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Abstract—In this paper a custom classification algorithm based
on linear discriminant analysis and probability-based weights
is implemented and applied to the hippocampus measurements
of structural magnetic resonance images from healthy subjects
and Alzheimer’s Disease sufferers; and then attempts to diagnose
them as accurately as possible. The classifier works by classifying
each measurement of a hippocampal volume as healthy control-
sized or Alzheimer’s Disease-sized, these new features are then
weighted and used to classify the subject as a healthy control
or suffering from Alzheimer’s Disease. The preliminary results
obtained reach an accuracy of 85.8% and this is a similar
accuracy to state-of-the-art methods such as a Naive Bayes
classifier and a Support Vector Machine. An advantage of the
method proposed in this paper over the aforementioned state-of-
the-art classifiers is the descriptive ability of the classifications
it produces. The descriptive model can be of great help to aid a
doctor in the diagnosis of Alzheimer’s Disease, or even further the
understand of how Alzheimer’s Disease affects the hippocampus.

I. INTRODUCTION

Alzheimer’s Disease (AD) is a chronic neurodegenerative
disease which is responsible for 60% to 70% cases of de-
mentia and affects around 6% of the population who are
aged 65 and above; the percentage affected by the disease
increases with age [1]. Symptoms of AD based on the DSM-
IV TR criteria include: memory impairment; aphasia (language
disturbance); apraxia (impaired motor functionality); agnosia
(failure to recognise objects) and a disturbance in executive
functioning (the management of cognitive processes) [2]. Early
detection of AD is challenging as there have been no biological
markers found to definitively diagnose it at this stage. Current
diagnosis of AD involves clinical approaches which are a set
of neuropsychological tests to assess the patient [3], thus AD
can only be diagnosed once it has had a significant effect
on the patient’s lifestyle. While there is no cure for an AD
sufferer, symptomatic treatments exist to help patients reduce
the symptoms they are suffering from. Clinical trials are still
running to develop new treatments aimed to lower the chance
of developing AD or delaying the onset and progression of it

[4].

Automated classification of AD is the process where a
subject is classified as a healthy control (HC) or suffering
from AD. Most research in this area tends to use either
neuropsychological tests as data; or more commonly, magnetic
resonance images (MRIs). The classifier developed in this
paper uses MRI data, thus MRI data will be the focus when
investigating previous research. There are multiple types of
MRIs, two of these types are structural MRIs and functional
MRIs. Structural MRIs are the 3D image of a subject’s brain
recording the intensity at each point that is measured (the
intensity refers to whether the part of the brain at the measured
location is white matter, grey matter or cerebral spinal fluid.
Functional MRIs include the structural MRI of the brain as
well as measuring brain activity from changes in blood flow in
the brain. There exist multiple challenges to the classification
of MRI data, the first problem which occurs is artifacts
produced by the MRI scanner, these include ghosting which
is caused by the subject moving potentially due to respiratory
motion and heartbeats [5]. Fixing these artifacts is necessary
else the MRIs are likely to be of bad quality and may produce
data which will lead to the creation of an inadequate classifier
for AD. Another challenge is the large dimensionality of the
data which leads to the curse of dimensionality where as the
dimensions increase the data becomes more sparse and harder
to find patterns.

[6] investigates feature selection methods (these methods
are: recursive feature elimination, correlation filters, random
forest filter) for SVMs applied to extracted data from the
FreeSurfer processed MRIs. One-versus-one SVMs are com-
bined with a voting mechanism to create a three-class classifier
capable of classifying between HC, MCI and AD. Intra cranial
volume normalisation (ICV) is also tested on the subjects
to determine whether it is beneficial to the accuracy of the
classifier or not. The best accuracy is achieved by the SVM
which uses no ICV normalisation and the random forest
filter. [7] also used extracted FreeSurfer features from MRI
where features were selected based on a priori knowledge,
and features were also combined with each other to reduce
the dimensionality; a high classification accuracy of 73% was



TABLE I: Statistics of the data used in this paper

Diagnosis | Number of subjects | % Male | Age (mean + std)
HC 145 455 739 £ 6.3
AD 142 54.2 75.0 + 7.8

achieved. Previous work which uses Bayesian modelling in
application to AD diagnosis includes [8] which uses Bayes’
Theorem to calculate likelihood ratios for multiple tests which
are used to diagnose a patient with AD. These likelihood ratios
are then combined to find the tests which have the best joint
predictive power on the diagnosis of the subjects. Authors in
[9] propose a sparse Bayesian multi-task learning algorithm
on MRI data extracted by FreeSurfer to deduce relationships
between neuroimaging measures and cognitive scores to show
how changes in the structure of a brain can affect the cognitive
condition of it. [10] uses a Bayesian classifier to distinguish
between HC and AD based on the clusters of voxel data of
structural MRI scans.

II. DATA PRE-PROCESSING

The data used in this paper was created using 287 MRI
scans downloaded from the ADNI database and processed
with FreeSurfer version 5.3 [11] with the optional command
to segment the hippocampal subfields as well as perform the
reconstruction of the entire brain. The hippocampal subfields
consist of 16 volumetric measurements: the entire left hip-
pocampus, the entire right hippocampus, the left and right
presubiculum, the left and right subiculum, the left and right
cornus ammonis (CA) 1, the left and right CA 2-3, the left and
right dentate gyrus, the left and right fimbria, and the left and
right hippocampal fissure. The criteria used to refine the search
to find these 287 subjects was: that they were the baseline
scan for each subject - this is the initial scan taken and initial
diagnosis given to the subject; the slice thickness of scan was
1.5mm and it was weighted in T1; and that FreeSurfer was able
to analyse the MRI (in rare cases FreeSurfer crashes during
its execution if it is unable to process the MRI). A breakdown
of the information of the subjects used in this study can be
found in Figure I, which shows the distribution of attributes
of the subjects such as diagnosis, age and gender.

ICV normalisation is a technique commonly used in classifi-
cation of dementia from structural MRI; it involves transform-
ing the volume measurements to account for different head
sizes and total brain size as age and gender will affect the
brain size which will in turn affect the volumes of the regions
inside the brain. There are multiple methods to calculate ICV
described in [12], the simplest of which is the proportional
method v" = 7%, where v’ is the ICV normalised value of
the volume v. Another method where a linear relation exists
between v and IC'V such that v =b x IC'V +m where b
is the gradient and m is the intercept. Then v' = b+ ;5.
A third method, the residual method also assumes a linear
relation between v and IC'V and transforms v by removing
this linear relation, v’ = v — b(ICV — ICV).

In the data used in this paper there is not a linear relation
between the hippocampal volumes and the ICV of the patient,

thus using ICV normalisation may cause loss of relationships
between variables as two of the three methods previously
described require a linear relationship between the volumes
and ICV. Also ICV normalisation has been shown to lead to
bias in volume measurements based on the age or gender of
the subjects [13]. While there are multiple arguments against
the usage of ICV normalisation on the data used in this paper,
it will be verified as it may improve the accuracy of the method
regardless of the potential downsides. The proportional method
will be used, v' = to compute the ICV normalised
volumes.

_v_
cv’

III. PROBABILITY-BASED CLASSIFIER

A. Linear Discriminant Analysis to Partition the Feature
Space of a Single Region

Linear Discriminant Analysis (LDA) is a method to find
the optimal linear hyperplane to separate two classes with
the least margin of error. In this case it will be applied to
single region to determine an optimal threshold where the
values that lie below the threshold belong to one class, and
the values that lie above the threshold belong to another class.
Figure 1 shows the probability density functions for each of
the hippocampal volumes for HC and AD patients and also
the threshold for each attribute generated by LDA. From this
it can be seen that generally the volumes for HC subjects
are greater than the volumes than AD patients except in the
left and right hippocampal fissures; however, the fissures are
measurements of a gap rather than the volume of a mass in
the hippocampus. It also shows the thresholds created when
LDA is used on the attributes to classify the diagnosis of
the subject. As the hippocampal fissure measurements do not
provide any predictive power for the diagnosis of a subject
these measurements will be ignored and only the other 14
attributes will be used.

Using the hyperplanes found during the LDA process, each
subject’s hippocampal attributes are tested to verify whether
the value lies in the HC-sized side of the hyperplane or the
AD-sized side. A value belongs to the HC-sized side if it lies
above the threshold, and AD-sized otherwise. If the subject lies
in the HC-sized side of the hyperplane then a -1 is recorded
for that attribute, and for the AD-sized side, a 1 is recorded;
this generates a binary feature vector for each subject as the
attributes have been transformed from being a continuous
value to having one of two possible values. An example of
this process on a subject is shown in Table II. Intuitively if
a higher count of 1 is found it should mean the subject is
more likely to have AD as more of the hippocampal attributes
indicate a likelihood that AD is present; and vice versa - if a
higher count of -1 was found it means there is a likelihood of
HC.

This is shown in Figure 2, where the bar chart showing the
distribution of subjects with the number of positive attributes
and their actual diagnosis. This bar chart shows a correlation
between the number of positive attributes and a diagnosis of
AD; and also a correlation between the number of negative
attributes and HC subjects. However, there are subjects with a
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Fig. 1: Density graphs of the hippocampal volumes and thresh-
olds found using LDA (the axis labels have been removed for
clarity)

low number of positive attributes yet still classified with AD
and vice versa for HC patients with a low number of negative
attributes - in particular there are two HC subjects with all
positive attributes; and two AD subjects with all negative
attributes.
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Fig. 2: Bar chart showing the number of positive attributes in
subjects

TABLE II: LDA process for a subject with AD. A -1 in the
’Binary Feature’ column means that region has been identified
as a negative attribute, and a 1 means a positive attribute.

Attribute Name Attribute Value | Binary Feature
Left Hippocampus 2353.56 -1
Left Presubiculum 3979.98 1
Left CA1 2101.93 1
Left CA2-3 5403.29 1
Left Fimbria 207.403 1
Left Subiculum 3979.98 1
Left CA4-DG 3257.18 1
Right Hippocampus | 2350.65 1
Right Presubiculum | 2433.25 1
Right CA1 2877.41 -1
Right CA2-3 6835.59 1
Right Fimbria 127.686 1
Right Subiculum 4262.02 -1
Right CA4-DG 3956.99 -1

IV. PROBABILITY WEIGHT-BASED CLASSIFICATION
ALGORITHM

Using the LDA thresholds, an attribute is defined as being
negative if x,, > t,, where ¢, is the n'” threshold value, and
positive otherwise. We will define a function ¢(x,,) which will
classify a single attribute as being negative or positive which
will be given values of -1 and 1 respectively, the function is
defined in Equation 1, where 14 is the indicator function and
returns 1 if the conditional statement input to the function
evaluates as true, and it returns O if the statement evaluates as
false. Based on the number of positive attributes for a subject,
a classification can be made as to whether the subject is HC
or AD, as for an AD patient, the number of positive regions
found would be expected to be greater than the number of
negative regions found, this algorithm will be referred to as
the Binary Region Classification algorithm (BRC). BRC works
by summing the binary feature vector (which is comprised of
-1 and 1 rather than O and 1) and if the value is above 0 a
classification of HC is made; if it’s O or below then an AD
classification is made. BRC is shown in Equation 2.

d(x;) = 1a(x; <t;) — 1a(zs > t;) (D
dim(Z)
BRC(Z) = > ¢(xi) 2
i=1

One downside to the BRC is that each region is given the
same weight as every other region (1 or —1) - it assumes all
regions have the same predictive power. This is not the case,
some attributes will be better at identifying AD in a subject
given the attribute is positive. This probability can be written
as P(AD | x; <t;). The probability of a patient being HC
given the attribute is negative is given by P(HC | z,, > t;).
The predictive powers for each volume measurement are
shown for HC and AD in Table III and they can be used
to weight the attributes: rather than each attribute having an
integer value of -1 or 1. Table III also shows some additional
interesting information: the top four predictors for both AD



and HC are the same (though in a slightly different order of
ability for each diagnosis): Left Subiculum, Right Subiculum,
Left Presubiculum and Right Presubiculum; this matches with
the findings of [14] where it was found that atrophy of
the subiculum and presubiculum were the best hippocampal
markers for detection of AD.

TABLE III: Ability of single regions to diagnose a subject, to
save space the table headers are denoted as x, y relating to the
probability of a correct diagnosis of = given that the attribute
is classed as y-sized. An attribute is HC-sized if it is negative,
and AD-sized if it is positive.

Region Name HC, HC | HC, AD | AD, HC | AD, AD
Left Hippocampus 0.75 0.25 0.25 0.75
Left Presubiculum 0.79 0.23 0.21 0.77
Left CAl 0.68 0.31 0.32 0.69
Left CA2-3 0.74 0.26 0.26 0.74
Left Fimbria 0.66 0.32 0.34 0.68
Left Subiculum 0.81 0.18 0.19 0.82
Left CA4-DG 0.74 0.26 0.26 0.74
Right Hippocampus | 0.70 0.31 0.30 0.69
Right Presubiculum | 0.80 0.22 0.20 0.78
Right CAl 0.60 0.40 0.40 0.60
Right CA2-3 0.73 0.28 0.27 0.72
Right Fimbria 0.67 0.34 0.33 0.66
Right Subiculum 0.76 0.20 0.24 0.80
Right CA4-DG 0.76 0.25 0.24 0.75

Using this weighting system which will be referred to as
Probability-Weight Classification (PWC), two variants of the
algorithm are proposed and tested. PWC; (X) and PWCs(X)
are the variants and they adopt two equations which use the
summation of the probability weights, and the resultant value
is used to classify the subject as HC if it is less than 0 and AD
otherwise. The variants, PWC; (X) and PWCy(X), are shown
in Equations 3 and 4 respectively.

Built-in feature selection can be implemented for these
algorithms by having a threshold where if the predictive ability
of a region falls below this threshold then it is discarded.
The reasoning behind this is that regions which are worse
at predicting HC or AD in a subject and thus the information
they provide may lead to more misclassifications. Therefore if
a thresholds Pr is provided such that all regions with a predic-
tive power lower than Pr in the context of P(HC | x; > t;)
and P(AD |xz; <t;) are ignored (note that the minimum
number of features that can remain are 1 no matter the value
of PT).

A. ICV Normalisation

Two methods of ICV normalisation will be tested, the
proportional method discussed earlier where v’ = ﬁv and a
custom method which involves only normalising the volumes
which lie outside the mean of all the subjects’ values of that
volume plus or minus the standard deviation of the values for
the volumes. This is shown in Equation 5, where sd(ICV)
is the standard deviation of the volume values and will be
referred to as ICV normalisation SD. The ICV normalisation
SD method was designed because in the initial testing of the
algorithm, many of the false positives (HC misclassified as

AD) and false negatives (AD misclassified as HC) were from
patients who had a very high or very low ICV in comparison to
the other patients (such that their ICV was outside the range of
the mean = the standard deviation of the ICVs of all subjects).

0V
v’
a=1,4 ((ICV — sd(ICV)) > ICV < (ICV + sd([OV)))

v'=av+ (1 —a)

&)

B. Naive Bayes and Support Vector Machine Classification

This paper describes a custom method being used to classify
the data, to evaluate the performance of this method it will
be compared to two state-of-the-art classification methods: a
Naive Bayes classifier and a Support Vector Machine (SVM).
The Naive Bayes classifier is a probabilistic classifier which
applies Bayes’ theorem on a set of independent features,
in this case the independent features are the hippocampal
volume measurements for each subject. An SVM is a non-
linear classifier using a kernel to transform data into a higher
dimensional feature space and then classify the data in the new
feature space. The kernels which will be tested in this paper
are the linear kernel k(x, 2') = (x, 2’) and the Gaussian radial
basis filter (RBF) kernel k(x,z’) = exp(—al|z — 2'||?).

V. EXPERIMENTAL SETUP

After the initial pre-processing of the data with FreeSurfer,
it was imported into the data mining software KNIME [15]
with the use of the library K-Surfer [16]. This allowed the
statistical data output from FreeSurfer to be merged into a
single table rather than multiple text-based files. Using the
KNIME the structural MRI measurements were merged with
the corresponding patient’s details - their age, gender and
diagnosis; the merged data was then saved in a single comma
separated file. The algorithm was implemented and tested
using the statistical programming language R [17] using the
data output from KNIME as the input. External libraries for R
provided the implementation for the LDA classifier [18]; and
also the SVM [19] and the Naive Bayes [20] classifier which
were used to compare the algorithm proposed in this paper.

VI. RESULTS

Initial testing in Figures 3 and 4 show that the optimal
probability thresholds are found between 0.7 and 0.8 (Figure
3), so those set the range for the probability thresholds which
will be tested further. The results for the BRC algorithm
are found in Table IV where BRC is used on data where
ICV normalisation has not been applied; Table V shows BRC
applied to ICV normalised data and Table VI is BRC applied
to data which uses the ICV normalisation SD method. The
results for the PWC algorithm are found in Table VII where
PW (4 and PW (5 are used on data which hasn’t been ICV
normalised; PW(C, and PW (s are applied to data which
have been ICV normalised and the results are in Table VIII;
and in Table IX, PW (', and PW (5 have been applied to data



dim/(Z)
PWC(#) = > (W(P(Hcm > t;)—P(AD|z, > tﬁ)—k%(P(HCmn < t;)—P(AD|z, < m))
=1
3)
T ) 1 b(wi) +1
PWC,(7) = Z (#P(HC | zn > ti) — ZTP(AD |z; < ti)) “4)

=1

TABLE 1V: BRC without ICV normalisation and 10-fold cross
validation repeated ten times

Pr Acc Sen Spe

0.7 0.785 | 0.777 | 0.792
0.71 | 0.795 | 0.795 | 0.795
0.72 | 0.795 | 0.8 0.79

0.73 | 0.793 | 0.799 | 0.787
0.74 | 0.789 | 0.798 | 0.781
0.75 | 0.782 | 0.792 | 0.774
0.76 | 0.784 | 0.787 | 0.781
0.77 | 0.775 | 0.792 | 0.758
0.78 | 0.765 | 0.781 | 0.749
0.79 | 0.695 | 0.613 | 0.775
0.8 0.606 | 0.331 | 0.876

with the ICV normalisation SD method used. A Naive Bayes
classifier has been tested on the data in Table XI as it, like
PWC, also uses probability to classify data so they both share
a similarity. SVMs were also applied to the data in Table X
because out of various classifiers applied to the data, SVMs
outperformed them all thus it would be useful to compare the
classifiers developed in this paper to what might be one of
the highest accuracies achievable on the data with commonly
used classifiers.

For all the results 10-fold cross validation was repeated
ten times using a different set of folds for each repetition.
All of the classifiers tested used the same sets of folds so
they were training and testing on the same data sets. 10-fold
cross validation is a form of k-fold cross validation [21] and
works by splitting the data set into k folds where each fold
contains an equal (or near equal) number of samples. Next, k
iterations of training and testing are performed where k — 1
folds are used for training and the leftover fold is used for
testing. Eventually all folds will have been tested (using a
different £ — 1 folds for training at each iteration) and then an
accuracy can be computed between the actual class of all of
the samples of the data and the predicted class for all the data
samples. The 10-fold cross validation is repeated ten times for
all classifiers in order to try and eliminate any bias towards
the data set being tested.

VII. DISCUSSION

The highest accuracy achieved was by BRC with an ac-
curacy of 85.8% using a probability threshold of 0.78 on
ICV normalised data. This outperformed even the SVM which
obtained an accuracy of 84.9% using a linear kernel on
ICV normalised data and also outperformed the Naive Bayes
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Fig. 3: Accuracy achieved via PW(4 on the non-ICV nor-
malised entire dataset as the probability threshold is changed
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Fig. 4: Accuracy achieved via PW (' on the ICV normalised
entire dataset as the probability threshold is changed



TABLE V: BRC with ICV normalisation and 10-fold cross
validation repeated ten times

Pr Acc Sen Spe

0.7 0.835 | 0.805 | 0.863
0.71 | 0.836 | 0.804 | 0.867
0.72 | 0.838 | 0.803 | 0.872
0.73 | 0.84 0.801 | 0.879
0.74 | 0.838 | 0.799 | 0.876
0.75 | 0.832 | 0.792 | 0.872
0.76 | 0.838 | 0.8 0.874
0.77 | 0.849 | 0.813 | 0.883
0.78 | 0.858 | 0.832 | 0.883
0.79 | 0.852 | 0.837 | 0.868
0.8 0.832 | 0.825 | 0.839

TABLE VI: BRC' with ICV normalisation SD with 10-fold
cross validation repeated ten times

Pr Acc Sen Spe

0.7 0.841 | 0.821 | 0.86

0.71 | 0.842 | 0.82 0.862
0.72 | 0.843 | 0.818 | 0.867
0.73 | 0.844 | 0.812 | 0.874
0.74 | 0.84 0.813 | 0.866
0.75 | 0.839 | 0.815 | 0.862
0.76 | 0.842 | 0.827 | 0.857
0.77 | 0.846 | 0.841 | 0.85

0.78 | 0.846 | 0.849 | 0.843
0.79 | 0.843 | 0.851 | 0.835
0.8 0.837 | 0.84 0.833

TABLE VII: PW (4, and PW(C5 with no ICV normalisation
with 10-fold cross validation repeated ten times

No ICV Normalisation

P PWCl PWCZ

T Acc Sen Spe Acc Sen Spe
0.7 0.785 | 0.777 | 0.792 | 0.786 | 0.779 | 0.792
0.71 | 0.795 | 0.795 | 0.795 | 0.795 | 0.796 | 0.795
0.72 | 0.795 | 0.8 0.79 0.795 | 0.8 0.79
0.73 | 0.793 | 0.799 | 0.787 | 0.793 | 0.799 | 0.787
0.74 | 0.789 | 0.798 | 0.781 | 0.789 | 0.798 | 0.781
0.75 | 0.782 | 0.792 | 0.774 | 0.782 | 0.791 | 0.774
0.76 | 0.784 | 0.787 | 0.781 | 0.783 | 0.786 | 0.781
0.77 | 0.775 | 0.792 | 0.758 | 0.775 | 0.792 | 0.758
0.78 | 0.765 | 0.781 | 0.749 | 0.765 | 0.781 | 0.749
0.79 | 0.695 | 0.613 | 0.775 | 0.695 | 0.613 | 0.775
0.8 0.606 | 0.331 | 0.876 | 0.606 | 0.331 | 0.876

TABLE VIII: PW(C{ and PWC(C5 with ICV normalisation
with 10-fold cross validation repeated ten times

ICV Normalisation

P PWCl PWCZ

E Acc Sen Spe Acc Sen Spe
0.7 0.828 | 0.812 | 0.845 | 0.841 | 0.821 | 0.86
0.71 | 0.831 | 0.816 | 0.845 | 0.842 | 0.82 0.862
0.72 | 0.832 | 0.815 | 0.848 | 0.843 | 0.818 | 0.867
0.73 | 0.835 | 0.818 | 0.85 0.844 | 0.812 | 0.874
0.74 | 0.838 | 0.823 | 0.854 | 0.84 0.813 | 0.866
0.75 | 0.835 | 0.815 | 0.854 | 0.839 | 0.815 | 0.862
0.76 | 0.839 | 0.823 | 0.854 | 0.842 | 0.827 | 0.857
0.77 | 0.847 | 0.837 | 0.857 | 0.846 | 0.841 | 0.85
0.78 | 0.856 | 0.854 | 0.859 | 0.846 | 0.849 | 0.843
0.79 | 0.85 0.84 0.859 | 0.843 | 0.851 | 0.835
0.8 0.833 | 0.799 | 0.866 | 0.837 | 0.84 0.833

TABLE IX: PW(C; and PW (5 with ICV normalisation SD
with 10-fold cross validation repeated ten times

ICV Normalisation SD
P PWC, PWC,

T Acc Sen Spe Acc Sen Spe
0.7 0.829 | 0.813 | 0.845 | 0.843 | 0.823 | 0.862
0.71 | 0.83 0.815 | 0.845 | 0.842 | 0.822 | 0.862
0.72 | 0.831 | 0.814 | 0.848 | 0.843 | 0.818 | 0.867
0.73 | 0.834 | 0.818 | 0.85 0.844 | 0.812 | 0.874
0.74 | 0.838 | 0.823 | 0.854 | 0.84 0.813 | 0.866
0.75 | 0.834 | 0.811 | 0.857 | 0.838 | 0.816 | 0.859
0.76 | 0.84 0.824 | 0.856 | 0.842 | 0.827 | 0.857
0.77 | 0.847 | 0.837 | 0.857 | 0.846 | 0.841 | 0.85
0.78 | 0.856 | 0.854 | 0.859 | 0.846 | 0.849 | 0.843
0.79 | 0.85 0.84 0.859 | 0.843 | 0.851 | 0.835
0.8 0.832 | 0.799 | 0.865 | 0.834 | 0.842 | 0.827

TABLE X: SVM with 10-fold cross validation repeated ten
times

Kernel | Acc Sen Spe
SVM without ICV normalisation Linear 0.806 | 0.815 | 0.797
RBF 0.823 | 0.831 | 0.814
SVM with ICV normalisation Linear 0.849 | 0.847 | 0.852
RBF 0.835 | 0.85 0.819
SVM with ICV normalisation SD | Linear 0.835 | 0.837 | 0.833
RBF 0.841 | 0.866 | 0.815

classifier with a maximum accuracy of 84.7%. The difference
between BRC and PWC was negligible with PWC having a
maximum accuracy of 85.6% (compared to BRC’s 85.8%) thus
showing that there is no need to complicate the method using
the probability-based weights that is used by PWC and instead
use the binary weights from BRC. PW (C; always achieved a
higher maximum accuracy than PW (5, however, at lower
probability thresholds (0.7 - 0.75), PW (5 performs better
than PW (] so it is better able to cope with less relevant
features.

ICV normalised data far outperformed non-ICV normalised
data; in BRC and PWC using ICV normalisation improved
the maximum accuracy by over 5% in both cases, and all the
accuracies at each probability threshold used were improved.
With the Naive Bayes classifier and the SVM, ICV normal-
isation also improved the results, with the SVM being the
classifier able to cope with the non-ICV normalised data the
best by achieved the highest accuracy of 82.3% on it. The ICV
normalisation SD method described in this paper in all cases
par one performs worse than standard ICV normalisation, and
it always outperforms ICV normalisation. For the Naive Bayes
classifier however, ICV normalisation SD outperforms ICV
normalisation by 1.5%, though this is only a marginal amount
and since ICV normalisation SD was only better than standard

TABLE XI: Naive Bayes with 10-fold cross validation re-
peated ten times

Data Transform Method Acc Sen Spe

NB without ICV normalisation 0.777 | 0.732 | 0.821
NB with ICV normalisation 0.833 | 0.81 0.855
NB with ICV normalisation SD | 0.847 | 0.817 | 0.876




ICV normalisation in one case, the SD method isn’t worth
using.

The descriptive model produced by this algorithm is shown
in Table II, each region of a subject’s hippocampus is given
a binary feature of 1 or -1 depending on the value of the
volume measurement for that region of the hippocampus. If
a subject has more negative attributes than positive attributes
then a diagnosis of HC is made; and more positive attributes
than negative attributes then an AD diagnosis is made. There
is a case which could occur for certain subjects where the
number of negative attributes is equal to the number of positive
attributes; in this case, a classification of AD will made - the
reasoning behind this is that it would be better (regarding the
patient’s interest) for a healthy patient to receive treatment for
AD rather than an AD patient to go ignored. An alternative
would be to not make a decision and leave the diagnosis
unknown which could potentially lead to doctor’s monitoring
the development of the patient’s brain over the foreseeable
future.

VIII. CONCLUSION

The work in this paper has created a classifier which
outperforms an SVM and a Naive Bayes classifier at accuracy
in diagnosing a patient as HC or AD based on a baseline
structural MRI scan. As well as attaining a higher accuracy it
can extract a easily understood description of why a diagnosis
was made, whereas an SVM doesn’t have this advantage as an
SVM works by transforming the data into a higher dimensional
space where descriptive information about the data is lost. The
descriptiveness of this model could aid a doctor by pointing to
regions in the hippocampus that the doctor should look at - if
we let all negative features be a warning sign of AD, then say
the left presubiculum is negative, the classifier could advise the
doctor to manually check the left presubiculum of the subject’s
MRI to see if there is anything about that region that could
correlate with AD. This work has also shown that the best
features in the hippocampus are the left presubiculum, right
presubiculum, left subiculum and right subiculum matching
with current literature on this topic [14].

There is also potential for the algorithm to have a parallel
execution in both the training and predicting parts of it. The
training of the algorithm could be parallelised by: creating the
thresholds for the decision boundary in parallel and evaluat-
ing different probability thresholds in parallel. Regarding the
prediction part of the algorithm: the proposed methods in this
paper are based on the summation of weights and each of the
weights are independent of the other weights, this means that
the weights can be computed in parallel.

Future work involves applying this algorithm to the three
class HC, AD and also Mild Cognitive Impairment sufferers
and seeing if it performs as well. After the thresholds are
created, region are given the diagnosis of negative or positive
which converts a continuous variable into a binary variable,
rule mining could be applied to the binary variables to generate
rule associations to further the understanding of AD in the
hippocampus. In this paper only the hippocampal subfields are

used, the classifier’s performance when applied to the cortical
and subcortical fields of the brain could improve so it is worth
seeing how well it works applied to the additional features.
Another idea is to use subspace clustering to find a subspace
where the subjects can be grouped into clusters and see if
rules can be deduced from the clusters that are able to be
merged with the rules found by this classifier to create a better
classifier.
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