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Abstract. We present cross-validation of remote sensing

measurements of methane profiles in the Canadian high

Arctic. Accurate and precise measurements of methane

are essential to understand quantitatively its role in the

climate system and in global change. Here, we show a cross-

validation between three data sets: two from spaceborne

instruments and one from a ground-based instrument. All

are Fourier transform spectrometers (FTSs). We consider

the Canadian SCISAT Atmospheric Chemistry Experiment

(ACE)-FTS, a solar occultation infrared spectrometer

operating since 2004, and the thermal infrared band of the

Japanese Greenhouse Gases Observing Satellite (GOSAT)

Thermal And Near infrared Sensor for carbon Observation

(TANSO)-FTS, a nadir/off-nadir scanning FTS instrument

operating at solar and terrestrial infrared wavelengths,

since 2009. The ground-based instrument is a Bruker

125HR Fourier transform infrared (FTIR) spectrometer,

measuring mid-infrared solar absorption spectra at the Polar

Environment Atmospheric Research Laboratory (PEARL)

Ridge Laboratory at Eureka, Nunavut (80◦ N, 86◦W) since

2006. For each pair of instruments, measurements are

collocated within 500 km and 24 h. An additional collocation

criterion based on potential vorticity values was found not

to significantly affect differences between measurements.

Profiles are regridded to a common vertical grid for each

comparison set. To account for differing vertical resolutions,

ACE-FTS measurements are smoothed to the resolution

of either PEARL-FTS or TANSO-FTS, and PEARL-FTS

measurements are smoothed to the TANSO-FTS resolution.

Differences for each pair are examined in terms of profile

and partial columns. During the period considered, the

number of collocations for each pair is large enough to

obtain a good sample size (from several hundred to tens of

thousands depending on pair and configuration). Consider-

ing full profiles, the degrees of freedom for signal (DOFS)

are between 0.2 and 0.7 for TANSO-FTS and between 1.5

and 3 for PEARL-FTS, while ACE-FTS has considerably

more information (roughly 1 DOFS per altitude level). We

take partial columns between roughly 5 and 30 km for

the ACE-FTS–PEARL-FTS comparison, and between 5

and 10 km for the other pairs. The DOFS for the partial

columns are between 1.2 and 2 for PEARL-FTS collocated

with ACE-FTS, between 0.1 and 0.5 for PEARL-FTS

collocated with TANSO-FTS or for TANSO-FTS collo-

cated with either other instrument, while ACE-FTS has

much higher information content. For all pairs, the partial

column differences are within ±3× 1022 moleculescm−2.

Expressed as median±median absolute deviation (ex-

pressed in partial column units or as a percentage),

these differences are 0.11± 9.60×1020 moleculescm−2
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(0.012± 1.018 %) for TANSO-FTS–PEARL-FTS,

−2.6± 2.6× 1021 moleculescm−2 (−1.6± 1.6 %) for ACE-

FTS–PEARL-FTS, and 7.4± 6.0× 1020 moleculescm−2

(0.78±0.64 %) for TANSO-FTS–ACE-FTS. The differences

for ACE-FTS–PEARL-FTS and TANSO-FTS–PEARL-FTS

partial columns decrease significantly as a function of

PEARL partial columns, whereas the range of partial

column values for TANSO-FTS–ACE-FTS collocations

is too small to draw any conclusion on its dependence on

ACE-FTS partial columns.

1 Introduction

Methane is the third largest contributing greenhouse gas in

the Earth atmosphere, after water vapour and carbon diox-

ide (Ciais et al., 2013). A quantitative understanding of the

methane cycle is needed to model present and future climate.

Accurate measurements are needed to constrain long-term

sources and sinks (Ciais et al., 2013).

Methane has both natural and anthropogenic sources,

and has an atmospheric lifetime of approximately 9 years

(Prather et al., 2012). Anthropogenic sources, such as

livestock, landfills, and fossil fuels, account for approxi-

mately 352±45 Tg yr−1, whereas natural sources total 202±

35 Tgyr−1 (Prather et al., 2012). Total methane concentra-

tions are estimated to have risen from 700± 25 ppbv in pre-

industrial times to 1795± 18 ppbv in 2010 (Prather et al.,

2012). The largest natural source of methane is from wet-

lands, which are concentrated at high northern latitudes (50–

75◦ N) (Melton et al., 2013). Models disagree about the trend

and feedbacks for wetland methane emissions (e.g. Ciais

et al., 2013; Melton et al., 2013). The northern latitudes

where wetlands dominate are poorly sampled by ground-

based measurement networks (either in situ or remote sens-

ing). Therefore, only spaceborne remote sensing can deliver

the spatial and temporal coverage needed to constrain mod-

els. Due to the difficult nature of satellite remote sensing in

an area where solar elevation angles are low and surfaces

are cold and snow-covered, targeted validation of spaceborne

methane measurements in the Arctic is needed.

Satellite validation is the process of verifying that re-

motely sensed geophysical products (such as methane con-

centrations) are consistent with a reference “ground” truth

while taking into account accuracy, known biases, and preci-

sion (von Clarmann, 2006). Validation is carried out by per-

forming a comparison against a reference that can be con-

sidered as a truth, or that is itself validated. Often, when

such a truth is not available, an alternative is cross-validation.

A cross-validation seeks to verify that measurements re-

ported by a set of products are mutually consistent within

reported error ranges (von Clarmann, 2006).

Previous studies have validated spaceborne methane mea-

surements in different contexts. A brief overview of the his-

tory of spaceborne methane measurements is included in the

broad review by Thies and Bendix (2011), with consider-

ably more detail in the slightly older review by Bréon and

Ciais (2010). Spaceborne methane measurements use dif-

ferent techniques. Down-looking (nadir or slant) shortwave

measurements (i.e. from reflected solar radiation), such as

from the SCanning Imaging Absorption SpectroMeter for

Atmospheric CHartographY (SCIAMACHY) (Frankenberg

et al., 2005), or the Greenhouse Gases Observing Satel-

lite (GOSAT) Thermal And Near infrared Sensor for car-

bon Observation (TANSO)-Fourier transform spectrometer

(FTS) shortwave (Yoshida et al., 2011; Morino et al., 2011;

Inoue et al., 2014), are limited to total columns in day-

time clear-sky conditions. Thermal infrared measurements,

such as from the Tropospheric Emission Spectrometer (TES)

(Worden et al., 2012; Wecht et al., 2012), the Atmospheric

InfraRed Sounder (AIRS) (Xiong et al., 2008), the Infrared

Atmospheric Sounding Interferometer (IASI) (Razavi et al.,

2009), or the GOSAT TANSO-FTS Thermal Infra-Red (TIR)

band (Saitoh et al., 2012) do not depend on the Sun and have

the potential to measure the vertical distribution, although the

latter depends on the spectral ranges used and on sufficient

degrees of freedom for signal (DOFS) being available in the

measurement (at least 2 DOFS are needed to resolve vertical

information). Even where the measurement contains insuf-

ficient information for resolving features vertically, thermal

infrared can still complement shortwave observations whose

sensitivity generally maximizes lower in the troposphere, and

thus (in the case of methane) closer to the sources. Mea-

surements in a limb geometry, such as from the Michelson

Interferometer for Passive Atmospheric Sounding (MIPAS)

(Raspollini et al., 2006), have a higher vertical resolution

but a less precise horizontal geolocation due to the long path

through the atmosphere, and cannot measure close to the sur-

face. One type of limb measurements are solar occultation

measurements, such as those carried out by the Atmospheric

Chemistry Experiment (ACE)-FTS (De Mazière et al., 2008).

Looking at a solar source, those measurements have a very

high signal to noise ratio, at the price of a low number of

measurements (two profiles measured per orbit).

The aim of this study is to cross-validate methane profile

products near Eureka, Nunavut, Canada (80◦ N, 86◦W). We

consider one spaceborne occultation instrument (ACE-FTS),

one spaceborne nadir/off-nadir instrument (TANSO-FTS, the

TIR band), and one ground-based solar absorption instru-

ment, all described in Sect. 2.1. We compare each pair of

products in a round-robin sense (each instrument is compared

against all others), to verify that the differences are consistent

with expected bias, accuracy, and precision.

The paper is set up as follows. Section 2 describes in detail

the instruments involved and the cross-validation methodol-

ogy implemented. Section 3 presents results on the vertical

resolution of the different instruments involved, as well as

comparisons of profiles and partial columns. In Sect. 4, those

results are interpreted and put in a wider context. Finally,
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Sect. 5 contains conclusions and recommendations for future

work.

2 Methods

2.1 Instruments and products

2.1.1 PEARL-FTS

Since 2006, a Bruker IFS 125HR has operated at the Polar

Environment Atmospheric Research Laboratory (PEARL)

Ridge Laboratory at 80.05 ◦N, 86.42 ◦W, at an elevation of

610 ma.s.l. (Batchelor et al., 2009; Fogal et al., 2013).

As part of the Network for the Detection of Atmo-

spheric Composition Change (NDACC) (http://www.ndsc.

ncep.noaa.gov/) the Fourier transform infrared (FTIR) makes

measurements using seven narrow-band filters covering the

range between 670 and 4300 cm−1 (14.9 and 2.33 µm) with

a spectral resolution of 0.004 cm−1. Methane retrievals are

based on an optimal estimation method in the framework of

Rodgers (2000), carried out with the new SFIT4 retrieval

code (https://wiki.ucar.edu/display/sfit4/Infrared+Working+

Group+Retrieval+Code,+SFIT). The retrieval iteratively im-

proves the a priori Volume Mixing Ratio (VMR) profiles

which are based on the mean of a 40 year run (1980–2020)

from the Whole Atmosphere Chemistry Climate Model

(WACCM) (Eyring et al., 2007; Marsh et al., 2013), version

6, for Eureka. The retrieval strategy is based on the approach

presented in Sussmann et al. (2011). The retrieval process

outputs methane profiles, averaging kernels, Jacobians for

both the retrieval and forward model parameters, profiles of

interfering species, spectral fits, root-mean-square error of

fit, and retrieval error estimates. Retrievals are performed on

a fixed altitude grid with 47 levels covering 91 kPa–8 mPa.

Pressure and temperature at altitudes below 10 Pa are ob-

tained from daily National Centers for Environmental Pre-

diction (NCEP) profiles (covering 105–10 Pa), which are cal-

culated for each NDACC site and available at ftp://ftp.cpc.

ncep.noaa.gov/ndacc/ncep/. At altitudes above 10 Pa, NCEP

profiles are not available, and we use the mean temperature

and pressure profiles of the aforementioned WACCM model

run. Spectroscopic data are obtained from the HITRAN 2008

edition (Rothman et al., 2009).

Estimates of the measurement uncertainties are based on

the formulation presented in Rodgers (1990, 2000). Uncer-

tainties due to measurement noise and forward model pa-

rameters are calculated for each measurement. Interference

errors (Rodgers and Connor, 2003) account for wavelength

shift, background slope, simple retrieved phase correction

and the profiles of CO2, HDO, NO2, and H2O. The forward

model parameter errors considered are solar zenith angle un-

certainties, temperature uncertainties and spectroscopic pa-

rameter uncertainties. Smoothing error is not included (von

Clarmann, 2014).

2.1.2 ACE-FTS

ACE (on-board the SCISAT satellite) includes an FTS

(henceforth ACE-FTS) operating at 750–4400 cm−1 (13.3–

2.27 µm) with a spectral resolution of 0.02 cm−1 (Bernath

et al., 2005). It was launched on 12 August 2003, into a cir-

cular orbit with an altitude of 650 km and an inclination of

74◦.

ACE-FTS is a Michelson interferometer of custom design

built by ABB Inc. (Bernath et al., 2005). From two solar oc-

cultation measurements per orbit, profiles of trace gases are

retrieved. The instrument has a vertical resolution of around

4 km, measuring from the cloud tops up to 150 km. As the

current study focuses on methane, we are primarily inter-

ested in the troposphere and lower stratosphere because this

is where the bulk of the methane is located and these at-

mospheric regions are the primary contributors to the green-

house effect. Retrievals are performed on either a variable or

a fixed altitude grid. Here, we use the retrievals on the fixed

1 km altitude grid (oversampled relative to the vertical res-

olution). Pressure and temperature are available as retrieved

parameters. Spectroscopic line lists for methane are from HI-

TRAN 2004 (Rothman et al., 2005).

We use methane profile retrievals from release V3.5.

Boone et al. (2005) describe the overall retrieval strategy

for ACE-FTS retrievals. Since then, the algorithm has been

updated several times, with V3.0 described by Boone et al.

(2013). The latest version at the time of writing is V3.5,

which corrects erroneous reanalysis data used in the process-

ing for V3.0 after September 2010.

As part of a larger validation exercise, De Mazière et al.

(2008) describe validations for ACE-FTS methane profiles

from V2.2, which is the version immediately preceding V3.0.

Differences between V2.2 and V3.0 are described by Way-

mark et al. (2013). De Mazière et al. (2008) compare re-

trieved profiles to various other sources: 11 ground-based

FTIR sites covering a range of climate zones from Arctic

to Antarctic (but not Eureka), balloon-borne measurements

from Spectroscopie Infra-Rouge d’Absorption par Lasers

Embarqués (SPIRALE), and spaceborne measurements from

MIPAS and the Halogen Occultation Experiment (HALOE).

In the high-latitude Upper Troposphere–Lower Stratosphere

(UTLS) region, they find ACE-FTS to be biased low to MI-

PAS (by around 0.1 ppmv), but high to SPIRALE (less than

10 %; HALOE has no coverage north of 57◦).

Recently, Sheese et al. (2015) have empirically processed

ACE-FTS measurements to detect unphysical retrieved val-

ues. They divide values in bins depending on latitude, lo-

cal time, season, and altitude level. Within each bin, they

fit a superposition of three Gaussian distributions, assuming

the distribution is at most trimodal. Using these distributions,

they then flag any retrievals determined to be an outlier with

a confidence of 97.5 % or larger. In our study, we have used

version 1.1 of these flags to reject unphysical retrievals from

further processing.
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2.1.3 GOSAT TANSO-FTS TIR

GOSAT carries the TANSO-FTS (Kuze et al., 2009). It was

launched in January 2009 in a near-circular, sun-synchronous

orbit with an inclination of 98◦, a nominal altitude of 666 km,

and a local time ascending node of 13:00. TANSO-FTS scans

±35◦ from nadir, with a footprint at nadir of 10.5 km. The

instrument measures radiation in four spectral bands. Bands

1–3 measure reflected solar radiation, and band 4 measures

infrared radiation emitted by the Earth and its atmosphere.

Total column methane is retrieved from shortwave radi-

ances (Yoshida et al., 2011) and validated by Morino et al.

(2011), who find it has a 1.2±1.1 % low bias compared to the

Total Carbon Column Observing Network (TCCON). In this

study, we focus on the methane profiles retrieved from the

thermal infrared (band 4, 5.5–14.3 µm or 700–1818 cm−1)

(Saitoh et al., 2009, 2012), V1.0x. In the remainder of this

article, TANSO-FTS refers to the TIR band only, unless oth-

erwise stated.

Processing of level-1 data is described by Kuze et al.

(2012). TIR-retrieved temperature and water vapour valida-

tion is described by Ohyama et al. (2013). This is the first

study to validate V1.0x-retrieved methane profiles and par-

tial columns focusing on the northern high latitudes.

V1.0x methane profiles are retrieved on fixed vertical grid

levels, converted to variable pressure levels depending on

the ambient temperature profile, with pressure levels rang-

ing from 94 kPa to 56 Pa. Temperature and water vapour

a priori profiles are obtained from Japanese Meteorologi-

cal Agency Grid Point Value data (Maksyutov et al., 2008),

and methane a priori profiles are obtained from a National

Institute for Environmental Studies (NIES) transport model

(Maksyutov et al., 2008; Saeki et al., 2013). Spectroscopic

data are obtained from the HITRAN 2004 edition (Rothman

et al., 2005).

According to thermal vacuum tests of TANSO-FTS before

launch, the signal-to-noise ratio (SNR) was as low as approx-

imately 70 at around the 7.8 µm CH4 absorption band, result-

ing in low information content.

2.1.4 Derived meteorological products

In processing collocations between PEARL-FTS and ACE-

FTS, we obtain scaled potential vorticity (sPV) estimates

from Derived Meteorological Products (DMPs) (Manney

et al., 2007). Manney et al. (2007) calculate sPV based on Po-

tential Vorticity (PV) fields from the Goddard Earth Observ-

ing System (GEOS)-5.0 reanalysis (Rienecker et al., 2008),

by applying a height-dependent scaling vector so that profiles

have a similar range of values throughout the stratosphere.

Then, they interpolate sPV values in space and time, to get

an estimate at the location and time corresponding to an in-

strument measurement. For details, see Manney et al. (2007).

sPV profiles are reported along a slant path. For ACE-

FTS, sPV values for each altitude correspond to the location

of each tangent point for the occultation measurement. For

PEARL-FTS, sPV values are calculated for altitudes along

the line of sight. Details on why and how we use sPV values

are described in Sect. 2.5.

2.2 Collocations

Collocations are occasions where different pairs of instru-

ments observe approximately the same air mass at approx-

imately the same time (e.g. Holl et al., 2010). We cal-

culate collocations between each pair of instruments; i.e.

three sets in total: PEARL-FTS–ACE-FTS, PEARL-FTS–

TANSO-FTS, and ACE-FTS–TANSO-FTS. A suitable col-

location time and distance (for a level 2 product) depends on

the quantity of interest. As methane is relatively well-mixed

and has a lifetime on the order of 9 years (Prather et al.,

2012), a maximum distance of 500 km and a maximum time

interval of 24 h was selected. This is similar to what previous

studies have used. For example, De Mazière et al. (2008) use

500 km and 12 h for their polar comparisons, and Wecht et al.

(2012) use 750 km and 24 h.

In the collocation determination, we consider each profile

as a point measurement, even if the profile is not vertical. For

TANSO-FTS, this is the location where the line of sight in-

tersects with the surface of the Earth. For ACE-FTS, we use

the location of the 30 km tangent point. For PEARL-FTS,

this is the location of the Ridge Laboratory. In the latter two

cases, measurements are not actually occurring at those lo-

cations, but rather along a slant path with a large horizontal

extent. For example, a limb sounding with a tangent altitude

of 10 km has a 715 km path at altitudes between 10 and 50 km

(as a simplified geometrical calculation shows), with a sim-

ilar order of magnitude for high PEARL-FTS solar zenith

angles. In Sect. 2.5 we will discuss what this implies for the

present study.

Collocations between ACE-FTS and TANSO-FTS are lim-

ited to the quadrangle 60–90◦ N, 120–40◦W, as to remain in

roughly the same geographical area as the collocations with

PEARL-FTS. The larger area compared to the area immedi-

ately around PEARL allows for more collocations and there-

fore more complete statistics.

A single retrieval from one instrument may collocate with

more than one retrieval from the other. In Sect. 2.6, we de-

scribe how this is taken into consideration.

2.3 Vertical regridding

Different measurements are reported on different vertical

grids, as described above in Sect. 2. Therefore, we need to

calculate interpolated profiles before we can perform subse-

quent processing steps.

To calculate altitude from pressure for TANSO-FTS, tem-

perature and water vapour fields are regridded onto the

retrieval pressure grid using a b-spline method (Dierckx,

1995). This may introduce some error above 1 kPa. However,
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as this is at altitudes above the sensitivity range of the re-

trieval, this does not affect subsequent processing. Pressure

is converted to altitude based on the assumption of hydro-

static equilibrium.

For each collocation pair, we choose a shared altitude grid

to which we interpolate profiles of retrieved methane, a priori

methane, averaging kernels, temperature, and water vapour.

For the new altitude grid zn, we (arbitrarily) choose the arith-

metic mean altitude per level for the lower-resolution data set

(i.e. we take all altitude profiles, then calculate the average

hi for i = 1. . .N if each profile has N levels). That means

we have one altitude grid for each of our three comparison

pairs. In regridding, we are careful not to extrapolate any pro-

files; any levels outside of the range of the chosen grid are

flagged and not considered in subsequent processing. For the

lower-resolution instrument, averaging kernels are regridded

following Calisesi et al. (2005),

Azn ≈WAzoW∗ , (1)

where A is the averaging kernel matrix, zn is the new alti-

tude grid, zo is the old altitude grid, W is the interpolation

matrix between the two grids, and ∗ indicates the Moore–

Penrose pseudo-inverse (Moore, 1920). Regridding is per-

formed by linear interpolation, and W is calculated by ob-

taining the standard matrix of the linear transformation (Lay,

2003, p. 83),

W= (T (e1). . .T (en)) , (2)

where T can be any linear vector-valued function (in this

case: linear interpolation), and ek (k = 1. . .n) is column k of

the identity matrix I.

2.4 Vertical smoothing

We investigate the information content for each of our data

sets by calculating a histogram of the DOFS for the re-

trievals, defined as the trace of the averaging kernel matrix

A (we calculate this before the regridding described above).

For each pair of collocations, one measurement has a higher

vertical resolution than the other. Henceforth, we will refer

to the “higher-resolution” and “lower-resolution” measure-

ments, by which we mean vertical resolution. The higher-

resolution measurement is smoothed using the averaging ker-

nel and a priori from the lower-resolution measurement, fol-

lowing Rodgers and Connor (2003),

x̂s = xa+A(x̂h− xa) , (3)

where x̂h is the original higher-resolution profile, A and xa

are the averaging kernel matrix and the a priori profile for the

lower-resolution profile, respectively, and x̂s is the smoothed

higher-resolution profile, to be compared against the lower-

resolution profile. In cases where x̂h does not cover the full

range of xa, x̂h is extended using xa on both sides, prior to

the application of Eq. (3) because it follows from Eq. (3) that

x̂s = xa, where rows of A are 0.

2.5 Natural variability and coincidence error

Depending on the geophysical quantity of interest, it may

or may not be necessary to consider natural variability. For

example, von Clarmann (2006) considers that one needs to

evaluate the coincidence error. He proposes to estimate this

by calculating the expected natural variability based on col-

location distance and time interval, using an independent

source, such as from reanalysis model output. Instead, we

choose to investigate whether this is needed for our methane

intercomparison, by considering the effect of our collocation

criteria (time and distance) on the comparison results. If re-

ducing the collocation time and distance has no large effect

on the difference, an explicit consideration of natural vari-

ability is not necessary.

None of the measurements are point measurements, but all

measure along a path through the atmosphere, as described

above. Due to these considerations, the parts of the atmo-

sphere sampled by TANSO-FTS, PEARL-FTS, and ACE-

FTS are different, even when the nominal location is the

same. This contributes to the coincidence error described

above, but the same reasoning applies. A coincidence error

should be expected to increase when the distance or time in-

creases, and decrease when those decrease, ultimately disap-

pearing in the theoretical case where two instruments sam-

ple exactly the same atmosphere at the same time. There-

fore, where reducing the collocation distance criterion only

has a small impact on estimated differences between instru-

ments, the coincidence error is not of major importance, and

there is no need to explicitly take the path through the atmo-

sphere into account.

The presence of the Arctic polar vortex means that even

proximate stratospheric air parcels may sample considerably

different conditions (Schoeberl et al., 1992). Therefore, for

the comparison between ACE-FTS and PEARL-FTS, we in-

vestigate the effect of further constraining the collocations

by an sPV criterion. This is not needed for comparisons in-

volving TANSO-FTS because it is sensitive only to the tro-

posphere. As we choose a single level for investigating the

sPV criterion (potential temperature of 700 K), we do not

perform any interpolation, except when comparing sPV val-

ues between two instruments. The source of our sPV values

is described in Sect. 2.1.4.

2.6 Averaging measurements

As mentioned in Sect. 2.2, usually the same profile from

one instrument collocates with more than one profile from

another. For example, we have a subset of n collocated

pairs PEARL-FTS vs. TANSO-FTS that all correspond to

one unique PEARL-FTS profile with n different TANSO-

FTS profiles. Similar to De Mazière et al. (2008), we cal-

culate the arithmetic mean methane profile of all TANSO-

FTS profiles corresponding to the same PEARL-FTS pro-

file. Note that since we have already performed smooth-
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ing on each PEARL-FTS profile individually, by applying

Eq. (3) using different TANSO-FTS averaging kernels, the

set of smoothed PEARL-FTS profiles corresponding to a sin-

gle original PEARL-FTS profiles now varies. Therefore, we

calculate the arithmetic mean profile for both sets of pro-

files corresponding to a unique original PEARL-FTS pro-

file. Note that the same TANSO-FTS profile can also col-

locate to more than one PEARL-FTS profile; i.e. the set of

TANSO-FTS profiles collocating with PEARL-FTS profile k

has some overlap with the set of TANSO-FTS profiles col-

locating with PEARL-FTS profile k+ 1. We do no further

processing to account for this.

We perform a similar operation where multiple TANSO-

FTS profiles correspond to the same ACE-FTS profile, or

where multiple PEARL-FTS profiles correspond to the same

ACE-FTS profile.

2.7 Partial columns

Considering the limited vertical information content for

PEARL-FTS and TANSO-FTS, we compare partial column

values. Each of the retrievals reports VMR. As a first step

in calculating partial columns, we convert volume mixing ra-

tio, x, to number density, N , according to the ideal gas law

(Clapeyron, 1834),

N

x
=

p

kT
, (4)

where x is the VMR, p atmospheric pressure, T tempera-

ture, and k = 1.380653× 10−23 JK−1 is Boltzmann’s con-

stant (Mohr et al., 2012). To convert x to N for both instru-

ments, there are three reasonable alternatives for temperature

and pressure: one can choose one instrument and use its pres-

sure and temperature for both, one can convert x to N for

each instrument using its own pressure and temperature, or

one can calculate N using the mean temperature and pres-

sure between the two instruments (arithmetic mean tempera-

ture and geometric mean pressure), resulting in Nmean. None

of those alternatives is perfect and each has some advantages

or disadvantages. We choose to use Nmean for use in further

processing, so that temperature and pressure are consistent

within the comparison ensemble. The uncertainty due to the

differences in pressure and temperature is then given by

σpT =

∣∣∣∣Nsec−Nprim

2

∣∣∣∣ , (5)

where Nprim and Nsec are the primary and secondary number

densities corresponding to the primary and secondary instru-

ment within each collocation pair. For the temperature, we

calculate the arithmetic mean. For the pressure, we calculate

the geometric mean because pressure is very far from nor-

mally distributed and closer to a log-normal distribution.

To calculate partial columns from number density profiles,

we need to determine an appropriate altitude range for the

partial columns. ACE-FTS measurements have a high sen-

sitivity throughout the vertical range, but PEARL-FTS and

TANSO-FTS sensitivities vary as a function of altitude. For

each profile, we calculate as a function of altitude the sen-

sitivity of the retrieval to the measurement, by summing the

rows of the averaging kernel (Vigouroux et al., 2007). This

value, normally between 0 and 1, indicates what fraction of

the retrieved value is due to the measurement (as opposed

to the a priori). From this, we calculate the altitude range

(hl,hu)where at least a fraction f of the profiles have a mea-

surement sensitivity larger than c. The choice of f and c is an

optimization problem. If they are too large, the altitude range

becomes very small and the result is closer to a single layer

retrieval than to a partial column; but if they are too small,

then a large part of the partial columns is due to the a priori

and we are not really comparing measurements. There is no

single obvious solution to this optimization. Specific criteria

for choosing f and c will be presented in Sect. 3.2. Typically,

it is desirable to have c = 1 and f = 0.5, such that half the

profiles have full sensitivity at a particular altitude.

Once the altitude range is chosen, we define an operator

g such that levels within the range have value 1, and levels

outside it have value 0, and calculate the partial columns by

npc = g
N

x
x̂ , (6)

where npc is the partial column estimate, g is the partial

column operator (i.e. a vector consisting of ones at levels

within the partial column range, and 0 elsewhere), and x̂ is

the (smoothed) methane profile. We calculate the difference

in partial columns by

δpc = npc,2− npc,1 , (7)

where npc,2 and npc,1 are the partial column values for

TANSO-FTS, ACE-FTS, and PEARL-FTS, depending on

the specific comparison set.

Next, we investigate whether the partial column difference

is itself a function of partial column, by fitting a first order

polynomial (y = ax+ b) to δpc(xpc,1), using ordinary least

squares, and we calculate the 95 % confidence band around

the predicted regression line. Finally, we calculate the DOFS

of the newly calculated partial columns, by taking the trace

of the sub-matrix of the averaging kernel, corresponding to

the levels used for partial column calculations.

2.8 Error analysis

In order to address the core question of a cross-validation

study – are the retrievals consistent? – it is critically impor-

tant to address error estimates. If we assume that the higher-

resolution measurement has a much higher resolution than

the lower-resolution measurement, a simplification of Calis-

esi et al. (2005, Eq. 22) gives

Sδ12
= S1+A1W12S2W12

TAT
1 , (8)
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which is identical to the result found by Vigouroux et al.

(2007). Here, S is the random error covariance matrix, A

is the averaging kernel matrix, the subscript 1 relates to the

lower-resolution retrieval, and the subscript 2 relates to the

higher-resolution retrieval. W12 is the grid transformation

matrix calculated by W12 =W∗1 W2 (Calisesi et al., 2005),

and ∗ indicates again the Moore–Penrose pseudo-inverse (see

also Eq. 2).

To calculate the variance in the partial column, we use

σPC = gSδ12
gT , (9)

where the calculation of g is described in Sect. 2.7.

PEARL-FTS provides the random error covariance ma-

trix directly for all retrievals, but ACE-FTS and TANSO-

FTS do not. As ACE-FTS is a limb observing instrument,

the information content can be approximated by one degree

of freedom per retrieval level. Consequently, the error covari-

ance between different retrieval levels for ACE-FTS is far

lower than for the other retrievals considered in this study.

Therefore, we neglect those covariances and approximate

SACE-FTS as a diagonal matrix, with SACE-FTS,i,i = σ
2
i and

SACE-FTS,i,j = 0 where i 6= j .

For TANSO-FTS retrievals, error covariances were calcu-

lated only for a limited number of TANSO-FTS retrievals for

computational reasons. For each of the TANSO-FTS profiles

where we have not calculated the covariance matrix, we need

to choose a representative covariance matrix corresponding

to a profile for which one is available. To calculate which

profile to choose, we divide the TANSO-FTS profiles into

bins according to their latitude, longitude, DOFS, retrieved

partial column methane (see Sect. 2.7), time of year, and lo-

cal time. Specifically, we used 12 bins for day of year, 5 bins

for mean local solar time, 5 for latitude, 5 for longitude, 10

for partial column methane, and 10 for DOFS, where the bins

are spanned linearly between the extreme values in the col-

location database. Although this gives a theoretical number

of 12×5×5×5×10×10= 150 000 bins, only n� 150 000

of those contain a non-zero number of profiles. For each of

those n bins, we select one profile at random, according to

a uniform distribution. For the selected profile, we calculate

the error covariance matrix, which we then use for all profiles

within the same bin.

Secondly, as TANSO-FTS retrievals are performed in log-

arithmic space, TANSO-FTS error covariance matrices are

in units of logppmv2 and cannot be directly considered in

Eq. (8). To estimate Cov(x̂, x̂) from Cov(log(x̂), log(x̂)), we

use the approximation

Slin = Cov(x̂, x̂)≈ E(x̂)2eCov(log(x̂),log(x̂))−1 , (10)

where Cov(x̂, x̂) is the covariance in linear terms, E(x̂) is

the expectation value of x̂, and Cov(log(x̂), log(x̂)) is the co-

variance in logarithmic terms. For E(x̂), we use the retrieved

state vector x̂. See Appendix A for a derivation of Eq. (10).

Figure 1. Geographic map showing northeastern Nunavut

(Canada), northwestern Greenland, and surrounding islands, in a

Lambert azimuthal equal-area projection (Lambert, 1772). The

background shows bathymetry in blue tones, elevation in green and

brown tones, and land ice with areas larger than 100 km2 in white,

as calculated by NOAA ETOPO1 (Amante and Eakins, 2009). The

white circle with a red edge in the centre of the map shows the lo-

cation of the PEARL Ridge Lab near Eureka, Nunavut. The red and

blue dots with black edges show the locations of TANSO-FTS and

ACE-FTS profiles within 500 km and 24 h of PEARL, in the time

period indicated in Table 1.

As described earlier in Sect. 2.2, not every collocation pair

is unique. For example, for a single PEARL-FTS measure-

ment, there may be several matching TANSO-FTS measure-

ments. Taking the arithmetic mean of a set of TANSO-FTS

profiles affects the effective errors. If we assume the random

errors betweenN different TANSO-FTS measurements to be

uncorrelated, then the effective Seff =
S
√
N

. However, we can-

not say the same for the combined error Sδ12
, because for

those N pairs, each PEARL-FTS measurement is the same,

so its errors are certainly not independent (their correlation is

equal to 1).

3 Results and discussion

In the following sections, we describe the results of the pro-

cessing steps described above. This section is structured sim-

ilarly to the previous one. First, we describe the results of

collocations, vertical regridding, smoothing, and the investi-

gation of the coincidence error. Then, we present results for

the profile and partial column comparisons.

3.1 Collocations

Figure 1 shows a map of the collocations for the PEARL-

FTS–TANSO-FTS and PEARL-FTS–ACE-FTS pairs. Ta-
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Table 1. Collocation statistics for the different collocation pairs. Collocations between ACE-FTS and TANSO-FTS are limited to the quadran-

gle 60–90◦ N, 120–40◦W. The total number of collocations considers all pairs before averaging. After averaging, the number of collocations

is equal to the number indicated in the row “No. primary”. “Med. dist” is the median distance for all pairs. “Dist. mean” is the distance

between the arithmetic mean positions (as calculated using the World Geodetic System (WGS)-84 ellipsoid) of each instrument in the pair.

Primary PEARL-FTS PEARL-FTS ACE-FTS

Secondary TANSO-FTS ACE-FTS TANSO-FTS

First collocation 24 February 2010 27 September 2006 2 February 2010

Last collocation 19 September 2011 15 March 2013 19 September 2011

No. collocations 20 741 1342 4685

No. primary 939 522 370

No. secondary 2804 149 2916

Med. dist [km] 376.39 313.28 355.09

Dist. mean [km] 33.86 163.11 38.61

ble 1 shows the number of collocations between the three

data sets and the period throughout which collocations are

found. The table shows both the total number of colloca-

tions, as well as the number of unique measurements for each

data set. From the methodology of calculating the arithmetic

mean where many profiles from one data set collocate with

a single profile from the other, it follows that after this pro-

cessing has been performed, the number of pairs corresponds

to the table row “primary”. The median distance is between

300 and 400 km for each pair. The distance between the arith-

metic geographic mean ranges from 33.8 km for PEARL-

FTS–TANSO-FTS to 163.1 km for PEARL-FTS–ACE-FTS.

3.2 Vertical resolution and information content

Figure 2 shows the mean of the averaging kernel matrices

for the entire period of collocations between PEARL-FTS

and TANSO-FTS. As discussed before, the vertical resolu-

tion for ACE-FTS is much higher than for PEARL-FTS or

TANSO-FTS, and we approximate ACE-FTS averaging ker-

nels by the identity matrix. Note that regridding and smooth-

ing as described in Sect. 2.4 is only applied where we are

comparing products directly against each other (profiles or

partial columns) and has not been done for results presented

in this section.

Figure 3 shows a histogram of DOFS for PEARL-FTS and

TANSO-FTS measurements, for all pairs where the two are

collocated. The figure illustrates that whereas PEARL-FTS

measurements contain mostly between 1.5 and 3 DOFS and

therefore have some profile content, the same is not true for

TANSO-FTS, where most profiles have less than 0.5 DOFS,

with some below 0.3. Clearly, there is no profile information

here. However, as the DOFS are larger than 0, there is still

some information in the measurement.

Considering the variable information content for PEARL-

FTS and the very low information content for TANSO-FTS,

we investigate how information content varies as a func-

tion of latitude, longitude, time of year, time of day, and

methane partial column. It was found that for both PEARL-
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Figure 2. Arithmetic mean of all averaging kernels for the set of

collocations between PEARL-FTS and TANSO-FTS. The left panel

shows averaging kernels for PEARL-FTS and the right panel shows

averaging kernels for TANSO-FTS. The white circles with a black

edge indicate the nominal altitude for each retrieval level.

FTS and TANSO-FTS, the most dominant factor controlling

the DOFS is the time of year, followed by the methane partial

column.

Figure 4 shows the information content of the TANSO-

FTS profiles as a function of time of year and methane par-

tial column. Note that although the figure shows information

content in the entire profile, the vertical axis shows partial

columns. TANSO-FTS retrievals have very low DOFS be-

tween September and May. This period corresponds to a cold

and snow-covered surface in Eureka, and the very low ther-

mal contrast complicates a retrieval from nadir/off-nadir ob-

servations in the thermal infrared at this time. In July, when

the surface is warmer, the retrievals have a higher number of

DOFS; in a few cases up to 0.7 or above.
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Figure 3. Histogram of the total DOFS per retrieved profile for the

set of collocations between PEARL-FTS and TANSO-FTS. The

histograms are normalized such that the total area for each his-

togram equals 1.

A different pattern is visible for PEARL-FTS information

content as shown in Fig. 5. The largest DOFS, with values up

to 3, are found in late February, just after the end of the po-

lar night, and in late September/early October, just before the

beginning of the polar night. The ground-based PEARL-FTS

is not negatively affected by a cold surface or snow-cover,

but rather benefits from the longer optical path through the

atmosphere early and late in the observing season, when the

Sun is closer to the horizon. Around midsummer, the optical

path is shorter, and the information content in the measure-

ment is smaller. However, even when PEARL-FTS is at its

worst and TANSO-FTS is at its best, the PEARL-FTS mea-

surement still has more than twice the information content of

the TANSO-FTS one.

Figure 6 shows the fraction of PEARL-FTS profiles at

a particular altitude level that has sensitivity (defined in

Sect. 2.7) larger than c, where c varies between 0 and 1. We

can see that (almost) all profiles have sensitivity close to 1

below an altitude of approximately 25 km, whereas a much

smaller fraction of profiles has such a high sensitivity at

higher altitudes. From the data used to produce Fig. 6, we

select an altitude range to use for partial columns. Specif-

ically, for a threshold where 50 % of profiles have at least

50 % sensitivity, we find a range of 0.9–29.9 km for partial

columns. Note that this relates only to the profiles collocated

to TANSO-FTS.

Figure 7 shows the same for TANSO-FTS profiles collo-

cated to PEARL-FTS. In the case of TANSO-FTS, we do not

have any profiles that have a sensitivity close to 1 at any alti-

tude, and even a sensitivity of 0.5 is rarely reached. TANSO-

FTS sensitivity peaks in the range 7–9 km, and in this range,

at most 16 % of profiles have a sensitivity of at least 0.5.

Therefore, for partial columns including TANSO-FTS, we

cannot use the same criterion as for PEARL-FTS. Rather,

we select the range where at least 20 % of the profiles have

at least 30 % sensitivity, and arrive at a range of 5.2–9.5 km

(in comparisons with PEARL-FTS, the lower limit is 5.3 km,

due to regridding and rounding).

Figure 4. TANSO-FTS DOFS per profile as a function of season

and methane partial column. The calculation of partial columns

is described in Sect. 2.7, and the range of altitudes considered is

described in Table 2. The vertical axis shows TANSO-FTS par-

tial columns for 5.3–9.7 km, but DOFS relate to the entire profile.

The figure includes all 2804 TANSO-FTS profiles collocated with

PEARL-FTS.

Figure 5. As in Fig. 4, but for PEARL-FTS. The vertical axis shows

PEARL-FTS partial columns for 5.3–9.7 km, but DOFS relate to

the entire profile. The figure includes all 939 PEARL-FTS profiles

collocated with TANSO-FTS. Note that the range of DOFS here is

much larger than for Fig. 4.

3.3 Polar vortex and coincidence error

Figure 8 shows profiles of sPV (see Sect. 2.1.4) for the col-

locations between PEARL-FTS and ACE-FTS, before se-

lecting pairs based on sPV values. The PEARL-FTS–ACE-

FTS comparison is the only pair that has sensitivity at strato-

spheric altitudes, so it is the only pair for which sPV val-

ues are relevant. The figure shows sPV profiles for all mea-

surements in the comparison ensemble. Broadly speaking,

the range of sPV values increases with increasing elevation,

with values up to 2× 10−4 s−1 near the surface and up to

5×10−4 s−1 at 50 km. At most elevations, sPV profiles exist

at any value between the extrema. However, between 17 and

32 km, PEARL-FTS clearly shows a bimodal distribution of

sPV values, which are mostly either smaller than 2×10−4 s−1

or larger than 3× 10−4 s−1. For ACE-FTS, the sPV profiles

are more noisy, and the distinction is not as clear; proba-

bly due to the fact that ACE-FTS measurements are spread

over a large area, whereas PEARL-FTS measurements are

all from the same location. Consequently, we do not see the

same bimodal distribution in the difference panel either.
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Figure 6. Sensitivity density (see Sect. 3.2) for PEARL-FTS re-

trievals collocated with TANSO-FTS.
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Figure 7. Sensitivity density (see Sect. 3.2) for TANSO-FTS re-

trievals collocated with PEARL-FTS.

3.4 Profile comparisons

Figure 9 shows the distribution of methane profiles for the

comparison between PEARL-FTS and ACE-FTS, where the

latter is either smoothed or unsmoothed (in this and subse-

quent figures, the unsmoothed profiles and differences are

referred to as “raw”). The figure illustrates the known pat-

tern that methane is approximately constant as a function

of altitude in the troposphere, but decreases approximately

linearly with altitude in the stratosphere. The raw ACE-FTS

profiles show a “wiggle” at an altitude of around 20–25 km,

but this disappears in the smoothed version and is not vis-

ible in the PEARL-FTS profiles (which, as shown before,

have only around 2 DOFS). The figure also illustrates that

the distribution of methane in the stratosphere is clearly non-

Gaussian, as both PEARL-FTS and ACE-FTS agree that the

1st quartile is considerably further from the median than the

3rd. This justifies our choice of median and quartiles, and im-

plies that showing methane distributions using the mean and

standard deviation may be inappropriate.

Figure 8. Profiles of sPV as a function of geometric height, for

PEARL-FTS (left panel) and ACE-FTS (centre panel). The right

panel shows difference profiles, i.e. sPVACE-FTS− sPVPEARL-FTS.

For the difference figure, ACE-FTS sPV profiles were interpolated

onto the vertical grid of PEARL-FTS profiles. Only collocated pairs

are considered.

Figure 10 shows the distribution of differences between

PEARL-FTS and ACE-FTS. In this comparison, we show

an “unfiltered” version and a “filtered” version. The “unfil-

tered” version contains all collocated profiles, whereas the

“filtered” version shows only profiles where the sPV val-

ues at the potential temperature level 700 K differ at most

by 0.2× 10−4 s−1. The figures show that at all altitudes,

smoothed ACE-FTS measurements are, on average, smaller

than PEARL-FTS measurements, with the median differ-

ence ACE-FTS–PEARL-FTS between −10 and −70 ppbv.

The 1st and 3rd quartile illustrate that the differences are

not normally distributed, something already apparent from

Fig. 9. For example, between 10 and 20 km, the 1st quar-

tile of the smoothed difference clearly diverges from the me-

dian, whereas the 3rd quartile approximately follows the pat-

tern of the median. Apart from the very lowest altitudes, near

the lower boundary of the ACE-FTS measurements, the 3rd

quartile of ACE-FTS–PEARL-FTS is positive with values

between 10 and 50 ppbv, which means that a significant mi-

nority of pairs have the smoothed ACE-FTS measurement

larger than the PEARL-FTS measurement. At altitudes above

30 km, the absolute differences between smoothed ACE-FTS

and PEARL-FTS gradually decreases, as shown by the me-

dian and the distribution. This is expected because with in-

creasing altitude, both the methane VMR and the sensitiv-

ity of PEARL-FTS decrease. For the comparison between

PEARL-FTS and unsmoothed (“raw”) ACE-FTS, the median

of the difference fluctuates strongly, exceeding−100 ppbv at

an altitude of 50 km. Differences with unsmoothed ACE-FTS

that are not seen in differences with the smoothed ACE-FTS
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Figure 9. Distribution of retrieved methane profiles for all collo-

cations between PEARL-FTS and ACE-FTS. In this and following

figures, the solid line indicates the median value for the set of all col-

located profiles as a function of altitude. The dashed line indicates

the 1st and 3rd quartile (25th and 75th percentile), and the dotted

line indicates the 1st and 99th percentile. The set of thin lines shows

the distribution of the unsmoothed profiles, labelled “raw” and in-

terpolated on a shared altitude grid, whereas the thick lines show

the smoothed profiles. The calculation method is described in the

text.
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Figure 10. Distribution of the difference between profiles for ACE-

FTS–PEARL-FTS. Solid, dashed, and dotted lines show the distri-

bution of the difference as a function of altitude, similar to how

they show the distribution of methane in Fig. 9. The blue lines

show the differences for all profiles (labelled “unfiltered”), whereas

the orange lines show the differences only for those profiles where

1sPVθ=700 K ≤ 0.2× 10−4 s−1, where sPVθ=700 K is the scaled

potential vorticity at a height corresponding to a potential tempera-

ture θ of 700 K along the line of sight, labelled “filtered”. See text

for details.

are primarily due to the PEARL-FTS a priori and due to ver-

tical features that PEARL-FTS cannot resolve.

Figure 10 also shows that applying the sPV criterion has

little effect below 25 km, and actually makes the difference

slightly larger above 25 km. Similarly (but not shown), we

find that limiting collocations to half the distance and half

the time interval (i.e. 250 km, 12 h) results in median dif-

ferences decreasing by up to 50 % at an altitude of 10 km,

but increasing differences by 25–50 % at 20–25 km. This can

be explained by the relatively homogenous distribution of

methane in space and time.

Figure 11 shows the distribution of methane pro-

files for collocated measurements between PEARL-FTS

and TANSO-FTS, with PEARL-FTS either smoothed or

“raw”/unsmoothed. Like Fig. 9, it shows the familiar pattern

of methane, roughly constant below the tropopause, and de-

creasing with altitude above it. The distribution is not sym-

metric around the median, but the 1st quartile is closer to the

median than the 3rd, a pattern opposite to the PEARL-FTS–

ACE-FTS profiles shown in Fig. 9. The smoothed PEARL-

FTS profile is cut off at 30 km because TANSO-FTS a priori

profiles are available only up to 1 kPa.

Figure 12 shows the distribution of the difference TANSO-

FTS–PEARL-FTS. Due to the low information content in

TANSO-FTS retrievals, the profiles shown in Fig. 11 do not

contain any profile information, but are rather a scaled ver-

sion of the a priori (see also Sect. 3.2). Therefore, the very

small differences for the smoothed version shown in Fig. 12

do not mean that the two retrievals agree very well, but rather

follows directly from Eq. (3): where TANSO-FTS contains

almost no information (see Fig. 2), smoothed PEARL-FTS

tends to be very similar to TANSO-FTS a priori and therefore

to TANSO-FTS itself. Only below 15 km, where TANSO-

FTS has some sensitivity, we can see a nonzero spread in the

differences between smoothed PEARL-FTS and TANSO-

FTS, although the median of the differences is still less than

5 ppbv. The 1st quartile of the difference has values down

to −20 ppbv, whereas the 3rd quartile has values up to ap-

proximately 15 ppbv. Figure 12 also shows there is a large

difference between the unsmoothed version of PEARL-FTS

with TANSO-FTS, but this is primarily due to differences in

the a priori used.

Figure 13 shows the distribution of methane profiles for

collocations between smoothed ACE-FTS and TANSO-FTS,

with ACE-FTS either smoothed to TANSO-FTS, or not. Me-

dian methane as a function of altitude shows a similar pat-

tern as in the previous comparisons, and again, it is clear

that methane is not symmetrically (and therefore not nor-

mally) distributed. Figure 14 shows the differences between

the two data sets. The caveat described above, when dis-

cussing Figs. 11 and 12, applies equally to the ACE-FTS–

TANSO-FTS comparison. Therefore, the smoothed differ-

ence is essentially zero at altitudes above 15 km. Below

15 km, roughly three-quarters of TANSO-FTS retrievals are

larger than ACE-FTS, with a median bias of around 20 ppbv

in the troposphere. Again, unsmoothed comparisons show

a much larger difference because of the choice of the a priori

used for TANSO-FTS (ACE-FTS retrievals are not sensitive

to any a priori).

3.5 Partial column comparisons

Considering the low measurement information content for

TANSO-FTS and to a lesser degree PEARL-FTS, we
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Figure 11. As in Fig. 9, but for PEARL-FTS and TANSO-FTS.
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Figure 12. As in Fig. 10, but for PEARL-FTS and TANSO-FTS.

also calculate and compare partial columns as outlined in

Sect. 2.7. From the analysis in Sect. 3.2, we have calculated

an optimal vertical range for each pair of data sets. Table 2

shows the vertical range for each data set, as well as charac-

teristics of the partial column differences. Here, smoothing

(Sect. 2.4) and averaging (Sect. 2.6) have been applied, but

polar vortex filtering has not, as the profile comparison de-

scribed above showed no significant effect.

Figure 15 shows the DOFS for PEARL-FTS and TANSO-

FTS partial columns, when they are collocated to ACE-FTS

or to each other. Each pair that involves TANSO-FTS has

DOFS in the partial columns of less than 0.6 because the

inclusion of TANSO-FTS necessitates a relatively small ver-

tical range of approximately 5–10 km. TANSO-FTS partial

columns have DOFS between 0 and 0.4 in collocations with

either PEARL-FTS or ACE-FTS. PEARL-FTS partial col-

umn information content is less than 0.6 when collocated

with TANSO-FTS (partial column range 5.3–9.7 km), but in

the range of 1.1–2.1 when collocated with ACE-FTS (partial

column range 5.3–29.9 km), with a mode of 1.7 DOFS.

Figure 16 shows partial column differences between

PEARL-FTS and smoothed ACE-FTS for altitudes in a range

of 5.3–29.9 km, with the lower limit determined by ACE-

FTS and the upper limit by PEARL-FTS, based on the
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Figure 13. As in Fig. 9, but for ACE-FTS and TANSO-FTS. Note

that collocations are limited to the quadrangle 60–90◦ N, 120–

40◦W.
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Figure 14. As in Fig. 10, but for ACE-FTS and TANSO-FTS.

Note that collocations are limited to the quadrangle 60–90◦ N, 120–

40◦W.

method described in Sect. 3.2. We choose to show 1CH4

vs. PEARL-FTS CH4 rather than ACE vs. PEARL, so that

the difference and its dependences are apparent. Horizon-

tal error bars show uncertainties calculated from random

uncertainty in PEARL-FTS, propagated to partial columns

with an equation similar to Eq. (9), but using SPEARL-FTS.

Vertical error bars show σtot = σPC+ σpT , where the com-

ponents on the right hand side are described in Eqs. (9)

and (5), respectively. Systematic errors are not consid-

ered in this error calculation. Note that data shown here

are not filtered by sPV values, since we did not find

that this improved the comparison (see above). The fig-

ure shows that for most collocation pairs, there is a sig-

nificant difference between the two retrievals. All differ-

ences lie within a range of ±3× 1022 moleculescm−2 for

a range of PEARL-FTS partial columns between 1.3× 1023

and 1.9×1023 moleculescm−2. The median difference ACE-

FTS–PEARL-FTS is −2.6× 1021 moleculescm−2, which

corresponds to 1.6 % of the median PEARL-FTS partial col-

umn of 1.64×1023 moleculescm−2. The median absolute de-

viation (MAD) is 2.6× 1021 moleculescm−2. The linear re-
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Table 2. Summary of partial column differences. The upper two rows show the range over which partial columns are calculated, based on an

optimization of the information content as described in Sect. 3.2. The median 1 shows the median of secondary – primary. MAD is median

absolute deviation. Unless indicated otherwise, all units are in moleculescm−2.

Primary PEARL-FTS PEARL-FTS ACE-FTS

Secondary ACE-FTS TANSO-FTS TANSO-FTS

Lower altitude (km) 5.3 5.3 5.2

Upper altitude (km) 29.9 9.7 9.5

Median par. col., prim. 164× 1021 942× 1020 945× 1020

Median par. col., sec. 161× 1021 942× 1020 940× 1020

Median 1 (sec.–prim.) −2.6× 1021 0.11× 1020 7.4× 1020

MAD 2.6× 1021 9.6× 1020 6.0× 1020

Median 1 (%) −1.6 0.012 0.78

MAD (%) 1.6 1.0 0.64

Offset/intercept 72.3± 4.1× 1021 467± 16× 1020 217± 39× 1020

Slope (no unit) −0.456± 0.025 −0.497± 0.017 −0.224± 0.041
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Figure 15. Information content (DOFS) for partial columns. Each

histogram shows DOFS for a data set collocated with another

data set; for example, one of the PEARL-FTS histograms shows

DOFS for PEARL-FTS partial columns collocated with TANSO-

FTS, whereas the other PEARL-FTS histogram shows DOFS for

PEARL-FTS partial columns collocated with ACE-FTS. The his-

tograms are normalized such that the total area for each histogram

equals 1.

gression has a slope of −0.456± 0.25 and an intercept of

7.23± 0.41× 1022 moleculescm−2.

Figure 17 shows partial column differences between

smoothed PEARL-FTS and TANSO-FTS for altitudes be-

tween 5.3 and 9.7 km, with the range determined from

TANSO-FTS as described in Sect. 3.2. Error bars are calcu-

lated analogously to the case of PEARL-FTS and ACE-FTS

described above. In the figure, the bulk of collocated mea-

surements are clustered around PEARL-FTS partial column

values in the range of 0.89–0.97×1023 moleculescm−2 with

a much smaller number of larger values. For measurements

where PEARL-FTS reports a higher methane partial column,

the difference between TANSO-FTS and PEARL-FTS in-

creases; indeed, the linear regression has a slope of−0.497±

0.17 and an intercept of 4.67± 0.16× 1022 moleculescm−2.

If TANSO-FTS and PEARL-FTS reported identical partial

column retrievals, the slope of this regression would be 0.

However, if TANSO-FTS retrievals had no dependency on

methane at all, the slope would likely be close to −1. The

observation that the regression slope lies between −1 and 0

shows that TANSO-FTS methane retrievals have some sen-

sitivity to the actual methane column. This is consistent with

the TANSO-FTS DOFS lying between 0 and 1. The me-

dian difference is 1.1×1019 moleculescm−2 with a MAD of

9.6× 1020 moleculescm−2. A second regression line shows

the same regression excluding any data points deviating from

the PEARL-FTS median by more than 5 times its MAD

(there are 27 points deviating more than 3 times the MAD,

4 points deviating more than 5 times, and 1 point deviat-

ing more than 10 times). This reduces the slope somewhat,

but there is still considerable overlap between the confidence

bands throughout the range of PEARL-FTS values (includ-

ing suspected outliers).

Figure 18 shows partial column differences between

TANSO-FTS and ACE-FTS for altitudes between 5.2 and

9.5 km. The figure shows ACE-FTS measurements between

0.87× 1023 and 0.99× 1023 moleculescm−2, with TANSO-

FTS differences similar to the upper left cluster shown

in Fig. 17. Based on the small range of values, it is

hard to draw firm conclusions about differences between

TANSO-FTS and ACE-FTS. Here, the linear regression has

a slope of −0.224± 0.41 and an intercept of 2.17± 0.39×

1022 moleculescm−2. The slope is about half as large as the

regression slope for the other two comparisons. The me-

dian difference is 7.4×1020 moleculescm−2 with a MAD of

6.0× 1020 moleculescm−2.

4 Discussion

Above, we have presented a cross-validation between

PEARL-FTS, ACE-FTS, and TANSO-FTS. Information

content, bias, and random errors, have implications for users.

PEARL-FTS retrievals tend to have DOFS between 1.5 and

3 (Fig. 3), which means there is some vertical information in
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Figure 16. Partial column differences ACE-FTS – PEARL-FTS as

a function of PEARL-FTS partial column. Based on a shared sensi-

tivity calculations, partial columns are estimated in a range of 5.3–

29.9 km. The solid blue line shows the results of a linear model with

the parameters for offset and slope obtained with a weighted least

squares fit. The dashed blue lines show a 95 % confidence interval

around this estimate. The equation in the upper right describes the

linear model fit. See Table 2 for uncertainty estimates on slope and

offset.
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Figure 17. As in Fig. 16, but showing TANSO-FTS – PEARL-FTS

in the range of 5.3–9.7 km. The two regression lines correspond to

a regression with either all points (light blue), or with suspected

outliers excluded from the linear regression (dark blue) as described

in the text.

the measurement. PEARL-FTS retrieves systematically more

methane than smoothed ACE-FTS as shown by Figs. 10, 16,

and Table 2. For partial columns in the range of 5.3–29.9 km

(with DOFS still typically in a range of 1.1–2.2 as shown

in Fig. 15), the median difference ACE-FTS–PEARL-FTS is

−2.6± 2.6× 1021 moleculescm−2, or −1.6± 1.6 %. Those
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Figure 18. As in Fig. 16, but showing TANSO-FTS – ACE-FTS in

a range of 5.2–9.5 km.

differences are robust when only a subset of the data are

considered, as the selection based on sPV values in Fig. 10

shows. For comparison, De Mazière et al. (2008) find that

ACE-FTS V2.2 profiles have a difference of 0.3±1.5 % com-

pared to Thule (high Arctic), 3.0±1.6 % compared to Kiruna

(near the Arctic circle), and 9.8± 3.5 % compared to Poker

Flat (sub-Arctic). Thus, our ACE-FTS V3.5–PEARL-FTS

comparison is compatible with comparisons at the only other

Arctic site, Thule, but inconsistent compared to earlier com-

parisons with Kiruna and Poker Flat, which exist in differ-

ent climatic zones. However, as De Mazière et al. (2008) use

V2.2 and we use V3.5, results are not directly comparable.

The very low information content for TANSO-FTS re-

trievals (Figs. 3 and 4) shows that these do not contain ver-

tically resolved information. Information content for par-

tial columns calculated near peak sensitivity is less than the

information content for complete profiles (Fig. 15). How-

ever, even when DOFS are between 0.1–0.4, there is at

least some information in the retrieval due to the mea-

surement. This can be independently confirmed by consid-

ering the partial column differences between TANSO-FTS

and PEARL-FTS. The linear regression for TANSO-FTS–

PEARL-FTS, shown in Fig. 17, has an estimated slope of

−0.497± 0.17, i.e. significantly negative. This confirms that

TANSO-FTS and PEARL-FTS retrievals are both sensitive

to what is reported as methane. Due to the low TANSO-

FTS information content, smoothed PEARL-FTS is neces-

sarily very close to TANSO-FTS. Indeed, as shown by Ta-

ble 2, the bias of methane partial columns from TANSO-

FTS compared to PEARL-FTS is essentially 0 (1.10±9.60×

1019 moleculescm−2), but this says more about the smooth-

ing than about the reliability of TANSO-FTS.

The very low information content we find for TANSO-

FTS is consistent with Herbin et al. (2013), who consider
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using the different TANSO-FTS bands to retrieve CO2 and

methane from one or more bands simultaneously, over either

ocean or a desert surface. They find that above a desert sur-

face, methane retrievals using only the TIR band (that we use

here) have 0.84 DOFS, with information content over sea wa-

ter much lower (they report 0.51 DOFS when combining TIR

with shortwave bands, but do not report results for TIR-only

retrievals over sea water). Considering that in our study we

focus on the more difficult case of mixed surfaces in the high

Arctic, it is consistent that the DOFS for our retrievals are

more often than not below 0.5.

Errors in methane retrievals – whether accounted for or

not – originate from different sources, but are dominated

by spectroscopy. For example, for the PEARL-FTS methane

profiles, the average error due to spectroscopy overall is

7.88 %, including an error due to line intensities of 7.52 %.

For comparison, the next largest contributing error is due to

the solar zenith angle, and is 0.55 %. Moreover, the Voigt

line shape as used by many retrievals does not take into ac-

count line mixing effects (for methane), even though those

are relevant (Mondelain et al., 2007). More generally, spec-

troscopic transitions for the methane molecule are difficult to

accurately measure in a laboratory or calculate from physics-

based models (Brown et al., 2013). Therefore, spectroscopic

differences alone may account for a large part of both random

and systematic differences between different retrievals.

Other error sources are likely not significant. Clear sky

bias should not be an issue for methane retrievals, and even if

it were, it affects all three data sets equally, so it cannot have

an effect on a cross-validation. The same applies for the ob-

servation that collocations only occur at particular times and

locations. Different estimates in temperature and pressure do

affect the retrieval, but we have already quantified those, and

those are not enough to explain the difference.

5 Conclusions

We have presented an analysis of the differences between

methane retrievals obtained from PEARL-FTS, ACE-FTS,

and TANSO-FTS. We have shown that measurement infor-

mation content varies considerably between the three data

sets, and that care needs to be taken when interpreting re-

trievals from PEARL-FTS and TANSO-FTS as profiles. In

particular for retrievals from the TANSO-FTS TIR band, the

measurement information content is too low for a true pro-

file retrieval because of the low thermal contrast and the low

signal-to-noise ratio of the CH4 retrieval band of TANSO-

FTS.

Although the measurement information content for

TANSO-FTS is very low and information content for par-

tial columns collocated with PEARL-FTS or ACE-FTS is

even lower, this information content is non-zero, as con-

firmed by the slope between the partial column differ-

ence TANSO-FTS–PEARL-FTS and PEARL-FTS partial

columns. Therefore, the measurement is not without value.

A future study should more specifically address detectabil-

ity: for example, if there is a significant but spatially con-

centrated methane emission somewhere in the Arctic or sub-

Arctic, will TANSO-FTS TIR be able to detect this? This

question could be addressed using known emission events

or simulated data. Future work is also needed to extend the

comparisons to be global.

Uncertainties in retrievals arise from a variety of sources.

Ideally, full metrological traceability should be applied in

any satellite validation exercise (Verhoelst et al., 2015). This

should also include sensitivity of the retrieval to differences

in spectroscopic data, such as differences between HITRAN

2004 (used for TANSO-FTS and ACE-FTS) or 2008 (used

for PEARL-FTS). Additional work is needed to assess the

impact of these differences.

Another important aspect not considered in this study is

stability. Collocations between PEARL-FTS and ACE-FTS

cover a period of at least 8 years and counting, which may

be long enough to investigate if systematic or random errors

vary over time.

A more theoretical question to address is what would be

needed to get a better estimate of methane than we have? As

shown, TANSO-FTS TIR retrievals have very low informa-

tion content in the Arctic. What would be needed – in terms

of measurement or knowledge of forward model parameters

– to improve this? Kulawik et al. (2013) provide an overview

of studies estimating what CO2 precisions are needed – sim-

ilar studies should be done for methane. This is relevant not

only for pure research, but also for policy, as summarized by

Ciais et al. (2014). Overall, more work is needed to address

the use of thermal infrared satellite measurements for Arctic

methane retrievals.
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Appendix A: Derivation of covariance approximation

To approximate Slin from Slog, we use the Taylor expansion,

E[f (X)] ≈

E

[
f (µx)+ f

′(µx)(X−µx)+
1

2

(
f ′′(µx)(X−µx)

2
)]

= f (µx)+
f ′′(µx)

2
σ 2
x , (A1)

where E[X] is the expectation value of X, µX is the mean

of X, and σ 2
X is the variance of X. The last step follows from

E[X−µX] = 0 andE[(X−µx)
2
] ≡ σ 2

X. Using the definition

of the covariance,

Cov(X,Y )≡ E [(X−E[X])(Y −E[Y ])]= E[XY ]

−E[X]E[Y ] , (A2)

and substituting U = log(X), V = log(Y ), and W = U +V ,

we have

E(XY)= E(eU eV )= E(eW )≈ exp(µW )+ exp(µW )
σ 2
W

2

≈ exp

(
µW +

σ 2
W

2

)
, (A3)

where the last step follows from the Taylor approxima-

tion exp(a)≈ 1+ a, taking a =
σ 2
W

2
: exp(µW )

(
1+

σ 2
W

2

)
≈

exp(µ)exp
(
σmu

2

2

)
= exp

(
µW +

σ 2
W

2

)
.

Combining the above with the equivalence σ 2
U+V = σ

2
U +

σ 2
V + 2Cov(U,V ), we have

1+
Cov(X,Y )

E(X)E(Y )
=

E(XY)

E(X)E(Y )
(A4)

≈

exp

(
µW +

σ 2
W

2

)
exp

(
µU +

σ 2
U

2

)
exp

(
µV +

σ 2
V

2

) (A5)

=

exp
(
µU +µV +

1
2
(σ 2
U + σ

2
V + 2Cov(U,V ))

)
exp

(
µU +

σ 2
U

2

)
exp

(
µV +

σ 2
V

2

) (A6)

= exp(Cov(U,V )) , (A7)

from which, by rearranging, we get

Cov(log(X), log(Y ))= E(X)E(Y )exp(Cov(X,Y )− 1) . (A8)
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