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CONNECTING CLIMATE MODEL
PROJECTIONS OF GLOBAL
TEMPERATURE CHANGE WITH
THE REAL WORLD

BY ED HAWKINS AND ROWAN SUTTON

Careful consideration of sensitivities to the choice of climate reference period is required
to reliably compare climate models with observations and to produce robust projections of

future climate.

urrent state-of-the-art global climate models
produce different values for Earth’s mean
temperature. For this reason, projections of
changes in Earth’s temperature over time are usually
presented relative to a reference period, following
Hansen et al. (1988). It is not widely appreciated, espe-
cially outside the climate science community, that the
choice of reference period has important consequences
for conclusions about such basic questions, such as: are

climate model simulations of the past consistent with
observations and what do climate models predict for
the future? The importance of these questions has been
highlighted by the recent debate about the difference
between observed and projected multimodel-mean
warming of global surface temperatures (Stott et al.
2013; Huber and Knutti 2014; Schmidt et al. 2014).
In this article, we demonstrate how the choice of ref-
erence period affects the conclusions drawn in relation to

both these questions and discuss consequences for con-
necting climate model projections of global temperature
change to the real world. We also discuss further the rea-
sons why anomalies have long been used for comparing
observational data and model output, noting important
limitations. Last, we discuss the implications for near-
term and long-term projections of global-mean surface
temperature provided in the Intergovernmental Panel
on Climate Change (IPCC) Fifth Assessment Report
(AR5) and provide recommendations for good practice.
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WHY IS A REFERENCE PERIOD NEEDED
FOR OBSERVATIONS? In 1935, the World Me-
teorological Organization (WMO) first discussed
defining a recommended “normal” period to set a
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standard and allow comparisons between different
observational data. The length of a normal period was
chosen to be 30 years, and the period 1901-30 was se-
lected initially (Trewin 2007). The WMO has recently
adopted a two-tier approach, maintaining 1961-90 as a
fixed standard reference period, along with a regularly
updated period, which is currently 1981-2010.

Observation-based temperature datasets also use a
reference period because mean temperatures can vary
over very short spatial scales (~1 km), whereas the
correlation scale for temperature anomalies is usually
much larger (~1,000 km) (Hansen and Lebedeff 1987).
Fewer stations are therefore required to estimate
changes in global temperatures (Jones et al. 1997).
For example, Callendar (1938) first demonstrated the
Earth was warming using just 147 stations, and his
calculations match modern estimates well (Hawkins
and Jones 2013).

A number of factors enter the decision about an ap-
propriate observational reference period, for example,
to be representative of the most recent conditions but
long enough not to be overly influenced by random
fluctuations, to be a period the public can relate to, to
not need updating too often, to maximize the number
of observations available and be simple to calculate. In
addition, the mean over a reference period is insuffi-
cient to represent the climate as higher-order statistics
are also required (e.g., Landsberg 1944). Huang et al.
(1996) demonstrated that a normal period updated
every year was optimal for making predictions for
the following year.

Reference periods are also used to aid communica-
tion of the unusual (or not) nature of an observation,
such as an increase in global temperatures, or of a
particular event such as an extreme flood or heat-
wave. For example, the warm global temperatures of
2014 were not particularly unusual compared to other
years since 2000 but were very unusual compared to
temperatures before 1900.

Observation quality is also important for the
choice of reference period. The uncertainty on the
observed estimate of global and regional tempera-
tures is larger in the past, especially pre-1900. In the
case of the Hadley Centre/Climatic Research Unit,
version 4.3 (HadCRUT4.3), dataset (Morice et al.
2012), the reference period is 1961-90 because of the
high availability of observations during this period.
However, the surface temperature observations avail-
able for this period still do not cover the whole planet.
Jones et al. (1999) estimated the observed 1961-90
global-mean temperature as 14.0° + 0.5°C, and Fig. 1
illustrates that different atmospheric reanalyses have
global-mean temperatures within that range.
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WHY IS A REFERENCE PERIOD NEEDED
FOR MODEL SIMULATIONS? Simulating the
absolute value of many climate variables, such as glob-
al-mean surface temperature, is challenging because
they represent the balance between many different
physical processes. It is not currently possible to tune
global climate models (GCMs) to produce accurate
values for all climate variables. However, some vari-
ables have a higher priority than others. For example,
itis essential to produce a model with a near-zero net
top-of-atmosphere (TOA) energy balance. Without
such a balance the model climate drifts and does not
provide a stable baseline against which to measure the
response to changing radiative forcings. As discussed
below, the simulated value for global-mean tempera-
ture matters, but it is less essential —for projections of
global-mean temperature—to simulate the observed
value precisely. Thus, global-mean temperature is
generally given less weight than TOA energy balance
when climate models are tuned (although there are
some exceptions; e.g., Mauritsen et al. 2012). As a
result, the range in simulated global-mean tempera-
tures is far larger than the observational uncertainty.

It may be a surprise to some readers that an ac-
curate simulation of global-mean temperature is
not necessarily an essential prerequisite for accurate
global temperature projections. Some supporting
evidence comes from climate models and theoreti-
cal considerations. The mean global temperatures
among simulations of the historical period with the
latest phase 5 of the Coupled Model Intercomparison
Project (CMIP5) GCMs (see appendix A) differ by up
to 3 K (with a standard deviation of 0.7 K), but the
changes over time are similar (Fig. 1). Importantly,
there is no robust correlation between projected fu-
ture warming and historical simulated mean global
temperature in the CMIP5 simulations (Fig. 2), al-
though there are no simulations with a high mean
global temperature and large future warming in this
particular set of GCMs. In addition, Mauritsen et al.
(2012) created four different parallel versions of the
MPI-ESM-LR, tuned differently, and found only
modest variations in climate sensitivity across the en-
semble. This evidence suggests that these differences
in mean global temperature may not be crucial for
projecting future global temperature changes, given
current uncertainties in climate feedbacks [also see
Fig. 9.42 of IPCC ARS5 (Flato et al. 2013) and the blog
discussion of Schmidt (2014)].

Theoretical insight into these climate model re-
sults is provided in appendix B, which uses a simple
1D energy balance model to show that differences in
mean global temperature are relatively unimportant
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FiG. l. (top) Global-mean 2-m air temperature from CMIPS5 historical simulations (gray, 1861-2005) and various
reanalysis estimates (colors; from Saha et al. 2010; Dee et al. 2011; Rienecker et al. 2011; Kobayashi et al. 2015). (bot-
tom) Comparing the same data as temperature anomalies, using two reference periods (1979-88 and 1996-2005).

for projections of global-mean temperature, if the
feedbacks are linear. However, there is much discus-
sion in the literature about the extent to which feed-
backs may be nonlinear and what the implications
would be (e.g., Good et al. 2012; Gregory et al. 2015;
Bloch-Johnson et al. 2015).

The evidence discussed above summarizes the
arguments that are typically presented in support
of the common practice of using a reference period
when comparing climate models with observations
and when generating projections of global-mean
temperature. However, it does not tell us what specific
reference period we should choose and to what extent
the choice matters. We turn to these issues next.

AMERICAN METEOROLOGICAL SOCIETY

WHY DOES THE CHOICE OF REFERENCE
PERIOD MATTER? It is standard practice when
comparing simulations of climate change with
observed changes, and with each other, to use a
common reference period and define “anomalies,”
for example,

AT() = T() - T, » 1)
where T(f) is a time series of a particular variable, E
is the time average over a reference period, and AT (f)
is the anomaly. This procedure is usually performed
on the observations and any model simulations for
the same reference period.
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Fic. 2. Mean global surface temperature from CMIP5 historical simula-
tions over 1979-2008 is not significantly correlated with the change from
1979-2008 to 2071-2100. The gray squares show the ensemble mean for each
of the 42 CMIP5 models, with the error bars representing the minimum-—
maximum range from within each model’s own ensemble, where available.
The colored lines show the reanalysis estimates as in Fig. |.

Figure 1 illustrates that the value of AT(t) changes
when using different reference periods. In addition,
the relative comparison of the different atmospheric
reanalyses with each other, and with the simulations,
also changes. For instance, in the example shown in
Fig. 1, the simulations appear mostly warmer than
the reanalyses with one choice of refer-
ence period but appear mostly cooler than

climate of the instrumental
period since around 1850.
This evaluation depends
strongly on the choice of
reference period used.
Figure 3 shows the
CMIPS5 simulations of
global-mean temperature
from 1861 to 2005, with
different percentile ranges
denoted by the blue bands.
The HadCRUT4.3 observa-
tions (Morice et al. 2012)
and associated uncertain-
ties are shown in black and
gray, respectively. However,
HadCRUT4.3 is not spa-
tially complete. Cowtan
and Way (2014, hereafter
CW14) recently used spatial
interpolation to fill the gaps
in HadCRUT4.3, and this
CW 14 dataset is shown in
red (also see appendix C).
The four panels perform the
comparison with different
reference periods, first us-
ing the whole period (1861-
2005) and then using three
different 30-yr periods.
The following observa-

tions may be made: First, the percentile ranges clearly
change with the choice of reference period—they
tend to be narrower during the chosen reference
period than at other times. Second, the observa-
tions fall outside the 5%-95% ranges at different
times when using the different reference periods.

th 1 ith It tive choice. TaBLE |. The number of years (in the 1861-2005 period) that
; ¢ r}elana }Yfeif&p ?Fasg rna Wf 01| the median of HadCRUTA.3 falls outside the specified CMIP5
urther, the reanalysis ap- confidence interval for different reference periods.
pears to be a slight outlier, but whether
these differences are most apparent at the Reference period >95% >75% <25% <5%
start or end of the simulation depends on T — 7 36 36 7
the reference period. There is clearly sen-
e . . 1. 1861-2005 3 35 37 4
sitivity to the choice of reference period in
any similar comparison (also see sidebar 1861-90 I 10 50 8
on “Illustrating the effect of reference 1911-30 13 68 10 0
period choice”). 1961-90 I 27 31 2
198099 0 21 27 |
Evaluating hist?ri}clal s{mulations. Olne im- 1976—2005 | 35 19 0
portant test of the climate models used 1986-2005 I 25 8 |

by the IPCC is their ability to simulate the
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ILLUSTRATING THE EFFECT OF REFERENCE PERIOD CHOICE.

depends on the choice of reference
period (or tube position). The black
dashed lines show the range of possible
futures for a larger set of time series
demonstrating that the uncertainty
shrinks for later reference periods (as
discussed later in Fig. 7).

An animated version of Fig. SBI is
shown in Fig. ES| (more information
can be found online in the supplemen-
tal information available at http://dx.doi
.org/10.1175/BAMS-D-14-00154.2),
which also highlights the sensitivity to
length of reference period.

diameter. In the extreme, a tube that
is one time point long would have zero
diameter because all of the wires can
be forced to pass through the same
point. The constraint on where the
wires are positioned vertically, relative
to each other and relative to the tube,
varies as the tube is slid horizontally
along the loose bundle of wires.
Interpreting the wires as time series
of annual-mean global-mean tempera-
ture illustrates the effect of choosing
a reference period (Fig. SBI). Which is
the warmest time series at later times

We illustrate the sensitivity to the
choice of reference period with an
analogy and schematic. Different time
series can be thought of as stiff (and
“wiggly”) wires that are required to
pass through a fixed length of tube.
Different length reference periods
correspond to tubes of different
lengths, with longer tubes required to
have wider diameters. There is little
constraint on how the wires spread
outside the tube, and for longer tubes,
there is less constraint on how they
vary within the tube, thanks to a larger

Projection uncertainty depends on choice of reference period

Fic. SBI. A schematic showing how a set of time series (or wires) behave for
two different choices of reference period (or tube). Note that the ordering of
the wires changes for the two different choices. The black dashed lines and
error bars illustrate the range of a larger set of wires. An animated version

of this figure is available in the online supplemental information.

Hence, any conclusions about the consistency of
models and observations that may be inferred from
analyses of this type are sensitive to the choice of
reference period.

For example, there has been much attention on
global temperatures over the past 15 years, which
have risen more slowly than projected by the mean
of the CMIP5 simulations (Fyfe et al. 2013). Figure 4
highlights that exactly where the most recent decade
of observations falls within the CMIP5 simulated
range is dependent on the choice of reference period
but that they are always toward the lower end of the
range. [However, appendix C highlights that part of
the difference between the multimodel mean and
observations is because the comparison is not quite
like with like because of the incomplete coverage of
the observations and the type of observation used
(Hawkins 2013; Cowtan et al. 2015).]

AMERICAN METEOROLOGICAL SOCIETY

The importance of this comparison is highlighted
by an article in the media that stated that there is “ir-
refutable evidence that official predictions of global
climate warming have been catastrophically flawed”
(Rose 2013), based on a version of Fig. 4 for one par-
ticular choice of reference period that was published
on a blog (Hawkins 2013). Other subsequent media
articles more correctly discussed the implications of
the most recent period using the same figure (e.g.,
Economist 2013).

There are different frameworks to interpret
multimodel ensembles of climate simulations (e.g.,
Annan and Hargreaves 2010; Sanderson and Knutti
2012). Here, we consider a simple way of evaluating
the reliability of the CMIP5 ensemble by examining
whether the observations fall within each percentile
the appropriate number of years. For example, in a
reliable ensemble, the observations should be above

JUNE 2016 BANS | 967
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Fic. 3. Comparing CMIPS5 historical simulations (42 models) with the HadCRUT4.3 (Morice et al. 2012) and
CW 14 observations using four different reference periods. (top left) Using 1861-2005 (the whole period).
(top right),(bottom) Using different 30-yr periods as labeled, with the HadCRUT4.3 uncertainties in gray.
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the 95th (or below the 5th) percentile about 1 year in
20 (or 5% of the time). Table 1 shows the number of
years that fall outside various percentile ranges for a
range of reference periods, including the whole period
(1861-2005) and subperiods. When using the whole
period, the CMIP5 ensemble is close to reliable, and
perhaps slightly too wide in the tails, as indicated by
the smaller number of years outside the 5th and 95th
percentiles than expected. However, when evaluated
using other reference periods, the ensemble appears
far from reliable. This behavior is likely due to the
phasing of internal variability in the particular real-
ization of climate that we have observed and will also
be influenced by errors in the specified historical forc-
ings and in the simulated response to those forcings.
One might conclude that the reference period should
be as long as possible to reduce the influence of vari-
ability, but a counter argument is that both the forcing
uncertainties (e.g., Carslaw et al. 2013; Stevens 2013)

| BAMS JUNE 2016

and observation uncertainties (Morice et al. 2012)
may be larger further back in time (also see appendix
C). An alternative approach to assess reliability is to
use trends in temperature, which are independent of
the reference period (e.g., van Oldenborgh et al. 2013;
Marotzke and Forster 2015). However, the analysis of
trends is also influenced by the forcing uncertainties.

Projections of global-mean temperature. Future pro-
jections derived from climate models are similarly
sensitive to the choice of reference period. The IPCC
ARS5 used a 1986-2005 reference period for gener-
ating climate projections, but previous assessment
reports used earlier periods. To understand the im-
pact of the choice of reference period on projections
it is helpful to express results relative to a common
baseline.

In the United Nations Framework Convention on
Climate Change (UNFCCC) process, the change in
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2012) and CWI14 observations, using four different reference periods as labeled. The position of the observa-

tions within the CMIP5 ensemble depends strongly on the reference period choice.

global-mean temperature since preindustrial times has
become an important metric for discussions of mitiga-
tion policy. A difficulty with this metric is that prein-
dustrial climate is not well defined because of a lack of
observations before 1850 and a nonstationary climate
due to natural external forcings such as solar vari-
ability and volcanic eruptions. However, a pragmatic
approach is to use an early period in the instrumental
record, such as 1850-1900, to define a baseline. Such a
baseline should not strictly be described as preindus-
trial but does provide a useful reference point and was
used in IPCC AR5 (Kirtman et al. 2013).

Projections relative to such a “preindustrial”
baseline AW,  can be constructed in two ways.
First, the raw model output can be referenced to the
preindustrial period:

AW,

future

O=T,,0-T

mod,pre-ind *

@
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This is perhaps the simplest method but may not be
optimal because both the observations and radiative
forcings in the past are uncertain, as discussed above.
Instead, Joshi et al. (2011) constructed projections by
combining the observed warming from a preindus-
trial period to a recent reference period and used the
model projections to project future warming relative
to the same recent reference period. This reduces the
impact of the uncertainty in past radiative forcings
and ties the projections to more recent observations.
This approach was also used by Vautard et al. (2014)
when considering changes in European temperatures
and was adopted by the IPCC AR5 (Kirtman et al.
2013).

Using this approach, the observed warming up to
the chosen reference period is

®OH=T

obs,ref

AW

obs

©)

obs,pre-ind
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and the simulated temperature anomaly above the
preindustrial baseline is then

AW,

future

0= AT () + AW, , )

temperatures have a strong dependence on the refer-
ence period for some GCMs: the impact on projected
temperature changes relative to the baseline can be
as much as 0.5 K. Other models show much less
sensitivity. The black line, which is often the warm-

=T bO-T vt t Doporer ™ Tobs)m_in . (5) est, uses an early reference period and is close to the
simple approach of Eq. (2). In HadGEM2-ES, it is the

Asboth T and T, . arereference periodinde- chosen IPCC AR5 reference period that is warmest.
pendent, an important quantity is Note that a strong dependence on reference period is
likely due to an incorrect simulation of the forcings

MW= T, o= T - (6) or feedbacks, but a weak dependence could simply

If this quantity were constant for any choice of ref-
erence period, then the reference period would not
matter. However, it is not constant because that would
require a perfect correlation between T, and T __..
Figure 5 shows the effect of choice of reference
period for four different GCMs. The projected global

be due to cancelling errors. Large-amplitude internal
decadal variability may also be important.

Figure 6 shows how AW, . changes during the his-
torical simulations for various CMIP5 models using
rolling 30-yr reference periods. It is clear that differ-
ent models behave in very different ways, warming
more or less than the observations at different times.

Global mean surface air temperature above pre—industrial using various reference periods
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Fic. 5. Comparing projections (RCP4.5) using five different reference periods for four example GCMs, showing
the ensemble means. Note that the observed change is used as the anomaly from 1850 to 1900 to the chosen
reference period. Most of the CMIP5 GCMs behave more like CanESM2 and EC-EARTH than NorESMI-M.
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Note, for example, that AW, generally increases in
the early to mid-twentieth century, when the observa-
tions warm faster than the simulations and vice versa
during the recent “slowdown.”

This metric may help understand how the CMIP5
models are responding differently to different types of
radiative forcing. For example, consider two models
with the same overall warming, but with different
amplitudes of response to aerosols or volcanic erup-
tions. The evolution of temperature change over the
twentieth century will look different and AW, will
change substantially with time. This metric merits
further investigation.

Assessing multimodel projections. From the previous
results, it is clear that the choice of reference period
will influence both the mean and the range of the
projected global-mean temperature. Figure 7 shows
projections of global-mean temperature using repre-
sentative concentration pathway (RCP) 4.5 (Thomson
et al. 2011) for four different reference periods. Note
that using an early 1861-90 reference period produces
a larger magnitude and wider range for the future
than more recent reference periods. The reduction in
ensemble spread when using a more recent reference
period is because there is less time for the ensemble
to diverge (see appendix D). The 1986-2005 period
was used by IPCC AR5, and AW = 0.61 K in this
case (Kirtman et al. 2013). Updating to a more recent
1995-2014 reference period reduces the projections
by about 0.1 K. The choice of reference period affects
the bounds on the projected range of global-mean
temperature for specific time periods (e.g., 2016-35,
2046-65, and 2080-99, as indicated in the figure and
asused in AR5) by up to 0.2 K. As a proportion of the
total projected change (relative to the reference period
or to the baseline), this sensitivity is considerably
larger for the near term (2016-35) than for the long
term (2080-99).

The most commonly used magnitude of global
temperature change discussed in the context of
climate change policy is 2°C above preindustrial.
Using the projections and an early 1861-90 reference
period, the projected median year of crossing this
threshold is 2049. However, as discussed above, this
choice is not likely to be optimal for making future
projections. Using alternative choices, the projected
median year of crossing this threshold changes from
2052 using the 1861-2005 reference period to 2063
for the most recent reference period—an apparent
delay of a decade.

Which is the most appropriate reference pe-
riod to use to make such projections? There is no

AMERICAN METEOROLOGICAL SOCIETY
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Fic. 6. The change in AW __ from its time mean for

rolling 30-yr reference periods. Note the different
behavior for the different models, which are shown in
the colors for the ensemble mean.

straightforward answer as it will depend on the role
of natural variability in recent observed changes as
well as the simulated response to both greenhouse
gases and volcanic eruptions. It will also depend on
the quality of the observations and radiative forcings
as discussed above. An additional issue is sensitivity
to the length of the reference period. This is explored
in appendix D, which suggests that the 20-yr period
length used by the IPCC AR5 is a reasonable choice,
but the optimal choice depends on the climate vari-
able and region of interest. In summary, the sensitiv-
ity to choice of the reference period in any similar
analysis needs to be examined.

Projections of global-mean temperature presented in the
IPCC ARS5. The IPCC ARS5 presented assessed likely
ranges for global-mean temperature in the near-term
(Kirtman et al. 2013) and long term (Collins et al.
2013), where “likely” refers to >66% probability of
occurrence. For the long term, ranges were presented
for each of the RCP scenarios. Importantly, the likely
ranges were based on an assessment of the all the evi-
dence available at the time. This evidence included,
but was not limited to, CMIP5 climate model projec-
tions expressed relative to the 1986-2005 reference
period. For the near-term assessment, the sensitivity
to the choice of reference period was discussed ex-
plicitly (Kirtman et al. 2013, section 11.3.6.3). Taken
together with other lines of evidence, this resulted in
the assessed likely range for global-mean temperature
in 2016-35 being significantly cooler than was sug-
gested by the “raw” CMIP5 projections expressed rela-
tive to 1986-2005. For the long-term assessment, the
sensitivity to the reference period was not discussed
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Global mean surface air temperature: CMIP5 RCP4.5 & HadCRUT4
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Fic. 7. Comparing CMIP5 projections (RCP4.5, 42 models) for the future using four different reference pe-
riods. Red stars indicate projected time of crossing 2 K above preindustrial (defined as 1850-1900) with red
bars representing the 5%-95% range. Black error bars show 5%-95% temperature ranges for defined periods
as indicated in legend. Observations (black) and observational uncertainties (gray) shown for HadCRUT4.3

(Morice et al. 2012). The CW 14 observations are shown in red.

explicitly, but as noted above, this sensitivity is a much
smaller proportion of the change signal than is the
case for the near term, except for RCP2.6. In addition,
the sensitivities described in this article are unlikely
to affect any of the IPCC AR5 assessment statements
on the likelihood of crossing particular temperature
levels by certain times because these assessments were
based on conservative assumptions.

REGIONAL TEMPERATURES AND OTHER
CLIMATE VARIABLES. The previous sections
have focused entirely on projections of global-mean
temperature, which is an important variable for sum-
marizing future climatic changes. However, the im-
pacts of climate change depend strongly on changes
in regional temperatures, precipitation, and other
climate variables. The use of a reference period for
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such projections raises more fundamental questions,
since the (previously discussed) arguments advanced
to justify this approach for global-mean temperature
cannot be readily transferred to regional scales.

For example, the simulated mean temperature may
be a critical issue in regions where phase transitions
between water and ice are common, for example, in
the presence of sea ice (e.g., Wang and Overland 2009;
Mabhlstein and Knutti 2012) or permafrost. Mean
temperature, rainfall, and evapotranspiration will
all likely be important in regions where soil moisture
may become limited. Further work is needed to ex-
amine the sensitivity of regional climate projections
to errors in the simulation of the mean state.

The implications for climate impact studies are
profound. If, for example, daily output from GCM
simulations is used as an input to a climate impact



model or if a temperature threshold is used to calcu-
late integrated measures of temperature exceedance,
then an adequate simulation of the mean and variance
(at least) of the variables used is necessary. Often this
criteria is not met, and various bias correction tech-
niques are adopted that add additional uncertainties
(e.g., Christensen et al. 2008; Piani et al. 2010; Ho
et al. 2012; Hawkins et al. 2013; Koehler et al. 2013).
A case-by-case approach is required to assess the
implications of mean state errors for climate impact
studies.

Issues concerning the availability and quality of
observational records are also challenging for re-
gional projections. This is partly because optimal
reference periods are typically much longer, as the
variability is larger relative to forced changes (see
appendix D).

SUMMARY AND RECOMMENDATIONS.
Because climate models produce different values
for Earth’s global-mean surface temperature, it is
standard practice to define a reference period when
comparing simulations and projections of tempera-
ture change with observations and with each other.
While there are some justifications for this approach,
it necessarily involves approximations that have
limited validity. Further investigating the limitations
of this approach is an important area for further
research. In addition, this article has highlighted the
following points:

1) Thereis no perfect choice of reference period, but
relevant considerations include
(i) the need for a sufficiently long time period

to reduce the effects of multidecadal natural
climate fluctuations,
(ii) the quality and global coverage of the avail-
able observations, and

the quality of information about past radia-

tive forcings that drive climate change.
The first point argues for using as long a period
as possible, whereas the second and third points
argue in favor of using a recent period for which
better quality and more complete observations
are available.

2) Conclusions concerning (i) the consistency of
simulations with observations (e.g., over the
recent slowdown period, 1998-2013) and (ii) the
magnitude of projected future changes in climate
both exhibit sensitivity to the choice of reference
period.

3) A strong recommendation is that any studies
that seek to draw quantitative conclusions from

(iii)

AMERICAN METEOROLOGICAL SOCIETY

analyses that involve the use of a reference period
should explicitly examine the robustness of those
conclusions to alternative choices of reference pe-
riod. This approach was taken in the assessment
of near-term (2016-35) changes in global-mean
temperature in the IPCC AR5 (Kirtman et al.
2013) but has not been used systematically in
climate research. An alternative approach is to
focus on trends in climate that do not require
the definition of a reference period [see box 11.2
of Kirtman et al. (2013), van Oldenborgh et al.
(2013), or Marotzke and Forster (2015)].

4) When presenting temperature projections relative
to a fixed baseline, the impact of the choice of
reference period can be several tenths of kelvins
for some models. This is a significant issue for
near-term projections of climate change but less
significant for longer-term projections of climate
change. Similarly, the reference period choice af-
fects the projected ensemble spread of the CMIP5
models by up to 0.2 K. The same sensitivity can af-
fect estimates of the time at which policy relevant
temperature targets (e.g., 2 K above preindustrial
climate) may be exceeded by as much as 15 years.

5) The optimal length and timing of the reference
period for producing projections depends on the
climate variable under consideration. The most
recent 20 years [as used by IPCC Fourth Assess-
ment Report (AR4) and AR5] is a reasonable
choice for global-mean temperature (see appendix
D). For other variables, such as precipitation, the
optimal reference periods are likely to be much
longer, as the variability is large relative to the
changes.

6) The issues associated with the use of anomalies
relative to a reference period are particularly seri-
ous for regional climate projections. Errors in sim-
ulating the mean (and higher-order moments) of
regional climate variables may have consequences
for regional climate and impact projections that
need to be assessed on a case-by-case basis.
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APPENDIX A: CMIP5 MODELS

ACCESSL.0
ACCESSL.3
BCC_CSML1.1
BCC_CMSL.1(m)
BNU-ESM
CCSM4
CESM1(BGC)
CESM1(CAMS5)

CMCC-CM
CMCC-CMS

CNRM-CM5

CSIRO MKk3.6.0
CanESM2
EC-EARTH
FGOALS-g2.0
FIO-ESM
GFDL CM3
GFDL-ESM2G

GFDL-ESM2M
GISS-E2-H
GISS-E2-H-CC

GISS-E2-R
GISS-E2-R-CC

HadGEM2-AO
HadGEM2-CC
HadGEM2-ES
INM-CM4.0
IPSL-CM5A-LR
IPSL-CM5A-MR
IPSL-CM5B-LR
MIROC5
MIROC-ESM
MIROC-ESM-CHEM

MPI-ESM-LR
MPI-ESM-MR
MRI-CGCM3

NorESM1-ME
NorESM1-M
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Australian Community Climate and Earth-System Simulator, version 1.0
Australian Community Climate and Earth-System Simulator, version 1.3
Beijing Climate Center, Climate System Model, version 1.1

Beijing Climate Center, Climate System Model, version 1.1 (moderate resolution)
Beijing Normal University-Earth System Model

Community Climate System Model, version 4

Community Earth System Model, version 1 (Biogeochemistry)

Community Earth System Model, version 1 (Community Atmosphere Model,
version 5)

Centro Euro-Mediterraneo per I Cambiamenti Climatici Climate Model
Centro Euro-Mediterraneo per I Cambiamenti Climatici Stratosphere-resolving
Climate Model

Centre National de Recherches Météorologiques Coupled Global Climate Model,
version 5

Commonwealth Scientific and Industrial Research Organisation Mark 3.6.0
Second Generation Canadian Earth System Model

European Consortium Earth System Model

Flexible Global Ocean-Atmosphere-Land System Model, gridpoint version 2.0
First Institute of Oceanography Earth System Model

Geophysical Fluid Dynamics Laboratory Climate Model, version 3
Geophysical Fluid Dynamics Laboratory Earth System Model with Generalized
Ocean Layer Dynamics (GOLD) component

Geophysical Fluid Dynamics Laboratory Earth System Model with Modular
Ocean Model (MOM), version 4 component

Goddard Institute for Space Studies (GISS) Model E2, coupled with Hybrid
Coordinate Ocean Model (HYCOM)

GISS Model E2, coupled with either HYCOM and interactive terrestrial carbon
cycle (and oceanic biogeochemistry)

GISS Model E2, coupled with the Russell ocean model

GISS Model E2, coupled with Russell and interactive terrestrial carbon cycle
(and oceanic biogeochemistry)

Hadley Centre Global Environment Model, version 2—Atmosphere and Ocean
Hadley Centre Global Environment Model, version 2—Carbon Cycle

Hadley Centre Global Environment Model, version 2—Earth System
Institute of Numerical Mathematics Coupled Model, version 4.0

LInstitut Pierre-Simon Laplace Coupled Model, version 5A, low resolution
LInstitut Pierre-Simon Laplace Coupled Model, version 5A, midresolution
LInstitut Pierre-Simon Laplace Coupled Model, version 5B, low resolution
Model for Interdisciplinary Research on Climate, version 5

Model for Interdisciplinary Research on Climate, Earth System Model
Model for Interdisciplinary Research on Climate, Earth System Model,
Chemistry Coupled

Max Planck Institute Earth System Model, low resolution

Max Planck Institute Earth System Model, medium resolution
Meteorological Research Institute Coupled Atmosphere-Ocean General
Circulation Model, version 3

NorESM1-M with carbon cycling (and biogeochemistry)

Norwegian Earth System Model, version 1 (intermediate resolution)



Emissivity

APPENDIX B: DOES GLOBAL MEAN TEM-
PERATURE MATTER FOR CLIMATE SEN-
SITIVITY? Inspired by Schmidt (2007), a simple
1D energy balance model of Earth can be written as

surface: G=S+ 1A, (B1)
atmosphere: A\G = 21A , and (B2)
top of atmosphere (TOA): S=(1-1)G+AA, (B3)

where A is the emissivity of the atmosphere (i.e., the
strength of the greenhouse effect), and S = S.(1 - a)/4,
where a is Earth’s albedo and S. is the solar constant.
In terms of temperature, A = ¢T} and G = oT/, where
0 is the Stefan-Boltzmann constant with T and T,
representing the temperature of the atmosphere and
surface, respectively.

Eliminating A,
S
G=—-, B4
1-1/2 (B4)
and the surface temperature,
N
T, =sf—— . B5
« o(i-12) (B3)

Figure Bla shows how the mean surface tempera-
ture changes with a and A. As a “standard” model,

Global temperature [°C]

1 1
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.61
0.5 0.51
0.4 0.41
0.3 .3 0.3
0.1 0.2 0.3 0.4 0.1 0.2 0.3 04 0.1 0.2 0.3 04
Albedo Albedo Albedo
BN | [ TN 00 s
-18 -2 14 30 46 02 025 03 03 04 03 05 07 09

Warming without feedbacks [°C]
1

T, = 14.0°C for a = 0.3 and A = 0.7643. For similar
reference models with a fixed albedo (a = 0.3), a
range of global temperatures (T, = 13° and 15°C)
can be produced for small changes in A (0.7470 and
0.7814, respectively). Alternatively, for a fixed emis-
sivity (A = 0.7643), 7; =13°and 15°C for a = 0.31 and
0.29, respectively. Note that the observed albedo is
0.29-0.30 (Stephens et al. 2015) and that the same
global temperature can be produced with widely dif-
ferent parameter settings.

A change in forcing can be introduced by vary-
ing S. to change S. In the case where there are no
feedbacks, then

_AS
1-2/2

Figure B1b shows that the warming for a
AS =1 W m™ forcing change is rather insensitive to
the initial mean global temperature. For example,
in the range of reference models given above with
initial temperatures from 13° to 15°C, this no feed-
back (or Planck) sensitivity only varies from 0.298 to
0.305 K (Wm™)™.

The Planck sensitivity is amplified by various
feedbacks (albedo, water vapor, lapse rate, clouds,
etc.). As a simple example, we parameterize the
albedo and emissivity to be linearly dependent on
temperature change:

(B6)

Including feedbacks [°C]

Fic. Bl. Simple ID energy balance model for Earth showing (left) mean global temperature as a function of
albedo and emissivity parameters and the corresponding warming for a | W m™ forcing (middle) without feed-
backs and (right) including feedbacks. Black contours represent constant 12° and 16°C global temperatures in
all panels, with a standard model (14°C) indicated with the filled circle and dashed lines.
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Comparlng HadCRUT4.3 and Cowtan & Way global temperatures
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Fic. Cl. Comparing global-mean surface temperatures. (top) HadCRUT4.3
and CWI4. (bottom) Difference between simulation of global temperatures
using the full data and only where HadCRUT4.3 observations are available

(masked). For 2015 onward, the HadCRUT4.3 mask of Dec 2014 is assumed.
A reference period of 1861-2014 is used in both panels.

a=k(T-T)+a,, (B7)

climate sensitivity may not
depend strongly on global-
mean temperature as long
as it does not vary too much
from the observed value, as
seen in the CMIP5 models
(Fig. 2). However, Bloch-
Johnson et al. (2015) discuss
the possible consequences
of nonlinear dependence of
feedbacks on temperature
and find slightly larger sen-
sitivity to the mean state.

APPENDIX C: CON-
SIDERING OBSER-
VATIONAL ISSUES.
HadCRUT4.3 is not a spa-
tially complete dataset, as
observations are not avail-
able everywhere. Therefore,
comparing HadCRUT4.3
with the full global tem-
perature from GCMs is
not necessarily a fair com-
parison. To test the sensitiv-
ity to the lack of complete
observational coverage,
Fig. Cl first compares the
global temperatures us-
ing HadCRUT4.3 (Morice
et al. 2012) and the inter-
polated version of CW14.
The estimates of CW14 fall
inside the HadCRUT4.3

uncertainties for the vast majority of years. The most

recent decade, however, is at the upper edge of the

A=m(T-T)+]A,. (BS)

uncertainties, suggesting that the missing regions

are warming more rapidly than the global average in

If we set k = -0.003 and m = 0.005, then Fig. Blc
shows the corresponding temperature change for
a 1 W m™ forcing. The ratio of k and m is set by
the changes in a and A for the range of reference
models discussed above. The resulting warming is
larger than without the feedbacks but still rather
independent of global-mean temperature; there is
a near orthogonality between the contours of mean
temperature and climate sensitivity. For our refer-
ence model, the climate sensitivity with feedbacks
is 2.78 K for a forcing of 3.7 W m™, equivalent to a
doubling of CO,.

Although this is only a toy model of global climate,
it provides some simple physical explanations for why

the last few years.
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Figure C1 also shows the effect on simulated
global temperatures when computed only where
there is observational coverage in HadCRUT4.3,0on a
month-by-month basis. This “masking” introduces a
slight cool bias in the simulations; that is, the simula-
tions warm less when masked with the observational
coverage, again implying that the real world may
have actually warmed slightly more than observed
with HadCRUTA4.3. In addition, the lack of complete
coverage may reduce the measured long-term future
observed change by around 0.07 K and the near term
by around 0.02 K (Fig. Cl1), assuming the observa-
tional coverage does not improve.



Figure CI also shows the difference between
CW14 and HadCRUT4.3, which broadly matches
the estimates from the simulations. The differences
between the two datasets apparent in the last few
years are not particularly large compared to the
range of corrections expected from the CMIP5
simulations.

In addition, Cowtan et al. (2015) highlight a
further complication with such a comparison. The
observations are constructed from sea surface tem-
peratures (SSTs) over the ocean and near-surface air
temperature over the land, whereas the models are
normally presented using averaged air temperatures
everywhere. As the SSTs warm slightly slower than
the corresponding air temperatures over the oceans,
this results in the simulated changes using air tem-
peratures being only slightly larger than when using
SSTs over the ocean.

Overall, the masking and surface-type effects ac-
count for around a third of the difference between
the multimodel mean and HadCRUT4.3 when using
a 1961-90 reference period (Cowtan et al. 2015).

APPENDIX D: HOW LONG SHOULD A
REFERENCE PERIOD BE? To consider the
question of an appropriate length of reference period
(or tube; see the sidebar on “Illustrating the effect of
reference period choice”) to make future projections,
we use a toy simulator of temperatures. We assume
that temperature 6 changes linearly with time ¢ as

0=at+e) (D1)
from 1970 to 2100. We consider realizations of tem-
perature using different models (or sensitivity «)
sampled from N(a,0?) and red noise & with variance
y? and the AR(1) parameter fixed at 0.5.

We generate 1,000 realizations (or climate models)
of temperature (with and without the noise compo-
nent). These simulations are then referenced to dif-
ferent periods of length L = 1-30 years but all ending
in 2005. The shortest reference period is then only
using 2005, and the longest is 1976-2005.

The total uncertainty (using the standard deviation
across the 1,000 realizations) in future temperatures can

CMIP5 and toy simulator uncertainty
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Mid-term (2046-65)

Long-term (2080-2099)
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Fic. DI. Defining an optimal reference period. Uncertainty in CMIPS5 projections as function of length of reference
period, always ending in 2005 (gray). (top) Global mean surface air temperature (SAT). (bottom) European land SAT.
The total uncertainty (black) and two components of uncertainty (blue, red) using a toy simulator are also shown.
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be separated into components due to different model
sensitivity and that due to the noise. Figure D1 shows
the total uncertainty for different future time periods
(black), the uncertainty due to the model sensitivity
(blue) and noise (red) for three different future time pe-
riods (columns), and two different sets of toy simulator
parameters (rows). The two sets of parameters are cho-
sen to approximately represent global-mean tempera-
ture (top row; & = 0.21 K decade™, 0=0.055 K decade™’,
and y = 0.12 K) and European land temperature (bot-
tom row; & = 0.23 K decade™, 0= 0.10 K decade?, and
y = 0.75 K) in the CMIP5 GCMs.

As L increases, the noise uncertainty component
decreases because of averaging over more years in the
reference period. The model sensitivity uncertainty
component increases linearly with L because there is
more time between the middle of the reference period
and the verification time, allowing for a longer period
of model uncertainty growth. The total uncertainty
therefore has a minimum. For global temperature,
this minimum occurs for L = 1-5 yr, whereas for
regional temperature, the optimal L is longer, around
15-20 yr, depending on the verification time. For
climate variables with larger variability, such as pre-
cipitation, the optimal L may increase further.

We have used the toy model to demonstrate that
there are competing effects when choosing a reference
period for making projections. A similar procedure
can be performed for simulated global temperature
and European land temperatures to test whether these
effects are seen in the CMIP5 GCMs. In this case, the
total CMIP5 uncertainty is shown in Fig. DI as the
gray lines. This should not be expected to match the
toy simulator perfectly because the CMIP5 trends are
nonlinear. However, a similar structure in the change
in total uncertainty for different L is seen but with less
sensitivity to L. For global and regional temperatures
a reference period length of 10 and 20 years, respec-
tively, is close to optimal. The IPCC AR5 decision
to use L = 20 appears to have been a good choice for
presenting future changes in temperature.
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