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Abstract

Sclera segmentation is shown to be of significant
importance for eye and iris biometrics. However, sclera
segmentation has not been extensively researched as a
separate topic, but mainly summarized as a component of a
broader task. This paper proposes a novel sclera
segmentation algorithm for colour images which operates
at pixel-level. Exploring various colour spaces, the
proposed approach is robust to image noise and different
gaze directions. The algorithm’s robustness is enhanced by
a two-stage classifier. At the first stage, a set of simple
classifiers is employed, while at the second stage, a neural
network classifier operates on the probabilities’ space
generated by the classifiers at stage 1. The proposed
method was ranked the 1" in Sclera Segmentation
Benchmarking Competition 2015, part of BTAS 2015, with
a precision of 95.05% corresponding to a recall of 94.56%.

1. Introduction

The sclera region in a human eye is surrounding the iris
and, although riddled with blood vessels, appears white. A
membrane called conjunctiva, which is a clear mucous
membrane, covers the sclera. When an eye image with an
off-angle iris is acquired, one may observe the blood
vessels from the conjunctiva and sclera. Sclera vessels have
therefore a multiple layer structure and change their
position when the eye moves [1]. Sclera recognition was
proposed as a biometric modality by R. Derakhshani, A.
Ross and S. Crihalmeanu in 2006 [2].

Although the accuracies of the visible spectrum iris
recognition systems are not comparable to those operating
in the near infrared spectrum [3] [19], the visible spectrum
iris imaging has the advantage of permitting the integration
of additional sources of information, such as eye colour or
sclera wvasculature [4]. Additionally, reliable sclera
segmentation can significantly improve and simplify more
complex tasks such as iris segmentation and gaze tracking
[5]. Thus, automatic detection of sclera is becoming an
important research topic in biometrics. At the moment of
writing this paper, the literature is not rich in works
depicting sclera segmentation algorithms. To encourage

research efforts on sclera segmentation, a competition
called Sclera Segmentation Benchmarking Competition
(SSBC) 2015 [6] was organized as part of the BTAS 2015
conference.

One of the first papers that describes sclera segmentation
employs a modified Self Organizing Map [7] in a gaze
tracking approach. The method relies on finding the iris
boundary first and fixing two control positions calculated
by using iris center and radius. The two control positions
are then employed in an active contour model algorithm to
fine tune the sclera boundary location. In [1] it is suggested
that sclera recognition should be done only on the sclera
vein patterns layer, which are stable over time, rather than
including the conjunctiva vasculature. The sclera
segmentation approach employed in [1] assumes that the
images contain frontal-looking eyes and the iris center
location is available. Two binary maps are generated based
on detecting non-skin area using RBG colour space and
white colour using HSV colour space. Furthermore, the
convex hull of the two masks is calculated and fused to
obtain a final sclera region.

Sclera vasculature as a biometric modality is explored in
[4] under different wavelengths. The sclera was segmented
by employing a sclera index measure, which relies on
multispectral information, i.e. the difference between near
infrared and green pixel intensities is larger for the sclera
region. In [8] a K-means clustering approach is employed
to segment the sclera. A survey of the sclera recognition
works until 2013 was made in [9] and with regards to sclera
segmentation the survey shows that the few existing
approaches are relying on various assumptions, e.g. iris
center location is known. In 2014, Abhijit et al proposed a
method for sclera segmentation based on Fuzzy logic [10].

Unlike existing sclera segmentation algorithms, the
present work relies on machine learning techniques to
robustly detect the pixels that belong to the sclera region
without employing conventional constraints. The proposed
approach employs three feature types: statistical image
features, Zernike Moments and Histogram of Gradients
(HoG)-like features. The contributions of the present work
are twofold: first, a flexible two stage multiple classifier
system (MCS) architecture is proposed for pixel-level
sclera detection which can be easily configured and adapted
to other machine vision tasks; second, a thorough
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evaluation of the sclera segmentation is performed, after
observing that the existing literature does not focus on
performance evaluation of sclera segmentation.

The remainder of this paper is organized as follows: in
Section 2, the automated sclera segmentation approach is
presented, together with the details of the feature extraction
and classifier architecture. In Section 3 the experimental
results are presented and the conclusions are drawn in
Section 4.

2. Algorithm design

The proposed sclera segmentation algorithm operates on
visible spectrum RGB eye images. The present approach
was designed to be robust to various factors, e.g. change in
illumination, occluded sclera regions or off-angle iris;
therefore it does not rely on available prior information
such as eyelid detection or iris center coordinates. The
block diagram of the proposed sclera segmentation
approach is illustrated in Figure 1.

2.1. Feature extraction

In most pattern recognition algorithms, the feature
extraction plays an important role towards an enhanced
robustness to noisy data. A relevant, diverse, independent
and compact set of features is necessary to achieve an
increased accuracy of the learning algorithm [11]. Three
feature types are employed in the present work to
distinguish between sclera and non-sclera pixels of an RGB
image. The features have been selected to grasp
independent information related to colour, shape and
presence of edges.

The first feature type employed explores the various
relationships between pixels intensities from different
colour spaces, as suggested in [12] and [13]. For a
2-dimensional image I(x, y), where x and y denote
respectively the image row and column, an 18-dimensional
vector is computed for every pixel as follows:

uo uo uo
{dcr—cb(0,2,4)' nb(0,2,4)' 5(0,2,4)' drees MRGB ALab(4)} (1)

where nb, S denote the scale-normalized blue channel and
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saturation channel from HSV colour space respectively and
dor—cp and ppep denote the difference between chroma red
(cr) and chroma blue (c¢b) from YCbCr space and the
average value between the RGB channels respectively. The
subscripts in parentheses represent the radii of the local
neighborhood window centered at (x, y). For the value of
the subscript equal to 0, only the intensity value of the
center of the window is considered. The superscripts ¢ and
o indicate the mean and standard deviation of the local
neighborhood with respect to the radii from the subscripts.
The dg¢p and A; 4, are defined by the following formulas:

drep(x,y) = 2Ix(x,y) — I5(x,y) — I(x,y) 2

Arar(6,y) = JL" (3% +a (6 y)? + b ()2 )

where Iy, I; and Iy are the red, green and blue channels
respectively and L, a, and b are the channels of LAB colour
space.

The second type of features employed are Zernike
moments [14]. Zernike moments are usually employed for
rotation invariant shape recognition. The basis set for
Zernike moments are Zernike polynomials, which are
defined as follows:

Vim (%, ) = Vo (p sind, p cos8) = Ry (p)e/™  (4)

where m and n are integer numbers and represent the order
and repetition of the Zernike moments and R, (p) is
called radial polynomial with R, _,,,(p) = R, m(p) [14].
As observed from (4), the image or region of interest needs
to be first expressed as a function f of intensity values given
polar coordinates p and 6. Subsequently, the complex
Zernike moments are computed using the following
equation:

21

+1 |
Zum =" > D f(0,0Rm@eT™  (5)

6=0p=0

The absolute values of 9 complex Zernike moments are
computed for different values of m and n for the local



a)
Figure 2: HoG-like features. a) original eye image;
b) weighted votes for the bin starting at 120 to 140 degrees.

windows with radius 4 centered on every pixel.

HoG-like features are used for the third type of features.
The motivation behind the choice of this feature type is that
the sclera region has significantly less edges than other
regions of the eye image. The HoG features are well known
for their human detection application [15]. After a Gaussian
smoothing operation of the gray scale eye image, an edge
detection filter is convoluted with the eye image.
Subsequently, the gradients are computed and grouped into
9 bins, according to their orientation, from 0 to 180 degrees,
with a step of 20 degrees. For each pixel, a weighted vote
corresponding to an edge orientation bin is computed,
where the weight is represented by the magnitude of the
gradients. Since most of the 9 weighted votes for each pixel
are 0, a filtering operation which divides the square of the
sum of pixel intensities to the number of pixels within the
filtering window is employed to smooth out the values of
the weighted votes for each bin. In this way, for the sclera
region, the values of the weighted votes have a low value,
while for non-sclera regions, the values are spread across a
wider range, as shown in Figure 2.

The final feature vector has 36 real valued components
and is obtained by concatenating the 3 features types
described above.

2.2. Multiple classifier system architecture

For the feature types employed by the proposed sclera
segmentation method, a robust classification stage is
required, where changes in illumination or skin colour do
not have a significant effect on the performance of the
algorithm. The performance of a single classifier is likely
to be affected more by the noise present in the testing
features than the performance of a MCS [11].

At the same time, the principle of diversity of MCS [11]
was considered when designing the classifier for the
proposed sclera segmentation approach. The MCS
employed in the present work can be easily adapted for a
broader range of image analysis tasks, where robustness to
noisy data is a requirement. The MCS topology proposed in
this work is a parallel one, as shown in Figure 1, where a
2-stage operation takes place.

At the first stage, a number of n simple 2 class classifiers
are employed. For speed purposes, classifiers that have

linear decision boundaries are considered adequate. To
ensure that the principle of diversity is respected, a
combination of generative classification methods, such as
density based classifiers and discriminative classification
models is desirable. In the proposed approach, the number
of classifiers at the first stage of the MCS is n=3, which
operate in parallel on the 36 component feature vector:

1) A density based classifier represented by a Bayes
classifier with linear decision boundary [11],
which classifies the features to the most probable
class;

2) A distance based classifier represented by Fisher
Linear Discriminant [16], which projects the data
onto a line so that samples from different classes
become better separated;

3) A discriminant classifier model represented by
regularized logistic regression (LR).

At the second stage, a more complex, nonlinear classifier
is recommended to be employed, as it will operate on the
probability space generated by the first stage classifiers.
The probability space will have a reduced dimension, thus
eliminating speed related concerns. In the present work, a
feed forward neural network (FFNN) with 1 hidden layer
operates on the vector of probabilities generated by the first
stage classifiers. The activation function of the FFNN is a
classical sigmoid function.

The training of the MCS was performed on randomly
selected patches of 100 by 100 pixels from UBIRIS vl
database [17] and the database offered for training for
SSBC 2015 [6]. 60 patches are randomly collected from
each database for sclera region and 60 patches for
non-sclera regions. Examples of sclera and non-sclera
patches used for training are shown in Figure 3. Initially,
the 36 real valued feature vectors are extracted for all the
pixels in the patches. By training the MCS on features
obtained from different databases/sensors, an improved
modeling of the intra class variability of the data is
achieved.

To enhance the robustness of the segmentation
algorithm, the training of the MCS is done in 2 phases. In
the first phase, the first stage classifiers are trained on a
subset of the training patches. The subset of patches for
training the first stage classifiers consists of half of the total
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Figure 3: Training patches. a) sclera patches from UBIRISvI;
b) sclera patches from SSBC 2015; ¢) non-sclera patches from
UBIRISv1; d) non-sclera patches from SSBC 2015



number of patches in the present work, i.e. 60 patches from
sclera regions and 60 from non-sclera regions. In the
second phase, the remaining unseen patches are tested on
the first stage classifiers to generate training probabilities
for the FFNN. The proposed MCS has therefore a data
independent second stage classifier [11]. The motivation
behind this two phase training procedure is to correct the
mistakes done by the first stage classifiers by remapping
the deviated probabilities to the correct labels.

The proposed MCS architecture and training strategy led
to the following research question: is the accuracy of the
segmentation algorithm insensitive to the size of the
training dataset for the first stage classifiers? In other
words, if the training size for the FFNN is large enough to
correct the deviated probability values of the first stage
classifiers, the precision of the decision boundary tuned in
the first stage classifiers may not compromise the accuracy
of the segmentation algorithm. This research question will
be addressed and answered in the experimental results
section, where it is shown how significantly decreasing the
training size for the 2 stages of the MCS considerably
decreases the training time of the segmentation algorithm
while keeping its accuracy almost unchanged.

2.3. Post processing

As the proposed sclera segmentation algorithm does not
rely on finding the location of the iris or the shapes of the
eyelids, reflections from the skin areas or iris regions might
be classified as sclera pixels. To reduce the effect of
reflections on the performance of the algorithm, two image
processing techniques are employed.

Initially, the aim is to eliminate falsely classified sclera
pixels from the iris region. For these pixels to be detected, a
simple dynamic contrast adjustment operation is applied on
the gray scale eye image. The anatomy of the human eye,
which exhibits a significant contrast difference between
sclera and iris, allows for course detection of the iris disc by
employing contrast adjustment operations. The dynamic

c)
d) e) f)

Figure 4: Post processing. a) initial gray scale eye image;

b) contrast adjusted image; c) binary mask obtained after contrast
adjustment; d) output of the FFNN; ¢) FFNN output after
masking pixels indicated by c); f) final segmented image

contrast adjustment parameters depend on the mean value
of the pixel intensities of the gray scale eye image. The
parameters of the contrast adjustment were empirically
found for different ranges of the average value of the mean
intensity of the eye image. After the contrast adjustment
operation is complete, a binary image is generated by
applying Otsu’s thresholding technique [18]. The obtained
binary image is subsequently used in a masking operation
with the binary image that the FFNN generates to mask out
the iris disc from the sclera.

Further, to reduce the effect of skin reflections on the
algorithm’s performance, the binary image resulted from
the masking operation is used to find the connected
components regions. From all the connected components,
only the ones which have the area above a certain threshold
are considered as sclera candidates. The threshold
employed depends on the size of the eye image. The small
remaining connected components are filled with zeros,
where 0 represents the intensity value for black colour. The
effect of dynamic contrast adjustment operation and small
connected components removal is illustrated in Figure 4.

3. Experimental results

In this section, the systematic evaluation of the proposed
sclera segmentation algorithm is presented. As
reproducibility and repeatability of algorithms’ evaluation
is becoming a highly desirable property of the published
biometrics research works [19], the need of a database
dedicated to sclera segmentation, where ground truth mask
indicating binary class is provided becomes apparent.

The eye image database offered to the participants of
SSBC 2015 [6] contains ground truth masks for the sclera
regions. The database contains images acquired with a
Nikon D 800 camera from 82 individual, therefore 164
different eyes. The SSBC participants were given a subset
of the database, containing eye images from 30 individuals
with a size of around 3 mega pixels. This subset is used for
the experiments in the present work. The acquisition
protocol for the SSBC database specifies that the images
contain eyes for four gaze directions: straight, up, left and
right. Further, the images are acquired under different
illumination conditions and contain noise such as
reflections or occluded sclera regions, making the SSBC
database a challenging one for sclera segmentation. Note
that at the time of submission of this paper, the SSBC 2015
evaluation protocol and database were not yet available.

The evaluation protocol adopted for the proposed sclera
segmentation algorithm consists of generating the
precision-recall (P-R) curves for different parameter
settings. The precision is defined as the ratio between true
positive (TP) and the sum of TP and false positive (FP),
while the recall is defined as the ration between TP and the
sum of TP and false negative (FN). The P-R curves are
chosen to report the results because they offer a holistic
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Figure 5: P-R curves for different training sizes of the two stages of the MCS

picture on the segmentation algorithm performance in
terms of error rates and operating points for various
application requirements.

3.1. Algorithm’s robustness

As mentioned in Section 2.2, the MCS is trained on 100
by 100 pixels patches, but as the sample training size
increases, with a number of 10000 features per patch
training will be computationally expensive. For this reason,
a sampling factor SF; is defined for reducing the training
size at the stage 1 classifiers and a sampling factor SF, for
amending the training size for the FFNN. For example, if
the sampling factor is equal to 7, the training size for 120
patches (60 for sclera regions and 60 for non-sclera
regions) will be 154436, while for a sampling factor equal
to 87, the training size for 120 patches will be only 6696.

The research question from the final paragraph in
Section 2.2 is addressed now: is the algorithm’s
performance affected by increasing SF,, while keeping SF,
constant? In Figure 5, P-R curves are plotted for different
values of SF;, while keeping SF, unchanged. As it may be
observed from Figure 5, the performance of the algorithm is
not significantly affected by varying SF, when SF, is
unchanged. By further analyzing Figure 5 it may be

observed further that the stability of the proposed sclera
segmentation algorithm is more pronounced for some
values of SF, (i.e. 7 and 87), while for other values (i.e. 23
and 47) the P-R curves are not so close to each other.
However, in all the P-R curves from Figure 5 it may be
observed how the precision of the system remains above
95% for recall values of around 75%. Examples of the
output of the algorithm run on poorly illuminated images
for 3 gaze directions are shown in Figure 6. The equal error
rates (EER) of the system are given in Table 1. As indicated
by the values in Table 1, the system tends to have a slightly
better performance when SF; or SF, have large values. The
proposed approach is the winning algorithm of SSBC 2015.

Table 1. Performance evaluation on SSBC 2015 database

EER [%]

SF,=1 | SF,=7 | SF,=23 [SF,=47 | SF,=87] SF,=325

SF,=7 19.85 | 23.40 | 19.85 | 20.98 18.74 | 17.21
SF=47 24.03 | 2242 | 1993 | 24.14 | 18.83 | 23.63
SF=87 2220 | 22.25| 19.51 | 22.65 | 22.31 24.66
SF=163 | 20.13 | 22.25 | 2238 | 20.68 | 20.05 | 24.57
SF=325 | 21.57 | 20.09 | 18.44 | 20.14 | 18.16 19.89

3.2. Discussion

As illustrated in Figure 5, the behavior of the system is
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Figure 6: Output of the segmentation algorithm for different gaze
directions of images with class id 11 from SSBC 2015 database
not highly sensitive to the choice of the values of SF; and
SF,, indicating that the proposed MCS architecture is a
highly robust one for the task of sclera segmentation.
Therefore, the proposed approach is suitable to be
employed in other image analysis tasks, where smooth
regions of relatively constant colour have to be found. From
the biometric applications’ perspective, the complexity of
the classification stage of the present sclera segmentation
algorithm is compensated by the reduced feature size (only

36 components).

Moreover, as the performance of the system does not
rely on the size of the training data, the training time for the
proposed MCS can be significantly decreased. For
example, for the FFNN, the training time can be lowered
from roughly 7500 seconds for SF,=7 to about 660 seconds
for SF,=87 on an Intel i7 processor. It is also noteworthy
that if the operating speed of the first stage classifiers
depends on the size of the training size (e.g. k-nearest
neighbor classifier), the employed MCS technique is able
to decrease the execution speed without compromising the
performance of the algorithm.

4. Conclusions

Sclera segmentation is a relatively new research topic in
biometrics. Unlike the traditional approaches, where prior
information about iris location or eyelid locations is
necessary, this work has developed a novel sclera
segmentation approach for pixel-level detection.
Employing 3 types of features, the proposed algorithm is
robust to noise factors affecting the eye image quality. The
2-stage  MCS architecture employed enhances the
algorithm’s robustness to the size of the training data. The
proposed approach was ranked 1* in SSBC 2015 with a
precision rate of 95.05% and a recall rate of 94.56%.
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