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which every location can exhibit either strong cooling or rapid 
warming. However, the details of the distribution are highly 
sensitive to the ocean initial condition chosen and particularly 
the state of the Atlantic meridional overturning circulation. On 
longer timescales, the warming signal becomes more clear and 
consistent amongst different initial condition ensembles. An 
ensemble using a range of different oceanic initial conditions 
produces a larger spread in temperature trends than ensembles 
using a single ocean initial condition for all lead times. This 
highlights the potential benefits from initialising climate pre-
dictions from ocean states informed by observations. These 
results suggest that climate projections need to be performed 
with many more ensemble members than at present, using a 
range of ocean initial conditions, if the uncertainty in near-
term regional climate is to be adequately quantified.

Keywords  Ensembles · Projections · Initial conditions · 
Uncertainty

1  Introduction

Predictions of regional climatic changes during the next 
few decades are sought by decision makers. The use of cli-
mate models to guide scientific research on such predictions 
requires an acceptance that their non-linear nature generates 
irreducible uncertainty. To understand a model’s behaviour 
in response to rising greenhouse gas concentrations, there-
fore requires a probabilistic quantification of outcomes.

On regional spatial scales it has been argued that inter-
nal climate variability and model uncertainty dominate 
scenario uncertainty for near term temperatures (Hawkins 
and Sutton 2009). A key question is determining the size of 
the internal variability when compared to other sources of 
uncertainty and the magnitude of the expected change from 
causes other than internal climate fluctuations.

Abstract  Model simulations of the next few decades are 
widely used in assessments of climate change impacts and 
as guidance for adaptation. Their non-linear nature reveals a 
level of irreducible uncertainty which it is important to under-
stand and quantify, especially for projections of near-term 
regional climate. Here we use large idealised initial condition 
ensembles of the FAMOUS global climate model with a 1 %/
year compound increase in CO2 levels to quantify the range 
of future temperatures in model-based projections. These 
simulations explore the role of both atmospheric and oceanic 
initial conditions and are the largest such ensembles to date. 
Short-term simulated trends in global temperature are diverse, 
and cooling periods are more likely to be followed by larger 
warming rates. The spatial pattern of near-term temperature 
change varies considerably, but the proportion of the surface 
showing a warming is more consistent. In addition, ensem-
ble spread in inter-annual temperature declines as the climate 
warms, especially in the North Atlantic. Over Europe, atmos-
pheric initial condition uncertainty can, for certain ocean ini-
tial conditions, lead to 20 year trends in winter and summer in 
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This question has previously been addressed by con-
sidering large ensembles of climate projections with a sin-
gle climate model and a single future emissions trajectory 
(Selten et al. 2004; Sterl et al. 2008; Deser et al. 2012a, b; 
Kay et al. 2015). In these ensembles, multiple projections 
are simulated from a single ocean initial condition with 
many different atmospheric states to examine the magni-
tude of uncertainty associated with the non-linear nature 
of the atmosphere. It has also been suggested that some of 
the apparent model diversity may simply be due to internal 
variability (Deser et al. 2014).

In Deser et al. (2012b), each simulation warms by over 
2  K in the first 50  years in the global average. However, 
the uncertainty in near-term regional climate trends can 
be substantial when compared to the size of the signal of 
change. For example, with 40 simulations it was possible to 
simulate both a 3 K warming and even a small cooling for 
winter (DJF) in Seattle, USA over the next 50 years, with 
the difference solely due to changes in the atmospheric 
initial conditions (Deser et al. 2012b). For winter precipi-
tation, the ensemble ranged from a –25 to +25 % change 
over 50 years. The conclusion was that this uncertainty is 
essentially irreducible. This is an extreme example, and the 
caveat to this conclusion is that the simulated variability 
and the sensitivity of the response to initial conditions, may 
not be similar to the real world. However, there is a diverse 
range of simulated variability amongst climate models 
(Hawkins and Sutton 2012; Knutson et al. 2013), and given 
the relatively short observational record and complications 
in separating the internal variability from a forced trend, it 
is difficult to obtain a reliable estimate of climate variabil-
ity from existing observations, especially on decadal time-
scales. In addition, different GCMs have varying predicta-
bility characteristics, particularly the timescales of memory 
(Collins et al. 2006; Branstator et al. 2012).

The large initial condition ensemble approach is in 
sharp contrast to the more usual climate projections which 
often use a single simulation (and at most ten ensemble 
members) for each climate model for multiple emission 
scenarios (Stocker et  al. 2013). Computational resources 
and model complexity have restricted assessment of the 
implications of ensemble size in global climate models but 
analysis of a low-dimensional non-linear model suggests 
that ensembles of significantly more than 100 members 
are required to make confident statements at the 5 or 95 % 
level (Daron and Stainforth 2013). Although the number 
of ensemble members required will depend on the signal-
to-noise characteristics of the variable considered, the 
quantities considered by Daron and Stainforth (2013) had 
relatively long timescales and are broadly representative of 
large scale ocean variables.

Several open questions remain which have particu-
lar relevance to the design of future ensembles of climate 

projections. Are these findings of significant irreduc-
ible uncertainty replicated in other climate models? Does 
uncertainty in oceanic initial conditions produce similar 
magnitudes and characteristics of response uncertainty? 
What is the shape of the irreducible uncertainty (i.e. are the 
distributions non-Gaussian)? And is this dependent on oce-
anic initial conditions? How large an ensemble is required 
to quantify these types of uncertainty?

In this study we utilise a fast atmosphere-ocean coupled 
general circulation model (AOGCM) to perform larger 
ensembles than have previously been possible, although at 
a lower resolution and complexity. Section 2 describes the 
FAMOUS AOGCM and the ensemble design. The relative 
role of atmospheric and oceanic initial conditions in pro-
ducing uncertainty is explored and illustrated in Sect. 3. We 
summarise in Sect. 4.

2 � Large initial condition ensembles 
with FAMOUS

To examine the role of internal variability in near-term 
climate projections we analyse a 1200-year pre-indus-
trial control simulation and four large ensembles with the 
FAMOUS AOGCM.

2.1 � The FAMOUS AOGCM

FAMOUS is a lower resolution and retuned version of the 
third Met Office Hadley Centre AOGCM (HadCM3; Gor-
don et al. (2000)), and has an atmospheric component with 
a horizontal resolution of 5◦ × 7.5

◦, with 11 vertical lev-
els. The ocean component has a horizontal resolution of 
2.5

◦
× 3.75

◦, with 20 vertical levels. No flux adjustments 
are used. The coarse resolution and fast computational 
speed of FAMOUS allows simulations to be performed at 
over 100 model years per wall-clock day, making it ideal 
for lengthy simulations and large ensembles. The version of 
FAMOUS used is xfxwb, described in Smith et al. (2008) 
and updated in Smith (2012).

In the control simulation, the standard deviation of 
global annual mean surface air temperature is 0.18K (with 
a range of 0.14–0.21  K for different 164  year segments), 
which is larger than all of the state-of-the-art CMIP5 mod-
els (range 0.06–0.15  K). A crude estimate from observa-
tions is 0.12K, obtained by removing a 4th order poly-
nomial fit to the HadCRUT4 global temperature dataset 
(Morice et al. 2012) for 1850–2013. However, the pattern 
and autocorrelation characteristics of the variability are 
also important for assessing the realism of the simulations. 
For example, the CMIP5 GCMs show a diversity in the 
simulated patterns and amplitude of variability on regional 
scales (Hawkins and Sutton 2012; Knutson et al. 2013).
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Interannual temperature variability in the FAMOUS 
control simulation shows a similar geographical pattern to, 
but with a much larger amplitude than, an observational 
estimate from ERA-40 (Fig. 1, for 1958–2001 after linear 
detrending) (Uppala et  al. 2005). Although this has large 
implications for any comparison of these simulations with 
the real world, and is a caveat on the results, the speed of 
FAMOUS makes it a good test-bed to explore the role of 
variability and how to design ensembles to sample initial 
condition uncertainty.

2.2 � Ensemble design

All the simulations assume an idealised 1  %/year com-
pound increase in CO2 from pre-industrial levels until year 
140, when a quadrupling of CO2 is reached.

Using terminology first suggested by Stainforth et  al. 
(2007a), two separate ensembles were initially produced:

1.	 MACRO—30 different coupled initial conditions are 
chosen from well separated start dates in the long con-
trol run

2.	 MICRO—a single coupled initial condition from 
MACRO is chosen, and 100 ensemble members are 
produced, each with a O(10−3)K perturbation to sea 
surface temperature (SST) in a single, randomly cho-
sen ocean grid point

The chosen start dates are indicated later in Fig.  10. 
The MICRO ensemble therefore samples the uncertainty 
in future model climate only due to the non-linear nature 
of its climate system (i.e. the irreducible uncertainty), 
whereas the MACRO ensemble samples the uncertainty 
due to both its non-linear nature and initial condition differ-
ences in large scale aspects of the atmosphere and ocean. A 
component of this uncertainty may be reducible due to the 

memory in the initial conditions (Griffies and Bryan 1997; 
Smith et al. 2007). MACRO is therefore designed to better 
sample the uncertainty in an uninitialised framework, and 
MICRO samples the uncertainty contingent on the particu-
lar initial conditions chosen.

After preliminary analysis, two further ensembles were 
produced:

3.	 and 4. MINI MICRO 1 and 2—each of these ensembles 
has 50 members and, like MICRO, are run from differ-
ent coupled initial conditions, chosen from MACRO

The two initial conditions for MINI MICRO, which are 
only 20  years apart in the control run (see Fig.  10 later), 
were chosen because the corresponding MACRO mem-
bers produced very different outcomes for the subsequent 
30 years for European climate. These additional ensembles 
enable the sensitivity to the particular ocean initial condition 
to be assessed in terms of the irreducible response uncer-
tainty resulting from uncertainty at the smallest scales.

In total, 33,400 simulated years have been analysed. 
The key issue that will be addressed with these ensembles 
is determining the size of the irreducible uncertainty in 
near-term climate projections. Other questions will be con-
sidered, such as: (1) what is the range of possible tempera-
ture trends? (2) how important is the oceanic initial state in 
near-term climate projections? (3) how long before the sig-
nal of climate change emerges from the internal variability? 
(4) how should future ensembles of near-term projections 
be designed?

3 � The role of the initial conditions

We explore the variability within the transient ensembles 
using surface temperatures globally, and then illustrate the 

Fig. 1   Inter-annual variability 
(standard deviation, in K) of 
near-surface temperature in 
ERA-40 (linearly detrended, 
left) and the FAMOUS control 
simulation (right)

ERA−40
INTERANNUAL VARIABILITY

FAMOUS

K0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
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magnitude of the irreducible uncertainty and consequences 
for regional near-term temperatures and precipitation with 
a case study over Europe.

3.1 � Transient climate reponse

It has recently been suggested (Liang et al. 2013) that the 
initial conditions may be a significant source of uncertainty 
in estimating the global temperature change at the time of 
CO2 doubling, or transient climate response (TCR). The 
primary reason for the uncertainty identified by Liang et al. 
(2013) was that the spin-up or drift in the GCM considered 
would produce different estimates of TCR for well-spaced 
initial conditions. However, it is also possible that the TCR 
could vary depending on the initial condition in a well 
spun-up GCM, such as FAMOUS.

We estimate TCR in each FAMOUS simulation using 
the global mean surface temperature in years 61–80, minus 
the mean of the entire pre-industrial control simulation. 
The four FAMOUS ensembles show that the spread (which 
we take to be one standard deviation throughout) in esti-
mates of TCR is between 0.06 and 0.08 K, with a minimum 
to maximum range of 2.25–2.64 K (Fig. 2). The standard 
deviation of 20-year means in global temperature in the 
FAMOUS control simulation is also 0.08  K, suggesting 
that the ensembles are effectively sampling the same inter-
nal variability but around the point of CO2 doubling and 
that the transient response itself does not add additional 
uncertainty.

In the CMIP5 ensemble, the estimated TCR ranges from 
1.1 to 2.5  K (Forster et  al. 2013). FAMOUS is clearly a 
high sensitivity GCM, but the relatively small initial condi-
tion uncertainty suggests that the spread in CMIP5 GCM 
estimates is dominated by model diversity. In addition, 
these results suggest that uncertainty in TCR estimates 

using control simulation variability may provide a good 
first estimate if only small ensembles are available. Such an 
approach would, however, substantially reduce the likeli-
hood of identifying non-linear, model-dependent feedbacks 
which could affect the TCR in different models. Ensem-
ble sizes should in any case be sufficiently large to make a 
good estimate of the mean.

In all four FAMOUS ensembles, the warming is greater 
for later initial states, which are characterised by their start-
ing CO2 concentration in Fig. 3. This effect is commonly 
observed in CMIP3 and CMIP5 AOGCMs (Gregory and 
Forster 2008; Gregory et al. in press). The main reason is 
likely to be the decrease in efficiency of heat loss from the 
upper ocean to deeper layers as the latter become warmer, 
and is related to the cold-start effect (e.g. Keen and Murphy 
1997) and the long-term commitment to surface warming 
after forcing is stabilised (as discussed by Gregory et al. in 
press). It does not imply a dependence of ocean heat uptake 
processes on the state of the climate. However, non-linear 
behaviours may also enhance the warming under succes-
sive doublings, for instance due to decrease in the global 
climate feedback parameter (Gregory et  al. in press) and 
various regional phenomena (Good et  al. 2015). Because 
the warming per unit increase in CO2 in forcing tends to 
increase, its value inferred from historical observations 
might underestimate the future response (Gregory and For-
ster 2008).

3.2 � Global temperature trends

When considering shorter timescales, there is consider-
able variability in global mean temperatures. Figure 4 (top 
row) shows distributions of all possible overlapping trends 
for 10, 15 and 20 year periods in all the ensembles com-
bined, with decadal trends ranging from –0.5 to over +1 K/
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perature in the pre-industrial control simulation, for the four ensembles
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decade. For example, ~8 % of decades show a cooling trend 
and ~1  % of 15-year trends show a cooling, even though 
the climate is warming in the long-term. However, the 
regional patterns and causes of each cooling period can be 
very different (Sutton et al. 2015). The longest period with 
a global cooling trend is 24 years in FAMOUS. All trends 
are calculated using standard linear regression against time.

The variability in these short-term trends inferred from 
the long control simulation (solid black curves) matches 
that of the large transient ensembles fairly well, indicating 
that lengthy control simulations are of considerable value 
in determining the range of possible future climate changes 
in this model (also see Deser et  al. 2014). However, the 
magnitude of the variability decreases slightly over time in 
the transient simulations (see Sect. 3.4) suggesting there is 
a limit to the assumption of stationary variance.

Interestingly, it is also possible to consider what hap-
pens after a cooling period. The bottom row of Fig.  4 
shows the distributions of global mean temperature trends 
immediately following periods of the same length that had 
a cooling trend. The mean of these distributions are shifted 
towards more positive values by between 15 and 25  %, 
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Fig. 4   (Top row) Histograms of 10, 15 and 20-year global tempera-
ture trends in all the ensembles combined. The black lines represent 
the normalised distribution from the control simulation with its mean 
shifted to match the mean trend of the transient ensembles. The per-
centages indicate the fraction of cooling periods for the ensembles 
and (in brackets) inferred from the control simulation. Note that the 

first 20 years of each member is not included to remove any biasing 
effects of initialisation. The bottom row shows similar histograms, but 
only selecting trends for periods following cooling episodes of the 
same length. The black lines are repeated from the top row with the 
normalisation changed to match the number of trends available. The 
shift in the mean of the histograms is indicated as a percentage
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indicating that cooling periods are more likely to be fol-
lowed by higher rates of warming (or ‘surges’), with rel-
evance to the recent observed slowdown in global tempera-
tures. In addition, this shift is not simply due to the removal 
of the cooling periods from the distributions, except for 
10-year trends where about half of the shift in the mean is 
due to this effect.

3.3 � Local temperature trends

We next consider local temperature trends in the initial 
decades of the experiments, as an idealised analogue of the 
coming decades. Figure 5 illustrates the fraction of simula-
tions which exhibit a cooling trend at each grid point over 
the first N years, for different values of N. In the MACRO 
case, one third or more of the simulations show a cooling 
trend over the first 20 years in many regions, especially in 

the extra-tropics. In the MICRO case, the fraction of sim-
ulations is increased over the North Atlantic, Europe and 
some of the Southern Ocean and north western Pacific. For 
longer trend lengths, the fractions of simulations exhibiting 
a cooling trend decreases and the two ensembles converge, 
although even over 30 years substantial areas still have sig-
nificant fractions which show cooling.

The two MINI MICRO ensembles demonstrate that 
the probability of a cooling trend in any specific region is 
highly dependent on the particular ocean initial condition 
chosen. All three MICRO ensembles exhibit areas where 
more than 50  % of the simulations have a cooling trend 
over the first 20, and sometimes 30, years but the spatial 
patterns of ensemble behaviour are strikingly different. 
By 50 years in, the long term trend is positive almost eve-
rywhere and the few regions where a few simulations are 

Fig. 5   The fraction of simula-
tions that show a cooling trend 
in the first N years of the four 
ensembles, for N = 20, 30 and 
50. The average fraction of the 
planet’s surface area which 
exhibits a cooling trend is also 
given

Fraction: 25%

M
IC

R
O

Fraction: 12% Fraction: 1%

20 years

Fraction: 19%

M
A

C
R

O

30 years

Fraction: 8%

50 years

Fraction: 1%

Fraction: 20%

M
IN

I M
IC

R
O

 1

Fraction: 9% Fraction: 2%

Fraction: 28%

M
IN

I M
IC

R
O

 2

Fraction: 13%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability of a cooling trend

Fraction: 1%



Irreducible uncertainty in near-term climate projections

1 3

negative are similar across the ensembles (also see Bransta-
tor and Teng 2010).

These differences between ensemble types highlight 
how a single ocean initial condition (as in each MICRO 
case) is not effectively sampling the uncertainty in future 
trends. For example, over Europe there is a high chance of 
a cooling trend in MICRO and MINI MICRO 2 due to a 
decline in the Atlantic Ocean heat transport (see Sect. 3.6), 
but in MINI MICRO 1, there is a near zero chance. Thus 
a single MICRO ensemble is not representative of the 
full uncertainty in the absence of knowledge of the initial 
ocean conditions. On the other hand it is representative of 
the irreducible uncertainty conditioned on a particular set 
of ocean/atmosphere initial conditions, in this model. This 
regional case study is explored further in Sect.  3.5 where 
we also highlight that the different MICRO ensembles have 
different predictability properties.

However, the ensembles are more consistent in the frac-
tion of the globe which exhibits a cooling. Looking across 
all the simulations, a median of 21% (with a 5–95 % range 
of 12–43  %) of the globe shows a cooling over the first 
20 years, and 10% (with a 5–95 % range of 4–19 %) over 
the first 30  years. No simulation exhibits a warming eve-
rywhere. But, the simulations differ in where the warming 
and cooling regions are. This type of quantification may 
be of use to help communicate the odds of ‘unexpected’ 
trends.

3.4 � Ensemble spread and variability

We next consider how the ensemble spread changes over 
time, and the implications for predictability characteristics 
in the future.

The ensemble spread of the MICRO ensemble is ini-
tially smaller than the MACRO case, as expected, but they 
converge after a few years for global temperatures, and 
after around 20  years for European average temperatures 
(Fig. 6a, b) (also see Sect. 3.6 later).

There is therefore a potential initial reduction in ensem-
ble spread and increase in predictive skill of the future 
within the model through conditioning on a particular ini-
tial ocean state. Whether some of this potential can be real-
ised for real world predictions depends on the quality of the 
simulated climate and is an area of active ongoing research 
(Smith et al. 2007; Meehl et al. 2014).

Interestingly, the MINI MICRO 1 ensemble produces 
a very different growth of spread than MICRO and MINI 
MICRO 2 for Europe, even though they are all only sam-
pling the irreducible initial condition uncertainty. These 
differences highlight possible state dependence of regional 
predictability - predictability from certain states may be 
greater than from others (Griffies and Bryan 1997). Both 

MINI MICRO ensembles are similar to MICRO for the 
global average (not shown).

In addition, the ensemble spread decreases as the climate 
warms, at least for the first 100 years. For the global mean, 
this reduction is around 10%, and for Europe it is around 
20%, although there is significant variability in both the 
annual and the running mean of the spread. It is also seen 
that there is a flattening in the ensemble spread after around 
100 years. This change in ensemble spread suggests a cor-
responding decrease in the magnitude of simulated interan-
nual variability [also see Stouffer and Wetherald (2007) and 
Holmes et al. (2015)].

The ensemble spread decline is particularly evident in 
the North Atlantic, Nordic Seas and Scandinavia (Fig. 6c), 
suggesting that it is due to the sea-ice edge retreating in a 
warmer climate (also see Screen 2014). This would also 
explain why the reduction in ensemble spread does not 
continue indefinitely as the sea-ice retreats further into the 
Arctic.

3.5 � Regional trends: a European case study

We now examine possible future temperature trends over 
Europe in these ensembles. The timeseries of winter (DJF) 
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temperatures are shown in Fig.  7 for the four ensembles. 
Note that MACRO undergoes a rather smooth warming in 
the ensemble mean, but the different MICRO ensembles 
show consistent deviations from a smooth trend in the first 
couple of decades. The equivalent temperatures for JJA are 
shown in Fig. S1.

We also consider examples of 20 and 50 year projections 
of winter (DJF) in Figs. 8 and 9. The equivalent figures for 
summer (JJA) are shown in Figs. S2 and S3. Other seasons, 
regions and trend lengths can be viewed at an interactive 
website,1 which includes results for both surface air tem-
perature and precipitation.

The mean spatial trend for the MICRO and MACRO 
ensembles differ substantially when considering 20  year 
trends (Fig.  8). The MACRO ensemble shows a warm-
ing trend over the whole region. However, in the MICRO 
ensemble, there is a general cooling over Europe and much 
of the North Atlantic as a consequence of the particular 
ocean initial condition chosen. When considering each 
grid point independently there is the possibility of a trend 
smaller than –0.8 to larger than +0.8 K per decade for most 
land areas.

The histograms of trends for the European average tem-
perature illustrate that the MACRO ensemble has a sig-
nificantly wider spread than MICRO (at 99 % confidence 
using an f-test), and a mean which is positive, whereas the 
MICRO ensemble tends to produce a cooling, as seen in the 
maps.

1  http://www.climate-lab-book.ac.uk/2013/famous-ensembles/.

However, the MINI MICRO ensembles clearly highlight 
how ocean initial conditions affect the subsequent distribu-
tion. Remarkably, the MINI MICRO 1 ensemble warms far 
more on average, and has no members which show a cool-
ing. It also exhibits a distribution which hardly overlaps 
with the other MICRO ensembles.

When considering 50  year trends (Fig.  9), the differ-
ences between the ensembles have reduced, and all show a 
warming on average, and in all ensemble members (except 
one) for the European mean. However, considering grid 
points independently, it is still possible to have a cool-
ing over Central and Eastern Europe. Again, the MACRO 
ensemble has a larger spread than the MICRO ensembles. 
The results for summer (JJA) give similar conclusions 
(Figs. S2, S3), but the variability is smaller, resulting in 
narrower distributions.

3.6 � Regional trends: the role of the ocean state

The temperature timeseries for Europe in DJF (Fig.  7) 
show some interesting features. The particular ocean state 
chosen as the initial condition in each ensemble is clearly 
changing the distribution of the subsequent projections.

An important consequence of the initial ocean state, in 
this GCM, is the subsequent development of the Atlantic 
meridional overturning circulation (AMOC). Figure  10 
shows the annual mean maximum of the AMOC stream-
function for the long FAMOUS control simulation. The 
filled circles represent the initial conditions used—green 
for the MICRO ensemble, orange and grey for MINI 
MICRO 1 and 2 respectively, and blue for the other 
MACRO states. We note again that a single realisation from 
each of the MICRO ensembles is also included in MACRO.

At first glance, there is nothing unusual about the chosen 
MICRO initial condition as the AMOC is relatively neutral. 
However, Fig.  11 shows that the vast majority of ensem-
ble members follow a similar subsequent trajectory with an 
increase for a few years, followed by a rapid decline. There 
is a clear potentially predictable signal in the AMOC and 
the time structure matches the behaviour of temperatures 
over Europe.

Figure  12 shows the regression pattern between the 
AMOC and surface temperatures in the control simulation, 
highlighting the potential impact of the ocean on European 
temperatures in FAMOUS. In the control simulation, Euro-
pean temperatures change by around 0.17 K/Sv in response 
to the AMOC (also see Smith and Gregory 2009). This is in 
qualitative agreement with the variations seen in MICRO.

Figure  11 also shows the AMOC evolution for each 
MACRO state, reset to start from the same nominal year. 
Here the spread in projections is far wider initially, high-
lighting that a range of ocean states has been chosen. The 
ensemble spread of the MICRO experiments saturate to 
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a similar level to MACRO after around 20–30  years (not 
shown), slightly longer than previous studies (Collins et al. 
2006; Msadek et al. 2010).

The MINI MICRO 1 ensemble members undergo a rapid 
warming initially over Europe, consistent with the low state 
of the AMOC in the initial condition although the AMOC 
control timeseries does not reflect this (Figs.  10 and 11). 
It is not clear why MINI MICRO 1 has a high ensemble 
spread over Europe in the first few years (Fig. 6). In MINI 
MICRO 2, a similar situation to MICRO is seen, with an 
initial warming and subsequent cooling, also consistent 
with the AMOC initial state and evolution (Fig. 11).

The different behaviour of the ensembles over Europe are 
clearly related to the particular ocean initial condition in a 
complex fashion, highlighting the need to sample a wide range 
of ocean states to ensure a representative future ensemble.

3.7 � Signal‑to‑noise in future trends

The issues of signal-to-noise in future temperature trends in 
this ensemble are summarised in Fig. 13. The mean signal 
(solid) and ensemble spread (dashed) are compared for two 
seasons (DJF & JJA) and two spatial averages (global & 
Europe).

The signal of the trend is larger than the ensemble 
spread for 20  year trends in global average temperature 
(top row)—i.e. where the dashed and solid lines cross, 
termed ‘emergence’. For Europe (middle row), this signal 
emergence time is later, at around 20–35 year trend length 
depending on the ensemble.

The ensemble spread declines as the period lengthens 
and the MACRO ensemble (blue) shows larger spreads than 
the MICRO ensemble (green) for all trend lengths in both 

Fig. 8   Ensemble mean winter 
(DJF) trends over the first 
20 years (top row) for the 
MICRO (left) and MACRO 
(right) ensembles, along with 
the maximum and minimum 
trend at any particular grid-point 
across the MICRO ensemble 
(second row). The distribution 
of trends for the domain average 
are shown in the bottom two 
rows for all four ensembles. The 
mean and standard deviation 
of the domain average for each 
ensemble is also given. The 
equivalent figure for JJA is in 
the Supplementary Information
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seasons and both spatial averages. But, for trend lengths 
larger than around 40 years the differences are negligible. 
For shorter trends, the ocean initial conditions play a key 
role in determining the spread in future trends.

For precipitation, Fig.  13 (bottom row) demonstrates 
that the emergence times are generally later, except for 
DJF in MICRO, which is at a similar time to temperature. 
For European JJA rainfall, the signal remains smaller than 
the variability, even when considering trends of 90  years 
length.

Interestingly, the spreads in MICRO and MACRO do not 
completely converge, even for multi-decadal trend lengths, 
especially in DJF European temperature and precipitation. 
This suggests some memory of the initial conditions for an 
extended period.

4 � Summary and discussion

We have performed four large initial condition ensembles 
of climate change simulations with the FAMOUS AOGCM 
to examine issues of state-dependent predictability in the 
context of irreducible uncertainty. Our main findings are:

1.	 The presence of initial condition uncertainty and non-
linearity produces significant irreducible uncertainty in 
future regional climate changes. For trends of 20 years, 
the climate change signal rarely emerges from the 
noise of internal variability in FAMOUS. Uncertainty 
in future trends of temperature and precipitation reduce 
for longer trends as the initial condition uncertainty 
saturates.

Fig. 9   As Fig. 8 but for trends 
over the first 50 years. Note 
change of y-axis scales for the 
histograms. The equivalent fig-
ure for JJA is in the Supplemen-
tary Information
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2.	 An ensemble of different ocean states produces a wider 
spread in regional climate changes for a few decades, 
when compared with ensembles of different atmos-
pheric states only.

3.	 Variability in the control simulation in this model is 
representative of the spread of possible trends for the 
near-term. However, large ensembles are required to 
estimate the expected changes over time. 4.	 There is an initial ocean state dependence of near-term 

climate trends. In FAMOUS, the initial state of the 
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AMOC has a clear impact on subsequent temperature 
distributions over Europe.

5.	 Surface temperature ensemble spread decreases in a 
warmer climate, especially in the northern extra-trop-
ics, suggesting a decline in the amplitude of internal 
variability in future.

6.	 Cooling periods in global mean surface temperature 
tend to be followed by more rapid warming periods in 
FAMOUS, suggesting that the recent slowdown may 
be followed by a warming ‘surge’.

7.	 The warming for a further doubling of CO2 concentra-
tion increases as time passes under the 1 %/year CO2 
scenario in FAMOUS.

We stress again that the variability in FAMOUS appears 
larger than in the real world (Fig.  1), and so the precise 
numerical values for ensemble spreads and signal-to-noise 
cannot be directly related to reality. However, we consider 
the model to be qualitatively reliable to examine the effects 
of different types of initial condition perturbation. The 
results provide additional evidence that large ensembles of 
simulations with complex climate models are required to 
sample plausible near-term climate, and should be consid-
ered more widely (Kay et al. 2015). In addition, the aver-
age of a large ensemble provides a more robust estimate of 
mean projected changes than a small ensemble or single 
member. Such large ensemble studies have implications for 
the various types of ensembles produced to inform about 
future climate, and raise challenging questions regarding 
how such ensembles should be designed and interpreted.

Ensembles which explore a range of different macro 
initial conditions, addressed in this work through differ-
ent ocean states, are essential to get an idea of the conse-
quences of initial condition uncertainty and the range of 
plausible future behaviour within a model under changing 
forcing conditions. However, it is difficult to see how a 
completely representative sample of ocean states (or macro 
initial conditions more generally) could be generated. For 
example, selecting different AMOC states is important for 
Europe, but not elsewhere. In addition, different modes of 
variability may interact, increasing the dimensonality of 
producing initial conditions. In practical terms, a large set 
of transient simulations started in the nineteenth century 
would produce a range of outcomes which samples from 
the full distribution, but the resulting ensemble statistics 
cannot necessarily be interpreted as true probabilities. Such 
ensembles are likely to provide a lower bound [or ‘non-dis-
countable envelope’, Stainforth et al. (2007b)] of responses 
within a given model.

This is in contrast to the irreducible uncertainty associ-
ated with initial condition uncertainty at the smallest scales, 
in this case tiny changes to SST at a single grid point. 
Here an ensemble can be interpreted as providing future 

probability distributions conditioned on the model structure 
and the ‘large scale’ initial conditions, allowing for some 
small uncertainty in the finest details. This situation is more 
like the experimental initialised decadal forecasts which are 
now being produced Smith et  al. (2013). In addition, the 
original Deser et  al. (2012b) large ensemble was a micro 
ensemble, with each member starting from an identical 
ocean state in the year 2005 to analyse near-term projec-
tions. According to our experiments with the FAMOUS 
AOGCM, this approach would underestimate the spread in 
future projections.

To more fully understand the behaviour of the model 
requires a ‘micro’ ensemble for each ocean state explored 
so that differences in the distributions can be quantified. 
For example, the three MICRO distributions in Fig. 8 are 
obviously different, but to better examine how they are dif-
ferent requires larger initial condition ensembles than are 
presented here. The ‘gold standard’ to understand the phys-
ical behaviour of a model would therefore be large micro 
initial condition ensembles for a range of different macro 
initial condition variations.

The results presented also highlight the potential benefit 
to near-term climate forecasts from appropriately constrain-
ing the macro ocean initial conditions with observations. 
Furthermore, if the evolution of the AMOC is predictable 
then some of the resulting regional temperature variability 
over Europe may also be predictable.
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