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Abstract Model simulations of the next few decades are
widely used in assessments of climate change impacts and
as guidance for adaptation. Their non-linear nature reveals a
level of irreducible uncertainty which it is important to under-
stand and quantify, especially for projections of near-term
regional climate. Here we use large idealised initial condition
ensembles of the FAMOUS global climate model with a 1 %/
year compound increase in CO; levels to quantify the range
of future temperatures in model-based projections. These
simulations explore the role of both atmospheric and oceanic
initial conditions and are the largest such ensembles to date.
Short-term simulated trends in global temperature are diverse,
and cooling periods are more likely to be followed by larger
warming rates. The spatial pattern of near-term temperature
change varies considerably, but the proportion of the surface
showing a warming is more consistent. In addition, ensem-
ble spread in inter-annual temperature declines as the climate
warms, especially in the North Atlantic. Over Europe, atmos-
pheric initial condition uncertainty can, for certain ocean ini-
tial conditions, lead to 20 year trends in winter and summer in
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which every location can exhibit either strong cooling or rapid
warming. However, the details of the distribution are highly
sensitive to the ocean initial condition chosen and particularly
the state of the Atlantic meridional overturning circulation. On
longer timescales, the warming signal becomes more clear and
consistent amongst different initial condition ensembles. An
ensemble using a range of different oceanic initial conditions
produces a larger spread in temperature trends than ensembles
using a single ocean initial condition for all lead times. This
highlights the potential benefits from initialising climate pre-
dictions from ocean states informed by observations. These
results suggest that climate projections need to be performed
with many more ensemble members than at present, using a
range of ocean initial conditions, if the uncertainty in near-
term regional climate is to be adequately quantified.

Keywords
Uncertainty

Ensembles - Projections - Initial conditions -

1 Introduction

Predictions of regional climatic changes during the next
few decades are sought by decision makers. The use of cli-
mate models to guide scientific research on such predictions
requires an acceptance that their non-linear nature generates
irreducible uncertainty. To understand a model’s behaviour
in response to rising greenhouse gas concentrations, there-
fore requires a probabilistic quantification of outcomes.

On regional spatial scales it has been argued that inter-
nal climate variability and model uncertainty dominate
scenario uncertainty for near term temperatures (Hawkins
and Sutton 2009). A key question is determining the size of
the internal variability when compared to other sources of
uncertainty and the magnitude of the expected change from
causes other than internal climate fluctuations.
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This question has previously been addressed by con-
sidering large ensembles of climate projections with a sin-
gle climate model and a single future emissions trajectory
(Selten et al. 2004; Sterl et al. 2008; Deser et al. 2012a, b;
Kay et al. 2015). In these ensembles, multiple projections
are simulated from a single ocean initial condition with
many different atmospheric states to examine the magni-
tude of uncertainty associated with the non-linear nature
of the atmosphere. It has also been suggested that some of
the apparent model diversity may simply be due to internal
variability (Deser et al. 2014).

In Deser et al. (2012b), each simulation warms by over
2 K in the first 50 years in the global average. However,
the uncertainty in near-term regional climate trends can
be substantial when compared to the size of the signal of
change. For example, with 40 simulations it was possible to
simulate both a 3 K warming and even a small cooling for
winter (DJF) in Seattle, USA over the next 50 years, with
the difference solely due to changes in the atmospheric
initial conditions (Deser et al. 2012b). For winter precipi-
tation, the ensemble ranged from a —25 to 425 % change
over 50 years. The conclusion was that this uncertainty is
essentially irreducible. This is an extreme example, and the
caveat to this conclusion is that the simulated variability
and the sensitivity of the response to initial conditions, may
not be similar to the real world. However, there is a diverse
range of simulated variability amongst climate models
(Hawkins and Sutton 2012; Knutson et al. 2013), and given
the relatively short observational record and complications
in separating the internal variability from a forced trend, it
is difficult to obtain a reliable estimate of climate variabil-
ity from existing observations, especially on decadal time-
scales. In addition, different GCMs have varying predicta-
bility characteristics, particularly the timescales of memory
(Collins et al. 2006; Branstator et al. 2012).

The large initial condition ensemble approach is in
sharp contrast to the more usual climate projections which
often use a single simulation (and at most ten ensemble
members) for each climate model for multiple emission
scenarios (Stocker et al. 2013). Computational resources
and model complexity have restricted assessment of the
implications of ensemble size in global climate models but
analysis of a low-dimensional non-linear model suggests
that ensembles of significantly more than 100 members
are required to make confident statements at the 5 or 95 %
level (Daron and Stainforth 2013). Although the number
of ensemble members required will depend on the signal-
to-noise characteristics of the variable considered, the
quantities considered by Daron and Stainforth (2013) had
relatively long timescales and are broadly representative of
large scale ocean variables.

Several open questions remain which have particu-
lar relevance to the design of future ensembles of climate
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projections. Are these findings of significant irreduc-
ible uncertainty replicated in other climate models? Does
uncertainty in oceanic initial conditions produce similar
magnitudes and characteristics of response uncertainty?
What is the shape of the irreducible uncertainty (i.e. are the
distributions non-Gaussian)? And is this dependent on oce-
anic initial conditions? How large an ensemble is required
to quantify these types of uncertainty?

In this study we utilise a fast atmosphere-ocean coupled
general circulation model (AOGCM) to perform larger
ensembles than have previously been possible, although at
a lower resolution and complexity. Section 2 describes the
FAMOUS AOGCM and the ensemble design. The relative
role of atmospheric and oceanic initial conditions in pro-
ducing uncertainty is explored and illustrated in Sect. 3. We
summarise in Sect. 4.

2 Large initial condition ensembles
with FAMOUS

To examine the role of internal variability in near-term
climate projections we analyse a 1200-year pre-indus-
trial control simulation and four large ensembles with the
FAMOUS AOGCM.

2.1 The FAMOUS AOGCM

FAMOUS is a lower resolution and retuned version of the
third Met Office Hadley Centre AOGCM (HadCM3; Gor-
don et al. (2000)), and has an atmospheric component with
a horizontal resolution of 5° x 7.5°, with 11 vertical lev-
els. The ocean component has a horizontal resolution of
2.5° x 3.75°, with 20 vertical levels. No flux adjustments
are used. The coarse resolution and fast computational
speed of FAMOUS allows simulations to be performed at
over 100 model years per wall-clock day, making it ideal
for lengthy simulations and large ensembles. The version of
FAMOUS used is x fxwb, described in Smith et al. (2008)
and updated in Smith (2012).

In the control simulation, the standard deviation of
global annual mean surface air temperature is 0.18K (with
a range of 0.14-0.21 K for different 164 year segments),
which is larger than all of the state-of-the-art CMIP5 mod-
els (range 0.06-0.15 K). A crude estimate from observa-
tions is 0.12K, obtained by removing a 4th order poly-
nomial fit to the HadCRUT4 global temperature dataset
(Morice et al. 2012) for 1850-2013. However, the pattern
and autocorrelation characteristics of the variability are
also important for assessing the realism of the simulations.
For example, the CMIP5 GCMs show a diversity in the
simulated patterns and amplitude of variability on regional
scales (Hawkins and Sutton 2012; Knutson et al. 2013).
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Fig. 1 Inter-annual variability
(standard deviation, in K) of

INTERANNUAL VARIABILITY

FAMOUS

near-surface temperature in
ERA-40 (linearly detrended,
left) and the FAMOUS control
simulation (right)

Interannual temperature variability in the FAMOUS
control simulation shows a similar geographical pattern to,
but with a much larger amplitude than, an observational
estimate from ERA-40 (Fig. 1, for 1958-2001 after linear
detrending) (Uppala et al. 2005). Although this has large
implications for any comparison of these simulations with
the real world, and is a caveat on the results, the speed of
FAMOUS makes it a good test-bed to explore the role of
variability and how to design ensembles to sample initial
condition uncertainty.

2.2 Ensemble design

All the simulations assume an idealised 1 %/year com-
pound increase in CO; from pre-industrial levels until year
140, when a quadrupling of CO; is reached.

Using terminology first suggested by Stainforth et al.
(2007a), two separate ensembles were initially produced:

1. MACRO-—30 different coupled initial conditions are
chosen from well separated start dates in the long con-
trol run

2. MICRO—a single coupled initial condition from
MACRO is chosen, and 100 ensemble members are
produced, each with a 010 )HK perturbation to sea
surface temperature (SST) in a single, randomly cho-
sen ocean grid point

The chosen start dates are indicated later in Fig. 10.
The MICRO ensemble therefore samples the uncertainty
in future model climate only due to the non-linear nature
of its climate system (i.e. the irreducible uncertainty),
whereas the MACRO ensemble samples the uncertainty
due to both its non-linear nature and initial condition differ-
ences in large scale aspects of the atmosphere and ocean. A
component of this uncertainty may be reducible due to the

memory in the initial conditions (Griffies and Bryan 1997,
Smith et al. 2007). MACRO is therefore designed to better
sample the uncertainty in an uninitialised framework, and
MICRO samples the uncertainty contingent on the particu-
lar initial conditions chosen.

After preliminary analysis, two further ensembles were
produced:

3. and 4. MINI MICRO 1 and 2—each of these ensembles
has 50 members and, like MICRO, are run from differ-
ent coupled initial conditions, chosen from MACRO

The two initial conditions for MINI MICRO, which are
only 20 years apart in the control run (see Fig. 10 later),
were chosen because the corresponding MACRO mem-
bers produced very different outcomes for the subsequent
30 years for European climate. These additional ensembles
enable the sensitivity to the particular ocean initial condition
to be assessed in terms of the irreducible response uncer-
tainty resulting from uncertainty at the smallest scales.

In total, 33,400 simulated years have been analysed.
The key issue that will be addressed with these ensembles
is determining the size of the irreducible uncertainty in
near-term climate projections. Other questions will be con-
sidered, such as: (1) what is the range of possible tempera-
ture trends? (2) how important is the oceanic initial state in
near-term climate projections? (3) how long before the sig-
nal of climate change emerges from the internal variability?
(4) how should future ensembles of near-term projections
be designed?

3 The role of the initial conditions

We explore the variability within the transient ensembles
using surface temperatures globally, and then illustrate the

@ Springer
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FAMOUS Transient Climate Response (TCR)

30 Mean = 2.44K
Median = 2.44K
6 =0.06K
Range = 2.25 to 2.60K

MICRO

FAMOUS Transient Climate Response (TCR)

30F Mean =247K
Median = 2.48K
o =0.06K

20 Range = 2.33 to 2.59K MINIMICRO 1 1

Mean = 2.46K
Median = 2.48K
o =0.08K

Range = 2.33 to 2.62K

MACRO

Percentage of ensemble members [%]
o

w
o
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TCR [K]

Mean = 2.47K
20r Median = 2.46K MINI MICRO 2
c=0.07K

30F Range =2.29to 2.64K
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2 21 2.2 2.3 2.4 25 2.6 2.7 2.8
TCRK]

Fig. 2 Distributions of transient climate response (TCR), defined as the average global temperature at years 61-80 minus the mean global tem-

perature in the pre-industrial control simulation, for the four ensembles

magnitude of the irreducible uncertainty and consequences
for regional near-term temperatures and precipitation with
a case study over Europe.

3.1 Transient climate reponse

It has recently been suggested (Liang et al. 2013) that the
initial conditions may be a significant source of uncertainty
in estimating the global temperature change at the time of
CO; doubling, or transient climate response (TCR). The
primary reason for the uncertainty identified by Liang et al.
(2013) was that the spin-up or drift in the GCM considered
would produce different estimates of TCR for well-spaced
initial conditions. However, it is also possible that the TCR
could vary depending on the initial condition in a well
spun-up GCM, such as FAMOUS.

We estimate TCR in each FAMOUS simulation using
the global mean surface temperature in years 61-80, minus
the mean of the entire pre-industrial control simulation.
The four FAMOUS ensembles show that the spread (which
we take to be one standard deviation throughout) in esti-
mates of TCR is between 0.06 and 0.08 K, with a minimum
to maximum range of 2.25-2.64 K (Fig. 2). The standard
deviation of 20-year means in global temperature in the
FAMOUS control simulation is also 0.08 K, suggesting
that the ensembles are effectively sampling the same inter-
nal variability but around the point of CO; doubling and
that the transient response itself does not add additional
uncertainty.

In the CMIP5 ensemble, the estimated TCR ranges from
1.1 to 2.5 K (Forster et al. 2013). FAMOUS is clearly a
high sensitivity GCM, but the relatively small initial condi-
tion uncertainty suggests that the spread in CMIP5 GCM
estimates is dominated by model diversity. In addition,
these results suggest that uncertainty in TCR estimates
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using control simulation variability may provide a good
first estimate if only small ensembles are available. Such an
approach would, however, substantially reduce the likeli-
hood of identifying non-linear, model-dependent feedbacks
which could affect the TCR in different models. Ensem-
ble sizes should in any case be sufficiently large to make a
good estimate of the mean.

In all four FAMOUS ensembles, the warming is greater
for later initial states, which are characterised by their start-
ing CO» concentration in Fig. 3. This effect is commonly
observed in CMIP3 and CMIP5 AOGCMs (Gregory and
Forster 2008; Gregory et al. in press). The main reason is
likely to be the decrease in efficiency of heat loss from the
upper ocean to deeper layers as the latter become warmer,
and is related to the cold-start effect (e.g. Keen and Murphy
1997) and the long-term commitment to surface warming
after forcing is stabilised (as discussed by Gregory et al. in
press). It does not imply a dependence of ocean heat uptake
processes on the state of the climate. However, non-linear
behaviours may also enhance the warming under succes-
sive doublings, for instance due to decrease in the global
climate feedback parameter (Gregory et al. in press) and
various regional phenomena (Good et al. 2015). Because
the warming per unit increase in CO; in forcing tends to
increase, its value inferred from historical observations
might underestimate the future response (Gregory and For-
ster 2008).

3.2 Global temperature trends

When considering shorter timescales, there is consider-
able variability in global mean temperatures. Figure 4 (top
row) shows distributions of all possible overlapping trends
for 10, 15 and 20 year periods in all the ensembles com-
bined, with decadal trends ranging from —0.5 to over 41 K/
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Fig.3 Warming for a doubling of CO, concentration shown as a
function of the starting CO value for each ensemble member (col-
ours) and ensemble mean (black). The black bar shows the 25-75 and
5-95 % ranges for the standard measure of TCR. It is seen that warm-
ing apparently increases in all ensembles

decade. For example, ~8 % of decades show a cooling trend
and ~1 % of 15-year trends show a cooling, even though
the climate is warming in the long-term. However, the
regional patterns and causes of each cooling period can be
very different (Sutton et al. 2015). The longest period with
a global cooling trend is 24 years in FAMOUS. All trends
are calculated using standard linear regression against time.
The variability in these short-term trends inferred from
the long control simulation (solid black curves) matches
that of the large transient ensembles fairly well, indicating
that lengthy control simulations are of considerable value
in determining the range of possible future climate changes
in this model (also see Deser et al. 2014). However, the
magnitude of the variability decreases slightly over time in
the transient simulations (see Sect. 3.4) suggesting there is
a limit to the assumption of stationary variance.
Interestingly, it is also possible to consider what hap-
pens after a cooling period. The bottom row of Fig. 4
shows the distributions of global mean temperature trends
immediately following periods of the same length that had
a cooling trend. The mean of these distributions are shifted
towards more positive values by between 15 and 25 %,

40001 10yrs 4000 15yrs 4000 20 yrs
7.8% 1.2% 0.1%
@ 3000} (6-2%) so00f (1.3%) 300} (0-2%)
4
w
[
': 2000 2000 2000
—
<
1000 1000 1000
0 0 0
-0.5 0 05 1 -0.5 0 05 1 -0.5 0 0.5 1
150 35
» 10 yrs 15 yrs 7t 20yrs
7 30
3 +25% +15% 61 +21%
< 2
Q100 5 5
]
i 20 4
<
15
* 3
O 50
z 10 2
w
4
= 5 1
0 0 i 0
-05 0 05 1 -05 0 05 1 -0.5 0 0.5 1

Trend [K/decade]

Fig. 4 (Top row) Histograms of 10, 15 and 20-year global tempera-
ture trends in all the ensembles combined. The black lines represent
the normalised distribution from the control simulation with its mean
shifted to match the mean trend of the transient ensembles. The per-
centages indicate the fraction of cooling periods for the ensembles
and (in brackets) inferred from the control simulation. Note that the

Trend [K/decade]

Trend [K/decade]

first 20 years of each member is not included to remove any biasing
effects of initialisation. The bottom row shows similar histograms, but
only selecting trends for periods following cooling episodes of the
same length. The black lines are repeated from the top row with the
normalisation changed to match the number of trends available. The
shift in the mean of the histograms is indicated as a percentage
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Fig. 5 The fraction of simula-

tions that show a cooling trend 20 years

Probability of a cooling trend

30 years 50 years

in the first N years of the four
ensembles, for N = 20, 30 and
50. The average fraction of the
planet’s surface area which
exhibits a cooling trend is also
given

MACRO

MICRO

MINI MICRO 1

MINI MICRO 2

) Fraction; 1%

0.1 0.2

indicating that cooling periods are more likely to be fol-
lowed by higher rates of warming (or ‘surges’), with rel-
evance to the recent observed slowdown in global tempera-
tures. In addition, this shift is not simply due to the removal
of the cooling periods from the distributions, except for
10-year trends where about half of the shift in the mean is
due to this effect.

3.3 Local temperature trends

We next consider local temperature trends in the initial
decades of the experiments, as an idealised analogue of the
coming decades. Figure 5 illustrates the fraction of simula-
tions which exhibit a cooling trend at each grid point over
the first N years, for different values of N. In the MACRO
case, one third or more of the simulations show a cooling
trend over the first 20 years in many regions, especially in
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the extra-tropics. In the MICRO case, the fraction of sim-
ulations is increased over the North Atlantic, Europe and
some of the Southern Ocean and north western Pacific. For
longer trend lengths, the fractions of simulations exhibiting
a cooling trend decreases and the two ensembles converge,
although even over 30 years substantial areas still have sig-
nificant fractions which show cooling.

The two MINI MICRO ensembles demonstrate that
the probability of a cooling trend in any specific region is
highly dependent on the particular ocean initial condition
chosen. All three MICRO ensembles exhibit areas where
more than 50 % of the simulations have a cooling trend
over the first 20, and sometimes 30, years but the spatial
patterns of ensemble behaviour are strikingly different.
By 50 years in, the long term trend is positive almost eve-
rywhere and the few regions where a few simulations are
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negative are similar across the ensembles (also see Bransta-
tor and Teng 2010).

These differences between ensemble types highlight
how a single ocean initial condition (as in each MICRO
case) is not effectively sampling the uncertainty in future
trends. For example, over Europe there is a high chance of
a cooling trend in MICRO and MINI MICRO 2 due to a
decline in the Atlantic Ocean heat transport (see Sect. 3.6),
but in MINI MICRO 1, there is a near zero chance. Thus
a single MICRO ensemble is not representative of the
full uncertainty in the absence of knowledge of the initial
ocean conditions. On the other hand it is representative of
the irreducible uncertainty conditioned on a particular set
of ocean/atmosphere initial conditions, in this model. This
regional case study is explored further in Sect. 3.5 where
we also highlight that the different MICRO ensembles have
different predictability properties.

Howeyver, the ensembles are more consistent in the frac-
tion of the globe which exhibits a cooling. Looking across
all the simulations, a median of 21 % (with a 5-95 % range
of 1243 %) of the globe shows a cooling over the first
20 years, and 10 % (with a 5-95 % range of 4-19 %) over
the first 30 years. No simulation exhibits a warming eve-
rywhere. But, the simulations differ in where the warming
and cooling regions are. This type of quantification may
be of use to help communicate the odds of ‘unexpected’
trends.

3.4 Ensemble spread and variability

We next consider how the ensemble spread changes over
time, and the implications for predictability characteristics
in the future.

The ensemble spread of the MICRO ensemble is ini-
tially smaller than the MACRO case, as expected, but they
converge after a few years for global temperatures, and
after around 20 years for European average temperatures
(Fig. 6a, b) (also see Sect. 3.6 later).

There is therefore a potential initial reduction in ensem-
ble spread and increase in predictive skill of the future
within the model through conditioning on a particular ini-
tial ocean state. Whether some of this potential can be real-
ised for real world predictions depends on the quality of the
simulated climate and is an area of active ongoing research
(Smith et al. 2007; Meehl et al. 2014).

Interestingly, the MINI MICRO 1 ensemble produces
a very different growth of spread than MICRO and MINI
MICRO 2 for Europe, even though they are all only sam-
pling the irreducible initial condition uncertainty. These
differences highlight possible state dependence of regional
predictability - predictability from certain states may be
greater than from others (Griffies and Bryan 1997). Both

(a) GLOBAL (b) EUROPE

0.25

= MICRO MINI MICRO 1
s MACRO MINI MICRO 2
<
T 0.2 |
2 ‘ “M‘ |
& i e P
[0) ““" | “”‘
3 ! [ w,\,’mw
g i
2 0.15
[=
w

0.1 0.3
0 20 40 60 80 100 120 140 O 20 40 60 80 100 120 140
Year Year

(c) Trend in MACRO ensemble spread (years 1-90) [K/decade]

0.2

0.1

Fig. 6 a, b Ensemble spreads (1 standard deviation) of global and
European annual temperatures as a function of time (thin lines),
smoothed with an 11-year running mean (thick lines). ¢ Map of the
trends in MACRO ensemble spread over the first 90 years of the sim-
ulations. The grey box denotes the Europe region used

MINI MICRO ensembles are similar to MICRO for the
global average (not shown).

In addition, the ensemble spread decreases as the climate
warms, at least for the first 100 years. For the global mean,
this reduction is around 10 %, and for Europe it is around
20 %, although there is significant variability in both the
annual and the running mean of the spread. It is also seen
that there is a flattening in the ensemble spread after around
100 years. This change in ensemble spread suggests a cor-
responding decrease in the magnitude of simulated interan-
nual variability [also see Stouffer and Wetherald (2007) and
Holmes et al. (2015)].

The ensemble spread decline is particularly evident in
the North Atlantic, Nordic Seas and Scandinavia (Fig. 6¢),
suggesting that it is due to the sea-ice edge retreating in a
warmer climate (also see Screen 2014). This would also
explain why the reduction in ensemble spread does not
continue indefinitely as the sea-ice retreats further into the
Arctic.

3.5 Regional trends: a European case study

We now examine possible future temperature trends over
Europe in these ensembles. The timeseries of winter (DJF)
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EUROPE DJF TEMPERATURE
MICRO

MINI MICRO 1

Temperature [°C]

MINI MICRO 2
6
! M

0 20 40 60 80
Years

Temperature [°C]

Fig. 7 Timeseries of Europe DJF temperatures in the various ensem-
bles. The ensemble mean is shown in black. The equivalent figure for
JJA is in the Supplementary Information

temperatures are shown in Fig. 7 for the four ensembles.
Note that MACRO undergoes a rather smooth warming in
the ensemble mean, but the different MICRO ensembles
show consistent deviations from a smooth trend in the first
couple of decades. The equivalent temperatures for JJA are
shown in Fig. S1.

We also consider examples of 20 and 50 year projections
of winter (DJF) in Figs. 8 and 9. The equivalent figures for
summer (JJA) are shown in Figs. S2 and S3. Other seasons,
regions and trend lengths can be viewed at an interactive
website,! which includes results for both surface air tem-
perature and precipitation.

The mean spatial trend for the MICRO and MACRO
ensembles differ substantially when considering 20 year
trends (Fig. 8). The MACRO ensemble shows a warm-
ing trend over the whole region. However, in the MICRO
ensemble, there is a general cooling over Europe and much
of the North Atlantic as a consequence of the particular
ocean initial condition chosen. When considering each
grid point independently there is the possibility of a trend
smaller than —0.8 to larger than +0.8 K per decade for most
land areas.

The histograms of trends for the European average tem-
perature illustrate that the MACRO ensemble has a sig-
nificantly wider spread than MICRO (at 99 % confidence
using an f-test), and a mean which is positive, whereas the
MICRO ensemble tends to produce a cooling, as seen in the
maps.

! http://www.climate-lab-book.ac.uk/2013/famous-ensembles/.
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However, the MINI MICRO ensembles clearly highlight
how ocean initial conditions affect the subsequent distribu-
tion. Remarkably, the MINI MICRO 1 ensemble warms far
more on average, and has no members which show a cool-
ing. It also exhibits a distribution which hardly overlaps
with the other MICRO ensembles.

When considering 50 year trends (Fig. 9), the differ-
ences between the ensembles have reduced, and all show a
warming on average, and in all ensemble members (except
one) for the European mean. However, considering grid
points independently, it is still possible to have a cool-
ing over Central and Eastern Europe. Again, the MACRO
ensemble has a larger spread than the MICRO ensembles.
The results for summer (JJA) give similar conclusions
(Figs. S2, S3), but the variability is smaller, resulting in
narrower distributions.

3.6 Regional trends: the role of the ocean state

The temperature timeseries for Europe in DJF (Fig. 7)
show some interesting features. The particular ocean state
chosen as the initial condition in each ensemble is clearly
changing the distribution of the subsequent projections.

An important consequence of the initial ocean state, in
this GCM, is the subsequent development of the Atlantic
meridional overturning circulation (AMOC). Figure 10
shows the annual mean maximum of the AMOC stream-
function for the long FAMOUS control simulation. The
filled circles represent the initial conditions used—green
for the MICRO ensemble, orange and grey for MINI
MICRO 1 and 2 respectively, and blue for the other
MACRO states. We note again that a single realisation from
each of the MICRO ensembles is also included in MACRO.

At first glance, there is nothing unusual about the chosen
MICRO initial condition as the AMOC is relatively neutral.
However, Fig. 11 shows that the vast majority of ensem-
ble members follow a similar subsequent trajectory with an
increase for a few years, followed by a rapid decline. There
is a clear potentially predictable signal in the AMOC and
the time structure matches the behaviour of temperatures
over Europe.

Figure 12 shows the regression pattern between the
AMOC and surface temperatures in the control simulation,
highlighting the potential impact of the ocean on European
temperatures in FAMOUS. In the control simulation, Euro-
pean temperatures change by around 0.17 K/Sv in response
to the AMOC (also see Smith and Gregory 2009). This is in
qualitative agreement with the variations seen in MICRO.

Figure 11 also shows the AMOC evolution for each
MACRO state, reset to start from the same nominal year.
Here the spread in projections is far wider initially, high-
lighting that a range of ocean states has been chosen. The
ensemble spread of the MICRO experiments saturate to
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Fig. 8 Ensemble mean winter
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20 years (top row) for the
MICRO (left) and MACRO
(right) ensembles, along with
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trend at any particular grid-point
across the MICRO ensemble
(second row). The distribution
of trends for the domain average
are shown in the bottom two
rows for all four ensembles. The

mean and standard deviation
of the domain average for each
ensemble is also given. The
equivalent figure for JJA is in
the Supplementary Information
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a similar level to MACRO after around 20-30 years (not
shown), slightly longer than previous studies (Collins et al.
2006; Msadek et al. 2010).

The MINI MICRO 1 ensemble members undergo a rapid
warming initially over Europe, consistent with the low state
of the AMOC in the initial condition although the AMOC
control timeseries does not reflect this (Figs. 10 and 11).
It is not clear why MINI MICRO 1 has a high ensemble
spread over Europe in the first few years (Fig. 6). In MINI
MICRO 2, a similar situation to MICRO is seen, with an
initial warming and subsequent cooling, also consistent
with the AMOC initial state and evolution (Fig. 11).

The different behaviour of the ensembles over Europe are
clearly related to the particular ocean initial condition in a
complex fashion, highlighting the need to sample a wide range
of ocean states to ensure a representative future ensemble.

MINI MICRO 2 Trends [K/decade]

3.7 Signal-to-noise in future trends

The issues of signal-to-noise in future temperature trends in
this ensemble are summarised in Fig. 13. The mean signal
(solid) and ensemble spread (dashed) are compared for two
seasons (DJF & JJA) and two spatial averages (global &
Europe).

The signal of the trend is larger than the ensemble
spread for 20 year trends in global average temperature
(top row)—i.e. where the dashed and solid lines cross,
termed ‘emergence’. For Europe (middle row), this signal
emergence time is later, at around 20-35 year trend length
depending on the ensemble.

The ensemble spread declines as the period lengthens
and the MACRO ensemble (blue) shows larger spreads than
the MICRO ensemble (green) for all trend lengths in both

@ Springer



E. Hawkins et al.

Fig. 9 As Fig. 8 but for trends
over the first 50 years. Note
change of y-axis scales for the
histograms. The equivalent fig-
ure for JJA is in the Supplemen-
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seasons and both spatial averages. But, for trend lengths
larger than around 40 years the differences are negligible.
For shorter trends, the ocean initial conditions play a key
role in determining the spread in future trends.

For precipitation, Fig. 13 (bottom row) demonstrates
that the emergence times are generally later, except for
DIJF in MICRO, which is at a similar time to temperature.
For European JJA rainfall, the signal remains smaller than
the variability, even when considering trends of 90 years
length.

Interestingly, the spreads in MICRO and MACRO do not
completely converge, even for multi-decadal trend lengths,
especially in DJF European temperature and precipitation.
This suggests some memory of the initial conditions for an
extended period.
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4 Summary and discussion

We have performed four large initial condition ensembles
of climate change simulations with the FAMOUS AOGCM
to examine issues of state-dependent predictability in the
context of irreducible uncertainty. Our main findings are:

1. The presence of initial condition uncertainty and non-
linearity produces significant irreducible uncertainty in
future regional climate changes. For trends of 20 years,
the climate change signal rarely emerges from the
noise of internal variability in FAMOUS. Uncertainty
in future trends of temperature and precipitation reduce
for longer trends as the initial condition uncertainty
saturates.
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Fig. 10 The annual maximum Atlantic meridional overturning cir-
culation (AMOC) strength for the FAMOUS control simulation.
The filled circles represent the initial conditions for MICRO (green),
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& all colours). The MACRO dates were chosen simply from the
availability of initial condition data files
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Fig. 11 The annual maximum Atlantic meridional overturning circu-
lation strength for the control simulation (black) and the first 30 years
of each ensemble (colours, panels as labelled)

2. An ensemble of different ocean states produces a wider
spread in regional climate changes for a few decades,
when compared with ensembles of different atmos-
pheric states only.

3. Variability in the control simulation in this model is
representative of the spread of possible trends for the
near-term. However, large ensembles are required to
estimate the expected changes over time.

Regression of AMOC and temperature [K/Sv]
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Fig. 12 Regression between the AMOC and annual mean surface air
temperature in the FAMOUS control simulation
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Fig. 13 Signal-to-noise in future trends. Comparing the mean trend
(grey) with the ensemble spread in the trend (black) for the MACRO
(solid) and MICRO (dashed) ensembles for different seasons, regions
and climate variable as labelled

4. There is an initial ocean state dependence of near-term
climate trends. In FAMOUS, the initial state of the
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AMOC has a clear impact on subsequent temperature
distributions over Europe.

5. Surface temperature ensemble spread decreases in a
warmer climate, especially in the northern extra-trop-
ics, suggesting a decline in the amplitude of internal
variability in future.

6. Cooling periods in global mean surface temperature
tend to be followed by more rapid warming periods in
FAMOUS, suggesting that the recent slowdown may
be followed by a warming ‘surge’.

7. The warming for a further doubling of CO, concentra-
tion increases as time passes under the 1 %/year CO;
scenario in FAMOUS.

We stress again that the variability in FAMOUS appears
larger than in the real world (Fig. 1), and so the precise
numerical values for ensemble spreads and signal-to-noise
cannot be directly related to reality. However, we consider
the model to be qualitatively reliable to examine the effects
of different types of initial condition perturbation. The
results provide additional evidence that large ensembles of
simulations with complex climate models are required to
sample plausible near-term climate, and should be consid-
ered more widely (Kay et al. 2015). In addition, the aver-
age of a large ensemble provides a more robust estimate of
mean projected changes than a small ensemble or single
member. Such large ensemble studies have implications for
the various types of ensembles produced to inform about
future climate, and raise challenging questions regarding
how such ensembles should be designed and interpreted.

Ensembles which explore a range of different macro
initial conditions, addressed in this work through differ-
ent ocean states, are essential to get an idea of the conse-
quences of initial condition uncertainty and the range of
plausible future behaviour within a model under changing
forcing conditions. However, it is difficult to see how a
completely representative sample of ocean states (or macro
initial conditions more generally) could be generated. For
example, selecting different AMOC states is important for
Europe, but not elsewhere. In addition, different modes of
variability may interact, increasing the dimensonality of
producing initial conditions. In practical terms, a large set
of transient simulations started in the nineteenth century
would produce a range of outcomes which samples from
the full distribution, but the resulting ensemble statistics
cannot necessarily be interpreted as true probabilities. Such
ensembles are likely to provide a lower bound [or ‘non-dis-
countable envelope’, Stainforth et al. (2007b)] of responses
within a given model.

This is in contrast to the irreducible uncertainty associ-
ated with initial condition uncertainty at the smallest scales,
in this case tiny changes to SST at a single grid point.
Here an ensemble can be interpreted as providing future
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probability distributions conditioned on the model structure
and the ‘large scale’ initial conditions, allowing for some
small uncertainty in the finest details. This situation is more
like the experimental initialised decadal forecasts which are
now being produced Smith et al. (2013). In addition, the
original Deser et al. (2012b) large ensemble was a micro
ensemble, with each member starting from an identical
ocean state in the year 2005 to analyse near-term projec-
tions. According to our experiments with the FAMOUS
AOGCM, this approach would underestimate the spread in
future projections.

To more fully understand the behaviour of the model
requires a ‘micro’ ensemble for each ocean state explored
so that differences in the distributions can be quantified.
For example, the three MICRO distributions in Fig. 8 are
obviously different, but to better examine how they are dif-
ferent requires larger initial condition ensembles than are
presented here. The ‘gold standard’ to understand the phys-
ical behaviour of a model would therefore be large micro
initial condition ensembles for a range of different macro
initial condition variations.

The results presented also highlight the potential benefit
to near-term climate forecasts from appropriately constrain-
ing the macro ocean initial conditions with observations.
Furthermore, if the evolution of the AMOC is predictable
then some of the resulting regional temperature variability
over Europe may also be predictable.
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