served regression value, it is not surprising that nega-
tive rainfall anomalies over India are associated with
positive Atlantic SST anomalies in both GPCP and
the GloSea5-GC2 samples in Figure 11. However, the
smooth response of the velocity potential and the quadrupole
structure in upper level stream function shown in Kucharski
et al (2007) are not present in the GloSea5-GC2 hind-
cast samples or ERA-Interim. The low level Indian Ocean
cyclones shown in Kucharski et al (2008), which would
correspond to the low level anti-cyclones in Figure 11,
are also missing in GloSeab-GC2. Instead, anomalous
upper level divergence is seen broadly over the Atlantic
and west Pacific, and upper level convergence is seen
in the east Pacific and Indian Ocean, though the mag-
nitude and pattern differ considerably between ERA-
Interim and the GloSea5-GC2 samples. There is a low
level anti-cyclone present over India in ERA-Interim,
but it is not mirrored south of the equator. There is
no clear wave-like pattern that is consistent between
ERA-Interim and GloSea5-GC2 in upper or lower level
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stream function. Similar maps made using all 3 x 10%s
hindcast samples give similar results (not shown). 883
Pottapinjara et al (2014) introduced another diag-ss
nostic of the influence of tropical Atlantic SST's on thesss
Indian monsoon. Using NCEP reanalysis (Kanamitsusss
et al, 2002) and the HadISST sst dataset (Rayner et algs
2003), they correlate Atlantic SST indices with globakes
tropospheric temperature anomaly (1000 hPa to 200sss
hPa) maps after the influence of ENSO has been re-se
moved from both. This reveals a Gill-type (Gill, 1980 o
tropospheric temperature heating response to warm SSks
in the tropical Atlantic that extends into the tropi-es
cal Indian Ocean (Pottapinjara et al, 2014, Figure 10)s0
They argue that the tropospheric temperature increasesss
in the Indian Ocean reduces the meridional temper-ss
ature gradient that drives the South Asian monsoon s
reducing Indian rainfall. This is consistent with thess
Kucharski et al (2007, 2008) results showing cool trop-sss
ical Atlantic SST's increase Indian rainfall. 900
We reproduce this Pottapinjara et al (2014) diagnos-eo
tic in ERA-Interim reanalysis and the 768 GloSea5-GC2o02
hindcast samples that agree with the observed Atlantic-sos
AIR regression coefficient and show it in Figure 120
In ERA-Interim, tropospheric temperature warming is
correlated with the Atlantic index over the tropical At-
lantic and Indian Ocean. However it does not extend™®
as far into the Indian Ocean, or correlate as strongly™®
with the Atlantic index as shown in Pottapinjara et al
(2014). In GloSea5-GC2 the correlation over the trop-*
ical Atlantic is weaker and it does not extend to the™®
Indian Ocean. The Atlantic index used in this study is™
different than the Atlantic index used in Pottapinjara™
et al (2014), but repeating the analysis with their Atl13™
index does not change the results. o
We conclude that the wave mechanisms described in
Kucharski et al (2007, 2008) are not acting in GloSea5- |
GC2, even in the hindcast samples with a similar re-
gression coefficient to the coefficient derived from ob—916
servations. That ERA-Interim also does not show the
mechanisms prompts questions about the validity aund918
robustness of these mechanisms. Kucharski et al (20077919
2008) study 1950 to 1999 and Pottapinjara et al (2014)
study 1979 to 2012, so it is possible that decadal Vari—921
ability has altered or obscured this mechanism in the922
1992 to 2011 time period we analyse here. Further s‘cudy923
of the Atlantic Nino-AIR teleconnection and its Varia—924

tion over time is needed to unify these results. s

926
5.2.4 HimTP snow 027
928
Turner and Slingo (2011) and Senan et al (2015) show e
using experiments that initialise anomalous snow orws
April 1, that increased HImTP snow cover reduces sur-s

face sensible and long wave heating as proposed by
Blanford (1884), which delays the onset of the monsoon
and significantly reduces monsoon rainfall in June. In
these experiments, snow anomalies persist from April
through June. The snow anomalies’ impact on June
monsoon rainfall combines two effects: the effect pre-
vious, spring snow cover had on the tropospheric tem-
perature gradient that initiated the monsoon and the
effect current, June snow cover has on current surface
temperatures and radiative balances. In order to con-
sider ensemble members from all initialisation dates in
the GloSea5-GC2 hindcast set as one ensemble, we must
analyse the impact of snow anomalies at a time suffi-
ciently removed from the hindcast initialisation dates.
Consequently, we do not consider snow before June in
this analysis. This means we only analyse the relation-
ship between summer snow cover anomalies and mon-
soon rainfall anomalies. For consistency with our JJA
analysis, we initially examine the relationship between
JJA snow anomalies and JJA rainfall anomalies, but
later in this section we examine the relationship be-
tween June snow anomalies and June rainfall anoma-
lies, where we would expect to see a larger impact.

In the observations, HImMTP snow shows a positive
regression with AIR in JJA. This is the opposite of
the expected relationship via the Blanford mechanism
(Blanford, 1884). A 1o variation in JJA HimTP snow
cover results in an increase of 0.1 mm day~! in JJA
rainfall (using Tables 2 and 3), indicating almost no
relationship between JJA HimTP snow and JJA AIR.
The hindcast samples are consistent with this lack of
relationship.

However, Turner and Slingo (2011) showed that the
main impact of HImTP snow on AIR is in June, and its
relationship with June precipitation may not be strong
enough to be detectable in JJA precipitation. To test
the representation of the relationship in June, we re-
peated the entire multiple regression analysis with June
indices and, in Figure 13 and Table 3, we show the
HimTP snow regression coefficients. The June regres-
sion derived from observations is indeed negative, but
roughly the same magnitude as the JJA regression.
June snow in ERA-Interim/Land has a higher interan-
nual standard deviation, 0.21 cm SWE, than JJA snow,
so 1o variation in June snow leads to a slightly larger
impact on June rainfall, 0.3 mm day ~!. The hindcast
samples have a broad distribution, peaking at the ob-
served value, suggesting GloSea5-GC2 is correctly rep-
resenting this small negative impact current snow cover
has on June Indian rainfall.
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963
5.3 Forward selection z:
966
To assess the importance of each of these indices tower
this regression, we use forward selection (Section 2.3.2) s
In this technique, indices are each regressed separatelysso
against AIR. The index with the highest R? value ismo
then regressed against AIR in combination with each ofin
the remaining indices in turn. The process is repeatedon
until all of the indices are included as independent vari-ors
ables in the regression. The ordering of the indices andera
the increase in R? as each index is added, reflect thess
importance of the index in explaining the interannuakrs

variability of AIR. o77

In both the observations and GloSea5-GC2, the Nifio-
3.4 and IOD indices are most important in explaining
the interannual variability in AIR over the hindcast pe-
riod. Their combined R? values are 0.53 and 0.46 in the
observations and hindcast samples, respectively, com-
pared to R? value when all five indices are included of
0.66 and 0.56 (listed in Tables 3 and 4). The remaining
three indices add similar, smaller contributions to the
R? in observations and GloSea5-GC2. This means it is
difficult to separate them in order of importance, and
we consequently focus on the differences in R? for the
Nino-3.4 index and the IOD index.

In Table 4, we summerise the results of the forward
selection for the Nino-3.4 and IOD indices. In the ob-
servations, the IOD index explains most of the variance
in AIR, with a single R? of 0.27, while in GloSea5-GC2,
Nifio-3.4 explains most of the variance with a single R?
of 0.39. The two indices are similarly correlated with
each other in the GloSea5-GO3 analysis (0.33) and the
GloSea5-GC2 ensemble mean (0.28), indicating the re-
lationship between ENSO and the 10D is consistent
between the observations and GloSea5-GC2. The com-
bined results from the forward selection and multiple
regression analysis suggest that the weakness of the re-
lationship between AIR and the IOD causes AIR to re-
spond too consistently to ENSO anomalies in GloSea5-
GC2, as seen in other forecast systems (Kim et al,
2012), and consequently Nino-3.4 explains too much of
the variance in AIR in GloSea5-GC2 and the 10D in-
dex explains too little. If the relationship between AIR
and the IOD were correctly represented, it would at
times reinforce the AIR anomaly forced by ENSO, and
at times counteract that anomaly, leading to a weaker
overall correlation between ENSO and AIR and less
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Table 4 Summary of results from forward selection. R? fors
a single regression of Nifio-3.4 or the IOD index against AIR,
is shown in the first two rows, the R? for the combined re-

gression of both indices against AIR is shown in the third”™®

Trow. 1021

Observations and | Hindcast sample |

Analysis median 1023

Nino-3.4 0.10 0.39 1024
10D 0.27 0.02

Nino-3.4 & 10D 0.53 0.46 1025

1026

1027
interannual variability explained by ENSO, consistent,,,

with the observations. 1020

1030

1031
6 Discussion and Conclusions 1032
1033
We have assessed the seasonal prediction skill of sumgy,
mer all-India rainfall (AIR) and the representation ofyss
mechanisms contributing to predictability of AIR in theyss
GloSea5-GC2 coupled ensemble seasonal forecast sysps;
tem. GloSeab-GC2 has notable mean state biases, ingss
cluding equatorial SST cold biases in all basins. Thegys,
Indian Ocean has the lowest JJA precipitation and cirgps
culation signal-to-noise ratios and prediction skill in the,,
tropics, consistent with other state-of-the-art seasonaky,
forecast systems (Rajeevan et al, 2012).

GloSea5-GC2 has moderate skill in predicting JJA™
AIR (0.41, p < 0.1). However, it has much higher skil™
in predicting the large scale circulation (0.66 for the™
Webster-Yang dynamical index, p < 0.01), consistent™
with other forecast systems. ENSO, the most widespread”
mode of interannual SST variability, and the relation-"
ship between ENSO and AIR are well represented in’
GloSea5-GC2. This indicates that the AIR interannual™
variability related to the large-scale circulation in GloSeab-
GC2 is well represented. However, the basin-scale rela-
tionship between AIR and the IOD is weak in GloSea5-"
GC2. Our analysis showed this likely due to a coupled™
mean state bias in the Indian Ocean which alters the™
amount of anomalous SST cooling/warming that res”
sults from anomalous wind forcing, giving erroneous”
IOD SST anomalies. Known difficulties in represent-
ing convective precipitation over India may also play aose
role (e.g. Bush et al, 2015). Due to the lack of responsesso
to the IOD, AIR responds more consistently to ENSQee:
in GloSea5-GC2 than in observations, which manifestsos.
itself in an erroneously high correlation between ENSQoss
indices and AIR. 1064

Our analysis did not show a teleconnection from theuss
tropical Atlantic Nino region to the Indian subcontiress
nent in GloSea5-GC2. However, when analysed over thewsr
time period available from the GloSea5-GC2 hindcastoss
set, this teleconnection was not clear in ERA-Interinmes

6

either. This suggests further work is needed to con-
firm the validity and establish the robustness of the
Kucharski et al (2007, 2008) mechanism connecting the
the Atlantic Nino region to AIR. Our analysis also in-
dicated the response of June Indian rainfall to June
HimTP snow anomalies in GloSea5-GC2 agrees with
observations, but is small in both.

Due to the relatively few years in our hindcast set,
we analysed all years in our hindcast set together, rather
than studying years with an especially strong anomaly
in a given index, such as ENSO events. In twenty years
there are only a few events of any type, so analysis of
strong anomaly years would be very dependent on the
GloSeab-GC2 performance in a few individual years.
However, A limitation of our analysis is that our gen-
eral conclusions may not apply to an individual year.
For example, we cannot conclude from our analysis that
the 1997 forecast bust is necessarily due to a misrep-
resentation of the IOD-AIR relationship rather than a
misrepresentation of the ENSO-AIR relationship. We
can conclude that the IOD-AIR relationship is gener-
ally misrepresented in GloSea5-GC2, and improving it
will improve forecast skill over the hindcast period as
a whole, independent of whether it improves forecast
skill in a specific year such as 1997.

In agreement with our analysis, recent assessments
of seasonal forecast skill have generally found that ENSO
anomalies and the response of AIR to the ENSO anoma-
lies are well represented in GCMs (Kim et al, 2012;
Rajeevan et al, 2012; Nanjundiah et al, 2013). The rep-
resentation of the relationship between AIR and the
10D is increasingly recognised as a source of error. Con-
sistent with our analysis of the coupled Indian Ocean
SST/wind bias, Rajeevan et al (2012) showed in the
ENSEMBLES and DEMETER samples of coupled sea-
sonal forecast systems that air-sea coupling in the In-
dian Ocean basin is too strong. Nanjundiah et al (2013)
studied five coupled seasonal forecast systems from the
ENSEMBLES sample and found that the relationship
between AIR and the equatorial Indian Ocean zonal
wind anomalies is generally poorly represented.

In GloSea5-GC2, the application of mean state bias
correction techniques to reduce the error in circula-
tion and equatorial SSTs in the Indian Ocean may im-
prove both the representation of IOD anomalies, as
Marathayil (2013) showed for the coupled GCM HiGEM,
and the relationship between the IOD and AIR. As the
IOD is the major mode of interannual variability in the
Indian Ocean, we expect that an improved representa-
tion of the Indian Ocean mean state and the IOD would
have a significant impact on precipitation and circula-
tion seasonal prediction skill in the Indian Ocean (Fig-
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ure 3), and would likely improve AIR prediction skill ag
well. 1122
Conditions in the equatorial Indian Ocean are ims23
portant for the correct initiation and propagation of thews
boreal summer intraseasonal oscillation (e.g. Sperberzs
and Annamalai, 2008). The propagation and amplitudess
of the BSISO are weak in GloSea5-GC2 (Jayakumanz
et al, 2016). Given the similarity in pattern betweem?s
the leading mode of interannual variability in monsoom2s
circulation and a component of the intraseasonal variuso
ability, and that the frequency of occurrence of this inus
traseasonal variability projects onto interannual variasse
tions (Sperber et al, 2000), poor simulation of Indiamss
Ocean intraseasonal variability may also therefore imsszs
pact on the skill of interannual rainfall prediction. Fursss
ther analysis should address the relationship betweens
errors in the Indian Ocean mean state, the IOD andsr
intraseasonal variability in seasonal forecast systems. 1ss
1139

1140
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