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Abstract. Soils play a pivotal role in major global biogeochemical cycles (carbon, nutrient, and water), while
hosting the largest diversity of organisms on land. Because of this, soils deliver fundamental ecosystem services,
and management to change a soil process in support of one ecosystem service can either provide co-benefits to
other services or result in trade-offs. In this critical review, we report the state-of-the-art understanding concern-
ing the biogeochemical cycles and biodiversity in soil, and relate these to the provisioning, regulating, support-
ing, and cultural ecosystem services which they underpin. We then outline key knowledge gaps and research
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challenges, before providing recommendations for management activities to support the continued delivery of
ecosystem services from soils.

We conclude that, although soils are complex, there are still knowledge gaps, and fundamental research is still
needed to better understand the relationships between different facets of soils and the array of ecosystem services
they underpin, enough is known to implement best practices now. There is a tendency among soil scientists to
dwell on the complexity and knowledge gaps rather than to focus on what we do know and how this knowledge
can be put to use to improve the delivery of ecosystem services. A significant challenge is to find effective ways
to share knowledge with soil managers and policy makers so that best management can be implemented. A key
element of this knowledge exchange must be to raise awareness of the ecosystems services underpinned by soils
and thus the natural capital they provide. We know enough to start moving in the right direction while we conduct
research to fill in our knowledge gaps. The lasting legacy of the International Year of Soils in 2015 should be for
soil scientists to work together with policy makers and land managers to put soils at the centre of environmental

policy making and land management decisions.

1 Introduction

Soils play a critical role in delivering a variety of ecosystem
services (Scholes and Scholes, 2013). Management aimed at
improving a particular ecosystem service can either provide
co-benefits to other services or result in trade-offs (Robin-
son et al., 2013). Examples of some of the synergies and
trade-offs (Smith et al., 2013), the role of soils in support-
ing ecosystem services, and their role in underpinning natural
capital (Dominati et al., 2010; Robinson et al., 2009, 2014)
have recently been reviewed. The ability of soils to provide
services is principally conferred by two attributes: the range
of biogeochemical processes that occur in the soil and the
functionality of soil biodiversity. In the following subsections
we present the state-of-the-art understanding and knowledge
gaps on carbon, nutrient, and water cycling in soil, as well as
the role of soils as a habitat for organisms and as a genetic
pool. We clarify how the biogeochemical processes provide
regulating, provisioning, and supporting services, as well as
the role of biodiversity (genetic diversity, functional diver-
sity, and abundance and activity of organisms) in support-
ing these services. These functions collectively confer soil
health, which is critical for the underpinning of cultural ser-
vices, among other things. A range of soil services have been
identified including soil as a source of raw materials such
as sand or clay, a surface for building infrastructure, and an
archive for landscape development and history of human soil
use (e.g. Blum, 2002), but here we focus on those that map on
to ecosystem services listed in the Millenium Ecosystem As-
sessment (MA) (Millennium Ecosystem Assessment, 2005).

The MA classified ecosystem services into supporting,
regulating, provisioning, and cultural services, and this cat-
egorization is widely used, and though the scheme was not
designed to fit all assessments (Fisher et al., 2009), it has
been modified for use in national ecosystem assessments
(e.g. UKNEA, 2011). More recently, the Common Interna-
tional Classification of Ecosystem Services (CICES; Haines-
Young and Potschin, 2012) was developed to support en-
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vironmental accounting in the European Union and in the
United Nations Statistical Division (European Commission
et al., 2013, 2014). A major difference between the MA and
the CICES classification systems is that CICES does not in-
clude supporting services (see below), which are treated as
intermediate steps in the delivery of final goods and services
(Haines-Young and Potschin, 2012). In this review, we in-
clude supporting services, since they are often referred to in
the literature, while accepting the CICES observation that
supporting services are not of direct benefit of people, al-
though they are of great indirect benefit. The MA supple-
mented by UKNEA (2011) for supporting services, provides
definitions and examples of provisioning, regulating, sup-
porting, and cultural services as follows.

Provisioning services are “physical products obtained
from ecosystems” and include food (including wild-
harvested seafood and game, cultivated crops, wild foods,
and spices), raw materials (including timber, pulp, skins, an-
imal and vegetable fibres, organic matter, fodder, and fertil-
izer), genetic resources (including genes for crop improve-
ment and health care), freshwater, minerals, medicinal re-
sources (including pharmaceuticals, chemical models, and
test and assay organisms), energy (hydropower, biomass
feedstocks including biofuels, wood, and charcoal), and or-
namental resources (including fashion; handicraft; jewellery;
pets; worship; decoration; and souvenirs like furs, feathers,
ivory, orchids, butterflies, aquarium fish, shells, etc.).

Regulating services are “benefits obtained from the regu-
lation of ecosystem processes” and include carbon sequestra-
tion and climate regulation, waste decomposition and detox-
ification, pollutant immobilization and detoxification, purifi-
cation of water and air, regulation of water flow (including
flood alleviation), and pest and disease control.

Supporting services are “ecosystem services that are nec-
essary for the production of all other ecosystem services” and
include soil formation, nutrient cycling, water cycling, pri-
mary production, and habitat for biodiversity.

www.soil-journal.net/1/665/2015/
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Figure 1. Schematic representation of where soil carbon, nutri-
ent, and water cycles, and soil biota underpin ecosystem services
(adapted from Smith et al., 2014). Role in underpinning each
ecosystem service shown by C, soil carbon; N, soil nutrients; W,
soil water; and B, soil biota. Only soil carbon, nutrient, and water
cycles, and soil biota are considered, so the figure does not repre-
sent a comprehensive overview of soil ecosystem services, which
have been reviewed recently elsewhere (e.g. Robinson et al., 2013,
2014).

Cultural services are “nonmaterial benefits people ob-
tain from ecosystems through spiritual enrichment, cogni-
tive development, reflection, recreation, and aesthetic expe-
riences” and include cultural (including use of nature as mo-
tif in books, film, painting, folklore, national symbols, ar-
chitectural, advertising, etc.), spiritual and historical (includ-
ing use of nature for religious or heritage value or sense of
place), recreational experiences (including ecotourism, out-
door sports, and recreation), and science and education (in-
cluding use of natural systems for school excursions and sci-
entific discovery). Examples of cultural services underpinned
by soils are the terra preta soils of the Amazon Basin, repre-
senting the historical cultural heritage of the region before
European settlers; Histosols, which are a vital component
of peatland landscapes, underpinning the landscape/amenity
value of these valued wild areas; and soils used as build-
ing material for traditional houses providing cultural heritage
values, such as the mud brick houses in Bam in Iran and
Shibam in Yemen. Since this paper focuses on biogeochemi-
cal cycling and soil biota, cultural services are not discussed
further in detail in this review.

Figure 1 summarizes the ecosystem services underpinned
by soils. In the following sections, we examine the state-of-
the-art understanding of carbon, nutrient, and water cycles
and biodiversity in soils, and show how these underpin the
provisioning, regulating, supporting, and cultural ecosystem
services described above. We then discuss the knowledge
gaps across all of these areas, recommend key foci for fu-
ture research, and present recommendations for practices and

www.soil-journal.net/1/665/2015/

policies to support the continued delivery of these ecosystem
services from soils.

2 Soils and the carbon cycle

Soil C stocks: Carbon (C) storage is an important ecosystem
function of soils that has gained increasing attention in recent
years. Changes in soil C impacts on, and feedbacks to, the
Earth’s climate system through emissions of CO2 and CHgy
as well as storage of carbon removed from the atmosphere
during photosynthesis (climate regulation; Table 1). Soil or-
ganic matter itself also confers multiple benefits for human
society, e.g. enhancing water purification and water holding
capacity, protecting against erosion risk, and enhancing food
and fibre provision through improved soil fertility (Table 1;
Pan et al., 2013, 2014).

Soil is an important C reservoir that contains more C (at
least 1500-2400 Pg C) than the atmosphere (590 Pg C) and
terrestrial vegetation (350-550 Pg C) combined (Schlesinger
and Bernhardt, 2013; Ciais et al., 2013), and an increase in
soil C storage can reduce atmospheric CO> concentrations
(Table 1; Whitmore et al., 2014). All three reservoirs of C are
in constant exchange but with various turnover times, with
soil as the largest active terrestrial reservoir in the global C
cycle (Lal, 2008). Carbon storage in soils occur in both or-
ganic and inorganic form. Organic C stocks in the world’s
soils have been estimated to comprise 1500Pg of C to 1 m
depth and 2500 Pg to 2 m (Batjes, 1996). Recent studies have
shown that the soil C pool to 1 m depth may be even greater
and could account for as much as 2000 Pg. These higher val-
ues are mainly based on increased estimates of the C stored
in boreal soils under permafrost conditions (Tarnocai et al.,
2009), in which decomposition is inhibited by low temper-
ature, lack of oxygen, and low pH in waterlogged soils,
e.g. peats (Smith et al., 2010). Although the highest C con-
centrations are found in the top 30 cm of soil, the major pro-
portion of total C stock is present below 30 cm depth (Batjes,
1996). In the northern circumpolar permafrost region, at least
61 % of the total soil C is stored below 30 cm depth (Tarnocai
et al., 2009). Peatlands are particularly important compo-
nents of the global soil carbon store, covering only 3% of
the land area but containing around 500 Pg C in organic-rich
deposits ranging from 0.5 to 8 m deep (Gorham, 1991; Yu,
2012), with storage in deeper layers as yet unquantified.

In arid and semi-arid soils, significant inorganic C can be
present as carbonate minerals (typically Ca/MgCO;, called
“calcrete” or “caliche” in various parts of the world), formed
from the reaction of bicarbonate (derived from CO, in the
soil) with free base cations, which can then be precipi-
tated in subsoil layers (Nordt et al., 2000). Soils derived
from carbonate-containing parent material (e.g. limestone)
can also have significant amounts of inorganic C. The in-
organic C pool globally is large, estimated to be ~ 750 Pg
C to a depth of 1 m (Batjes, 1996). However, in most cases,
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Table 1. Management actions affecting the soil carbon cycle and their impact on ecosystem services.

Management actionor  Provisioning service Regulating  service Supporting  service Cultural service im-
other driver of change  impact impact impact pact

Land use change Increased production Decreased soil C Primary production Lower recreation
(conversion of for- of food, fibre, and en-  sequestration and may be changed; value; may have im-
est/grassland/wetland  ergy crops; reduced storage — increased nutrient recycling  pact on cultural value

to cropland)

availability of natural
raw materials; poten-
tial change in hydrol-
ogy/water availability

GHG flux; increased
erosion and sediment
yield — reduced regu-
lations of water flow

reduced if no inputs,
increased if there are
inputs

in recreating diverse
landscapes

and quality

Land use change (es- Raw material pro- Increased C seques- Primary production Increased recreation
tablishment of forest vision may be tration; increased reg- may be changed; value; may have im-
or grassland on agri- increased; agricultural  ulation of water flow increased water  pact on cultural value
cultural land) production likely and quality recycling in recreating diverse

decreased (but not landscapes

always, e.g. agro-

forestry)
Intensified  nutrient  Increased production  Effecton netsoil Cse-  Increased primary
management through of food and other raw  questration uncertain;  production; increased
fertilization and  materials increased GHG flux nutrient recycling
liming from fertilizer produc-

tion and use; water
and air pollution

Soil amelioration us-
ing organic amend-
ments such as com-

Increased food pro-
duction; more raw
materials; more water

Increased C seques-
tration; increased wa-
ter purification value

Increased primary
production; increased
nutrient cycling;

post and biochar available for plant improved water infil-

growth tration and retention
Diversification of Potential impact on Increased C seques- Changed primary pro-  Improved cultural
crop production  agricultural produc- tration; increased pu- duction; increased nu- value from  more
systems (i.e. more tion (£); more diverse rification value trient retention; im-  diverse landscapes
perennials, reduced products proved water infiltra-
bare fallow) tion and retention

Replacement of hay
forage production
with pasture use on
grasslands

No impact

Effect on C sequestra-
tion uncertain

Increased recreation
value; may have im-
pact on cultural value
in recreating diverse
landscapes

Improved
management

grazing

Increased food pro-
duction; reduced
runoff and improved
water use

Increased C seques-
tration; increased pu-
rification value; water
flow regulation

Increased primary
production; improved
water infiltration and
retention

changes in inorganic C stocks are slow, are not amenable to
traditional soil management practices, and do not play a sig-
nificant role in terms of most ecosystem services (though a
major exception is the geoengineering proposal to add finely
ground silicate minerals to soils, which will then weather
to carbonates, taking up CO; in the process; Kohler et al.,
2010). Thus, further discussion of soil C in this review will
focus on soil organic C.

SOIL, 1, 665685, 2015

The net balance of soil C depends on the inputs of C to
soils relative to C losses. Losses can occur via mineraliza-
tion (i.e. decomposition), leaching of dissolved C, and car-
bonate weathering (Smith, 2012; Schlesinger and Bernhardt,
2013). Thus, the soil organic C stock may either increase or
decrease in response to changes in climate and land use prac-
tices (Smith et al., 2015). Furthermore, rates of SOC stock
change in different parts of the profile can vary for different

www.soil-journal.net/1/665/2015/
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soils and types of perturbation, because some portion of the
C stored in soil, mainly in topsoil, turns over rapidly, while
other soil C fractions can have a long residence time (von
Litzow et al., 2008; Rumpel and Kégel-Knabner, 2011). The
accumulation of stabilized C with long residence times in
deep soil horizons may be due to continuous transport, tem-
porary immobilization and microbial processing of dissolved
organic matter within the soil profile (Kalbitz and Kaiser,
2012), and/or efficient stabilization of root-derived organic
matter within the soil matrix (Rasse et al., 2005). The pro-
cess of soil formation — i.e. the development of depth, hori-
zons, and specific properties — is itself a supporting service
(Table 1).

High SOC content also improves other chemical and
physical soil properties, such as nutrient storage (support-
ing service), water holding capacity (supporting and regu-
lating service), aggregation, and sorption of organic or in-
organic pollutants (regulating service). Carbon sequestration
in soils may therefore be a cost-effective and environmen-
tally friendly way to not only store C for climate regulation
but also enhance other ecosystem services derived from soil,
such as agricultural production, clean water supply, and bio-
diversity (Table 1; Pan et al., 2013) by improving soil or-
ganic matter (SOM) content and thereby soil quality (Lal,
2004). Moreover, processes which improve SOM may them-
selves provide services, e.g. use of cover crops, which can
provide provisioning or water regulation services while im-
proving soil C (Table 1). SOM or soil carbon are widely used
proxy variables for soil health (e.g. Kibblewhite et al., 2008).

C cycling: Carbon enters the soil as aboveground or be-
lowground plant litter and exudates. C input is not homoge-
nous within the soil profile. Whereas topsoil receives higher
amounts of aboveground litter, subsoil C originates from root
C as well as dissolved C, transported down the soil profile.
Root C has a greater likelihood of being preserved in soil
compared to shoot C, and was therefore hypothesized to ac-
count for most of the SOC (Rasse et al., 2005). The ma-
jority of plant litter compounds pass through and are modi-
fied by the soil biota. Thus, SOM is composed of plant lit-
ter compounds as well as microbial and, to a smaller ex-
tent, faunal decomposition products (Paul, 2014). It is a com-
plex biogeochemical mixture comprising molecules derived
from organic material in all stages of decomposition. Some
organic matter compounds, including microbial decomposi-
tion products, may be stabilized for centuries to millennia
by binding to soil minerals or by physical occlusion into
micro-aggregates (von Litzow et al., 2008), for example with
iron oxyhydrates (Zhou et al., 2009), or through protection
by occlusion within soil aggregates (Dungait et al., 2012).
The inherent chemical recalcitrance of some plant litter com-
pounds (e.g. lignin) has a minor influence on their longevity
in soil (Thévenot et al., 2010), whereas the location of SOM
within the soil matrix has a much stronger control on its
turnover (Chabbi et al., 2009; Dungait et al., 2012). Mineral-
associated SOM is predominantly composed of microbial
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products (Miltner et al., 2012). Therefore, microbial use effi-
ciency of plant inputs largely determines SOM stabilization
through interaction with the mineral phase (Cotrufo et al.,
2013), in addition to the environmental controls discussed
elsewhere in this section. In peatlands, organic matter is sta-
bilized by high water tables that slow down biological activ-
ity and decomposition. SOM is mineralized to carbon diox-
ide (CO3) in aerobic environments, or reduced to methane
(CHy) in anaerobic environments. Soil CO; efflux, resulting
from SOM mineralization, and from rhizosphere respiration
and inorganic C weathering, is the largest terrestrial flux of
CO3 to the atmosphere (~ 60Pg C; the sink of carbon on
the other hand contributes to the climate regulation service;
Smith, 2004). This flux is an order of magnitude larger than
anthropogenic CO, emissions due to fossil fuel burning and
land use change (1.1PgCyr—!; Ciais et al., 2013). Under
anaerobic conditions, CHy4 is formed by methanogenic mi-
croorganisms. A proportion of this CHy is oxidized to CO»
by methanotrophic microorganisms, but a proportion can be
emitted from the soil surface (Reay et al., 2010). Since CH4
is many times more potent as a greenhouse gas than CO,
on a per-molecule or per-mass basis (Ciais et al., 2013), soil
CHg emissions and their mitigation play an important role in
climate regulation (Table 1).

Fire may affect many ecosystem services, including C se-
questration. For fires in natural ecosystems, a decrease in
soil C storage is often observed initially, but through posi-
tive effects on plant growth, as well as input of very stable
pyrogenic C, C storage may increase at longer timescales
(Knicker, 2007). An additional long-term C pool in many
soils is pyrogenic carbon (PyC), formed from partially com-
busted (i.e. pyrolysed) biomass during wildfires or other
combustion processes (Schmidt and Noack, 2000). Globally,
soils are estimated to contain between 54 and 109 Pg PyC
(Bird et al., 2015). Some of this PyC has a highly condensed
aromatic structure that retards microbial decay, and can thus
persist in soils for relatively long periods (Singh et al., 2012).
Soil amended with industrially produced PyC (biochar) as a
climate mitigation technique often shows no increase in soil
respiration despite the additional carbon, the reduced ecosys-
tem carbon turnover results in increased soil carbon storage
(Stewart et al., 2013). PyC additions to soil affect regulat-
ing ecosystem services, such as C sequestration, nutrient cy-
cling, and adsorption of contaminants. However, PyC prop-
erties, and as result their effect on ecosystem services, may
be strongly dependent on fire conditions.

Factors influencing soil C storage: Fundamentally, the
amount of C stored in a given soil is determined by the bal-
ance of C entering the soil, mainly via plant production but
also through manures or amendments such as organic sludge
or biochar, and C leaving the soil through mineralization (as
COy), driven by microbial processes, and to a lesser extent
leaching out of the soil of dissolved carbon and carbonate
weathering. Locally, C can be lost or gained through soil

SOIL, 1, 665685, 2015
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erosion or deposition, leading to a redistribution of soil C,
at landscape and regional scales (van Oost et al., 2007).

Consequently, the main controls on soil C storage are the
amount and type of organic matter inputs, the efficiency by
which this is used by microbes, and the capacity of the soil
to retain it by physical or chemical stabilization (Cotrufo
et al., 2013). In most natural and agricultural ecosystems,
plant productivity and subsequent death and senescence of
biomass provide the input of organic C to the soil system
(Table 1). Thus, higher levels of plant residue inputs will
tend to support higher soil organic carbon stocks, and vice
versa (Paustian et al., 1997), though this does not continue
indefinitely (Zvomuya et al., 2008). Plants also affect soil C
cycling by their specific mycorrhizal associations (Brzostek
et al., 2015). Shifts in specific mycorrhizal associations af-
fect SOM storage by contributing to both SOM formation
and decomposition. Ectomychorrizhal turnover is a dominant
process of SOM formation (Godbold et al., 2006), possibly
due to the more recalcitrant nature of the chitin in fungal tis-
sues, compared to the cellulose and lignin in plant residues.
In arbuscular mycorrhizal fungi, it has been suggested that
glomalin, a highly resistant glycoprotein, has an active role
in aggregate formation and SOM stocks (Rillig, 2004). Sym-
biotic mycorrhizal fungi can also directly impact the turnover
of organic matter by the production of exo-enzymes (Averill
et al., 2014; Finzi et al., 2015).

In many regions of the world, SOM accumulates because
of inhibition of microbial SOM decomposition, due to cold,
dry, or anoxic conditions (Trumbore, 2009). In general, when
water is not limiting, higher soil temperatures increase the
rate of microbial decomposition of organic matter. Thus soil
temperature is a major control of SOM storage in soil C cy-
cle models (Peltoniemi et al., 2007). The temperature sen-
sitivity of SOM decomposition is not, however, as straight-
forward as represented in most models but varies between
the many different forms of chemical and physical protec-
tion of organic matter in soil (Conant et al., 2011; Zheng
et al., 2012). Water influences soil C storage through sev-
eral processes. Moist, but well-aerated, soils are optimal for
microbial activity and decomposition rates decrease as soils
become drier. However, flooded (saturated) soils have lower
rates of organic matter decay due to restricted aeration and
thus often have very high amounts of soil C (e.g. peat soils).
High precipitation may also lead to C transport down the soil
profile as dissolved and/or particulate organic matter, as well
as lateral transport through soil erosion and deposition. Dur-
ing dry periods, SOM decomposition is decreased, but after
rewetting there may be an accelerated pulse of CO, emis-
sion in aerobic soils (Borken and Matzner, 2008), whereas
drought and lowering water tables may increase decomposi-
tion in naturally anaerobic peats (Freeman et al., 2001; Clark
et al., 2012). However, the effect of drought is not only direct
via soil microbial activity. There are feedback loops concern-
ing drought and C storage via plant activities, such as lit-
ter input and rhizodeposition. Drought was found to affect
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plant litter composition (Sanaullah et al., 2014), plant C flow
and root exudation (Sanaullah et al., 2012), as well as the re-
sulting enzyme activities in the rhizosphere (Sanaullah et al.,
2011).

C cycling in soils is strongly linked to the cycling of N
and P. Since the C:N:P stoichiometry in SOM is gen-
erally lower than in plant material — i.e. there is more N
and P per unit C — C generally accumulates in aerobic soil
where nutrients are not limiting (Alberti et al., 2014). Nev-
ertheless, an increase in organic C is often accompanied
by increased N resource use efficiency in croplands (Pan et
al., 2009), especially when SOC is increased with biochar
(Huang et al., 2013). In nutrient-limited peatlands, inputs
of nitrogen and/or phosphorus within the tolerance levels of
sensitive plant species have increased rates of carbon accu-
mulation (Aerts et al., 1992; Turunen et al., 2004; Olid et al.,
2014). The relationship between nutrients and C cycling is
not straightforward, since nutrients are also needed by soil
microbes to degrade SOM. Thus, nutrient addition can either
decrease or increase C storage, depending on the initial SOM
stoichiometry, the ability of the soil minerals to stabilize mi-
crobial products of decomposition, and the simultaneous ef-
fects on plant productivity and organic matter inputs to soils.

The amount and type of clay particles (and to a lesser ex-
tent silt particles) are the major factors controlling the quan-
tity and composition of soil C (Sollins et al., 1996; von Lit-
zow et al., 2006). Clays are mainly sheet-like crystals of sil-
icon and aluminium, known as phyllosilicates, often located
as skins coating soil aggregates. In clay-rich soils, higher or-
ganic matter content and a greater concentration of O-alkyl C
derived from polysaccharides may be expected compared to
sandy soil, which are characterized by lower C contents and
high concentrations of alkyl C (Rumpel and Kégel-Knabner,
2011). Aliphatic material may be responsible for the hy-
drophobicity of soils, which can lead to reduced microbial
accessibility and therefore increased C storage (Lorenz et al.,
2007). Many of the OM-matrix interactions are driven by ex-
pandable and non-expandable phyllosilicates, which interact
with organic compounds through their large surface areas,
micropores, and micro-aggregation, particularly in acid soils.
In neutral and calcareous soils, polyvalent cations (especially
Ca®*) predominate in the interaction mechanism, forming
bridges between the largely negatively charged SOM and
negatively charged phyllosilicates (Cotrufo et al., 2013).
Short-order silicates, like allophane, provide some of the
strongest organo-mineral interactions and stabilize both pro-
teins and carbohydrate monomers, though their occurrence is
very geographically restricted (Buurman et al., 2007; Dlimig
et al., 2012: Mikutta and Kaiser, 2011). Pedogenic oxides
(for example iron oxyhydrates in rice paddies) usually act as
a coating of soil mineral particles and stabilize carbon, con-
tributing to a higher C storage and stability compared to other
soils (Song et al., 2012).

Bioturbation (the mixing of soil by organisms) may fur-
ther influence the amount as well as the chemical nature of
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Table 2. Management actions affecting soil nutrient cycles and their impact on ecosystem services.

Management  ac-
tion or other driver
of change

Provisioning service

impact

Intensive addition
of mineral fertiliz-
ers

Increased food, fibre,
and feedstock produc-
tion

Regulating ~ service Supporting  service Cultural service im-
impact impact pact

Reduced water qual- Increased primary

ity through eutroph-  production; alter-

ication, reduced air
quality through emis-
sion and volatilization
of reactive N gases

ation of the nutrient
and C cycling; pos-
sible reduction of
biodiversity

Increase C sequestra-

Increase nutrient re-
tention

671

Use of organic Increased food, fibre,

soil amendments and feedstock pro- tion
(e.0. manure,  duction; may increase
composts and  water retention

biochar)

Implementation of
no-till

Increase nutrient re-
tention

Precision agricul- Increase efficient pro-
ture duction of food
tion

Reduced GHG emis-
sions per unit produc-

Reduce consumption
of water and nutrient
by improving use effi-
ciency

Prescribed use of Increase  feedstock
fire for pasture production
management BC

Increase C sequestra-
tion by conversion to

Reduce N recycling
by storing black nitro-
gen

Use of biological
soil supplements

Stimulate productiv-
ity; act as fertilizers

May improve pest and
disease control

Improved nutrient cy-
cling

soil C. It greatly influences the heterogeneity of soils by cre-
ating hotspots of carbon and biological activity. On biologi-
cally active sites, incorporation and transformation of organic
compounds into soil is usually enhanced, leading to more
organo-mineral interactions and increased C storage (Wilkin-
son et al., 2009).

Microbial decomposition of SOM may be stimulated
by the input of labile (easily decomposed) organic matter
through the priming effect (Jenkinson et al., 1971). Positive
priming refers to greater mineralization of otherwise stable
C through shifts in microbial community composition and
activity (Fontaine et al., 2003). However, in some cases, the
addition of organic matter to soil may also impede miner-
alization of native SOM (negative priming effect), thereby
protecting SOM from its decomposition. Plant communities
(Table 1) are the main controlling factors of these processes
because they influence organic matter input and microbial
activity by their effects on soil water, labile C input, pH, and
nutrient cycling (Kuzyakov et al., 2000).

By storing and cycling C, nutrients, and water, soils pro-
vide supporting services like soil formation and nutrient and
water retention, which underpin both primary production and
landscape hydrology (the processes which deliver provision-
ing services such as food, fibre, and water; Table 1), in addi-
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tion to the regulating services such as climate regulation al-
ready discussed (Fig. 1). To ensure that soils continue to pro-
vide these key services, soil will require to be managed for
C preservation — thus mitigating climate change — while si-
multaneously permitting continued SOM recycling (Table 1).
Janzen (2006) pointed to this dilemma, that there is a trade-
off between improved soil fertility to support the provision-
ing services of food/timber production and the regulating ser-
vice of soil carbon sequestration aiding climate regulation.
Despite knowledge on which practices are likely to lead to
improved SOC status, a better understanding of the controls
on SOM distribution, stabilization, and turnover will help to
better target these practices. This will be an important contri-
bution to the mitigation of greenhouse gases, while assuring
decomposition and, with it, the cycling of nutrients necessary
to support food production. Table 1 summarizes management
actions affecting the soil carbon cycle and their impacts on
ecosystem services.

3 Soils and nutrient cycles
Soils support primary production among other services,

which in turn delivers the provisioning services of food and
fibre production (Table 2). As such, soils are vital to human-
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Figure 2. Global (a) nitrogen (N) and (b) phosphorus (P) fertilizer use between 1961 and 2012 split for the different continents in Mt P per

year; plotted from FAOSTAT data (FAOSTAT, 2015).

ity since they provide essential nutrients, such as nitrogen
(N), phosphorus (P), and potassium (K) and many trace el-
ements that support biomass production, which is essential
for the supply of human and animal food, for energy and fi-
bre production and (future) feedstock for the chemical in-
dustry (Table 2). Since the 1950s, higher biomass production
and yield increases have been supported by fertilizers derived
from mined minerals or industrial synthesis (Fig. 2). Intensi-
fication of agricultural practices and land use has in many
regions resulted in a decline in the content of organic mat-
ter in agricultural, arable soils (Table 2; Matson et al., 1997,
Smith et al., 2015). In some areas, extensive use of mineral
fertilizers has led to atmospheric pollution, greenhouse gas
emissions (e.g. N2O, very important for climate regulation),
water eutrophication, and human health risks (Galloway et
al., 2008), thereby negatively affecting the regulating ser-
vices of soil, air, and water quality (Table 2; Smith et al.,
2013). During the 21st century, it is likely that the human
population and demand for food, feed, and energy will rise.
In order to sustain biomass production in the future, and to
avoid negative environmental impacts, fertile soils need to be
preserved and soil fertility needs to be restored where lost.
This can be done through both the recycling and accumula-
tion of sufficient amounts of organic matter in soils (Janzen,
2006), through a combination of plant production and tar-
geted additions of organic and mineral amendments to soils
(see Sect. 2).

The soil function “fertility” refers to the ability of soil to
support and sustain plant growth, which relates to making
available N, P, other nutrients, water, and oxygen for root
uptake. This is facilitated by (i) their storage in soil organic
matter, (ii) nutrient recycling from organic to plant avail-
able mineral forms, and (iii) physical-chemical processes
that control their sorption, availability, displacement, and
eventual losses to the atmosphere and water (Table 2). Man-
aged soils are a highly dynamic system and it is this very
dynamism that makes the soil work and supply ecosystem

SOIL, 1, 665685, 2015

services to humans. Overall, the fertility and functioning of
soils strongly depend on interactions between the soil min-
eral matrix, plants, and microbes; these are responsible for
both building and decomposing SOM, and therefore for the
preservation and availability of nutrients in soils (Cotrufo et
al., 2013). To sustain this service, the cycling of nutrients in
soils must be preserved (Table 2).

After carbon, N is the most abundant nutrient in all forms
of life, since it is contained in proteins, nucleic acids, and
other compounds (Galloway et al., 2008). Humans and ani-
mals ultimately acquire their N from plants, which on land is
mostly taken up in mineral form (i.e. NHZ and NO3) from
the soil. The parent material of soils does not contain signif-
icant amounts of N (most other nutrients such as P largely
originate from the parent material). New N mostly enters
the soil through the fixation of atmospheric N by a special-
ized group of microorganisms. However, the largest flux of
N within the soils is generated through the continuous recy-
cling of N internal to the plant-soil system: soil mineral N is
taken up by the plant, is fixed into biomass, and eventually N
returns in the form of plant debris to the soil. Here microor-
ganisms decompose it, mineralizing part of the N and mak-
ing it newly available for plant growth, while transforming
the other part into SOM, which ultimately is the largest stock
of stable N in soil. Generally, N cycles tightly in the system
with minimal losses. Nitrogen is lost from the soil to the wa-
ter system by leaching and to the atmosphere by gas efflux
(NHg4, N2O, and N3). In most terrestrial natural ecosystems,
N availability limits productivity. Through the cultivation of
N> fixing crops, the production and application of mineral N
fertilizer, the increasing application of animal manure from
livestock and bio-wastes, and the unintentional deposition of
atmospheric reactive N (ultimately derived from industrial-
era human activities), humans have applied twice as much re-
active N to soils as the N introduced by natural processes, sig-
nificantly increasing biomass production on land (Vitousek
and Matson, 1993; Erisman et al., 2008). In some regions of

www.soil-journal.net/1/665/2015/



P. Smith et al.: Biogeochemical cycles and biodiversity as key drivers of ecosystem services 673

(a) Applied Nitrogen

(b) Applied Phosphorus

0 10 20 30 40 50 60 70 80 90

kg /ha/year
T T

i T T T ;i T —
0 10 20 30 40 50 60 70 80 90 100

kg /ha/year

H T
0 10 20 30 40 50 60

Figure 3. Applied and excess nitrogen and phosphorus in croplands. Nitrogen and phosphorus inputs and excess were calculated using a
simple mass balance model (West et al., 2014), extended to include 175 crops. To account for both the rate and spatial extent of croplands, the
data are presented as kilogram per hectare of the landscape. (a) Applied nitrogen, including N deposition; (b) applied phosphorus; (c) excess

nitrogen; and (d) excess phosphorus.

the world, mineral fertilizer is applied in excess of plant re-
quirement, but in other regions, in particular in Sub-Saharan
Africa, where economic constraints limit the use of fertiliz-
ers, productivity is strongly limited by soil available N and
other nutrients, notably P and K (N and P; Fig. 3).
Phosphorus derived from parent material, through weath-
ering, cycles internally in the plant-soil system between bio-
chemical molecules (e.g. nucleic acid, phospholipids) and
mineral forms after decomposition (e.g. H3POy). In soils, P is
among the most limiting of nutrients, since it occurs in small
amounts and is only available to plants in its dissolved ionic
forms, which promptly react with calcium, iron, and alu-
minium cations to form highly insoluble compounds. Largely
in these forms, P is lost to the aquatic system through erosion
and surface runoff. Losses may also occur in dissolved form,
for instance via subsurface flow and groundwater (McDow-
ell et al., 2015). An important form of loss is in the export of
organic P in agricultural products. Due to widespread agri-
cultural P deficiencies, humans started to mine “primary” P
from guano or rock phosphate deposits and added it to soils
in the form of mineral fertilizer (Fig. 2). This external in-
put has led to positive agronomic P balances (MacDonald et
al., 2011) and excesses of P and N in many regions (West et
al., 2014, Fig. 3). There are large variations across the world,
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with high surpluses in the USA, Europe, and Asia and deficits
in Russia, Africa, and South America (Fig. 3). Since plant P
uptake is a relatively inefficient process with roughly 60 %
of the total P input to soils not taken up in the short term, a
3-fold increase in the export of P to water bodies has been
estimated, with significant impacts on water quality (Bennett
et al., 2001).

Clearly, management practices need to be implemented
that sustain, restore, or increase soil fertility and biomass pro-
duction by promoting the accrual of SOM and nutrient recy-
cling, applying balanced C amendments and fertilization of
N, P, and other nutrients to meet plant and soil requirements,
while limiting the addition of excess fertilizer and retaining
nutrients in the soil-plant system (Table 2). C, N, and P cy-
cling in soils is coupled by tight stoichiometric relationships
(e.g. relatively fixed C : N : P in plants and microorganisms;
Gusewell, 2004); thus their management needs to be stud-
ied in concert. Nutrient management has been extensively
studied, with the aim of identifying and proposing manage-
ment practices (e.g. precision agriculture) that improve nu-
trient use efficiency and productivity and reduce potentially
harmful losses to the environment (Table 2; van Groenigen
et al., 2010; Venterea et al., 2011). Yet, our ability to pre-
dict the ecosystem response to balanced fertilization is still
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Table 3. Soil functions related to the water cycle and ecosystem services.

Soil function Mechanism Consequence Ecosystem service
Stores (storage) Water held in soil Biomass production Food
pores supports plant  Surface protection Aesthetics

and microbial com-

Erosion control

munities
Accepts Incident water infil- Storm runoff reduc- Erosion control
(sorptivity) trates into soil with tion Flood protection
excess lost as runoff
Transmits (hydraulic ~ Water entering the soil ~ Percolation to ground- ~ Groundwater
conductivity) is redistributed and  water recharge
excess is lost as deep Stream flow mainte-
percolation nance
Cleans Water passing through ~ Contaminants re-  Water quality
(filtering) the soil matrix inter- moved by biological

acts with soil particles
and biota

degradation/retention
on sorption sites

limited, and effectiveness and reliability would benefit from
continued monitoring of efforts. Further benefits are antici-
pated from improved plant varieties with root morphologies
that have better capacity to extract P from soils or use it more
efficiently, perhaps in concert with mycorrhizal symbionts.
Fertilization with nutrients other than N and P has been less
well explored within the realm of understanding soil organic
matter responses to agricultural C inputs and the potential to
restore and increase soil organic matter (e.g. Lugato et al.,
2006). Hence, we stress the importance of an integrated ap-
proach to nutrient management, which supports plant pro-
ductivity while preserving or enhancing SOM stocks, and re-
ducing nutrient losses to the atmosphere or water resources.
Several issues exist where prediction and optimization of per-
formance would benefit from relevant and continued data
acquisition for the range of climate and environmental and
agro-ecological conditions. Table 2 summarizes some man-
agement actions affecting soil nutrient cycles and their im-
pacts on ecosystem services.

4 Soils and the water cycle

Soils provide important ecosystem services through their
control on the water cycle. These services include provi-
sioning services of food and water security, regulating ser-
vices associated with moderation, and purification of water
flows, and they contribute to the cultural services of land-
scapes/water bodies that meet recreation and aesthetic values
(Table 3; Dymond, 2014). At the pedon to hillslope scale,
water stored in soil is used for evapotranspiration and plant
growth that supplies food, stabilizes the land surface to pre-
vent erosion, and regulates nutrient and contaminant flow. At
a catchment and basin scale, the capacity of the soil to infil-
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trate water attenuates stream and river flows and can prevent
flooding, while water that percolates through soil can replen-
ish groundwater that can maintain water supplies and sustain
surface water ecosystems while promoting a continued flow
during periods of reduced precipitation (Guswa et al., 2014).

The soil functions of accepting, storing, transmitting and
cleaning of water shown in Table 3 are inter-related. Soil wa-
ter storage depends on the rate of infiltration into the soil rel-
ative to the rate of precipitation. Soil hydraulic conductivity
redistributes water within and through the soil profile. The in-
filtration rate and hydraulic conductivity both depend on the
water stored in the soil. The initially high rate of infiltration
into dry soil declines as the soil water content increases and
water replaces air in the pore space. Conversely, hydraulic
conductivity increases with soil moisture content as a greater
proportion of the pores are transmitting water. Water con-
tent and transmission times are also important to the filter-
ing function of soil because contact with soil surfaces and
residence time in soil are important controls on contaminant
supply and removal (McDowell and Srinivasan, 2009).

The quantity of water which a soil can store depends on
the thickness of the soil layer, its porosity, and soil matrix—
water physical interactions. The latter are expressed as a wa-
ter retention curve, the relationship between the soil water
content and the forces holding it in place. The porosity and
water retention curve are in turn influenced primarily by the
particle size distribution and the soil bulk density, but also
by the amount of SOM and the macropores created by biotic
activity (Kirkham, 2014).

Optimum growth of most plants occurs when roots can ac-
cess both oxygen and water in the soil. The soil must there-
fore infiltrate water, drain quickly from saturation to allow
air to reach plant roots, and retain and redistribute water for
plant use. An ideal soil for plant production depends on the
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Table 4. Management actions affecting the soil water cycle and their impact on ecosystem services.
Managementactionor ~ Provisioning  service Regulating service im-  Supporting service im-  Cultural service impact
other driver of change  impact pact pact
Land use change (in- Decreased biomass; de- Increased impervious Decreased genetic  Decreased natural envi-
crease change of agri- creased availability of surface; decreased  diversity; reduction  ronment
cultural to urban) water for agricultural infiltration, storage, of rainfall recycling,
use soil-mediated  water  e.g. in the tropics
regulation
Land use change Increased yield of ani- Increased C sequestra- Increased genetic di- Change from tra-
(increase change of mal over vegetable pro-  tion; greater require- versity associated with  ditional values and
arable to intensive tein ment of water; stress mixed pastures aesthetic value
grassland) on ecosystem health of
downstream waterways
Irrigation (increase) Increased biomass over  Increased C sequestra- Improved habitat for Infrastructure alters
dryland agriculture; de-  tion, but decreased fil- plant species landscape  decreasing
creased availability of tration potential spiritual connection

water for urban use

with catchment

Drainage (increasing Decreased soil sat- Decreased C seques- Better habitat for Decreased recreational
in marginal land) uration; increased  tration, denitrification, productive  grassland potential (e.g. eco-
biomass; removal of and flood attenuation plants, but loss of tourism)
wetlands genetic diversity

climatic conditions. Soil structural stability and porosity are
also important for the infiltration of water into soil. In ad-
dition to soil texture, organic matter improves soil aggre-
gate stability (Das et al., 2014). While plant growth and sur-
face mulches can help protect the soil surface, a stable, well-
aggregated soil structure that resists surface sealing and con-
tinues to infiltrate water during intense rainfall events will de-
crease the potential for downstream flooding resulting from
rapid overland flow. Porosity (especially macropores of a di-
ameter > 75 um) controls transmission of water through the
soil. In addition to total porosity, the continuity and structure
of the pore network are as important to these functions as
they are in filtering out contaminants in flow. Furthermore,
the soil must support biota that will degrade the compounds
of interest or have sorption sites available to retain the chem-
ical species. Soil organic matter is important for these roles
and, together with mineral soil (especially the clay fraction),
provides sorption sites (Bolan et al., 2011). Flow through
macropores, which bypass the soil matrix, where biota and
sorption sites are generally located, can quickly transmit wa-
ter and contaminants through the soil to groundwater or arti-
ficial drains, but for filtering purposes, a more tortuous route
through the soil matrix is more effective (McDowell et al.,
2008). There are multiple other links between soil biota and
soil water, with water potential in particular having a pivotal
role in the structure, growth, and activity of the soil microbial
community (Parr et al., 1981).

Management of soil alters the ecosystem services provided
by water (Table 4). Soil conservation and sustainable man-
agement practices to combat desertification help to retain
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soil organic matter, structural stability, infiltration, and pro-
file water holding capacity. The promation of soil as a C sink
to offset greenhouse gas emissions generally helps to main-
tain or improve soil hydrological functions as well. Defor-
estation, overgrazing, and excessive tillage of fragile lands,
however, will lead to soil structural deterioration and a loss
of infiltration, water retention, and surface water quality (Ta-
ble 4; Steinfeld et al., 2006). Anthropogenic modifications to
the water cycle can aid soil function. In dry regimes, inade-
quate soil moisture can be mitigated through supplementary
irrigation, and where waterlogging occurs it can be relieved
by land drainage. However, irrigation and drainage can have
consequences for water regulation services. Irrigation that
enables a shift to intensive land use can increase the con-
taminant load of runoff and drainage (Table 4; McDowell et
al., 2011). Furthermore, drainage of wetland soils has been
shown to reduce water and contaminant storage capacity in
the landscape and can increase the potential for downstream
flooding, as well as increasing the potential for GHG emis-
sions due to the rapid decomposition of SOC in soil and dis-
solved organic C in drainage water (IPCC, 2013). The re-
moval of surface or groundwater for irrigation disrupts the
natural water cycle and may stress downstream ecosystems
and communities. Irrigation of agricultural lands accounts for
about 70 % of ground and surface water withdrawals, and in
some regions competition for water resources is forcing irri-
gators to tap unsustainable sources. Irrigation with wastewa-
ter may conserve fresh water resources, but the fate of water-
borne contaminants in soil and crops is a potential concern
(Sato et al., 2013).
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5 Soils as a habitat for organisms and as a genetic
resource

Soils represent a physically and chemically complex and het-
erogeneous habitat supporting a high diversity of microbial
and faunal taxa. For example, 10 g of soil contains about 1010
bacterial cells, representing more than 108 species (Gans et
al., 2005). Up to 360000 species of animals live predomi-
nantly in the soil — a large fraction of all animal species (De-
caéns et al., 2006). These complex communities of organ-
isms play critical roles in sustaining soil and wider ecosystem
functioning, thus conferring a multitude of benefits to global
cycles and human sustainability. Specifically, soil biodiver-
sity contributes to food and fibre production, and is an im-
portant regulator of other soil services including greenhouse
gas emissions, water purification (Table 5; Bodelier, 2011),
and supporting services such as nutrient cycling. Stocks of
soil biodiversity represent an important biological and ge-
netic resource for biotechnological exploitation. Previous
methodological challenges in characterizing soil biodiversity
are now being overcome through the use of molecular tech-
nologies, and currently significant progress is being made
in opening the “black box” of soil biodiversity (Allison and
Martiny, 2008) with respect to providing fundamental infor-
mation on normal operating ranges of the biodiversity under
different soil, climatic, and land use scenarios. Addressing
these knowledge gaps is of fundamental importance, firstly
as a prelude to understanding wider soil processes, but also to
better inform the likely consequences of land use or climatic
change on both biodiversity and soil ecosystem services.

The development of molecular technologies has led to a
surge in studies characterizing soil biodiversity at different
scales — from large landscape scale surveys to specific, lo-
cally focused studies using manipulation, or contrasting of
specific land uses. The large-scale surveys yield the broader
picture, and conclusions are emerging identifying the im-
portance of soil parameters in shaping the biodiversity of
soil communities (Fierer and Jackson, 2006). In essence, the
same geological, climatic, and biotic parameters which ul-
timately dictate the supporting service of soil formation are
also implicated in shaping the communities of soil biota, thus
regulating the spatial structure of soil communities observed
over large areas (Griffiths et al., 2011). Locally focused ex-
perimentation typically reveals more specific changes with
respect to local land use or climate. Most studies have fo-
cused on assessing one component of soil diversity. Next-
generation high throughput sequencing now allows the anal-
yses of “whole soil food webs”, permitting a thorough inter-
rogation of trophic and co-occurrence interaction networks.
The challenge is to consolidate both approaches at various
scales in order to understand the differing susceptibility of
global soil biomes to change.

It is essential to link these new biodiversity measures to
specific soil functions in order to understand the pivotal roles
of soil organisms in mediating soil services. The develop-
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ment of in situ stable isotope tracer methods (e.g. Radajewski
etal., 2000) to link substrate use to the identified active mem-
bers serves to clarify the physiological activity of these or-
ganisms. Additionally, whole-genome shotgun metagenomic
sequencing is now becoming an increasingly cost-effective
approach to assessing the biodiversity of functional genes in
soils (Fierer et al., 2013), potentially allowing for a trait-
based rather than taxon-based approach to understanding
soil biodiversity, akin to recent approaches applied to larger
and more readily functionally understood organisms above
ground. It is becoming increasingly apparent that function-
ality and biodiversity co-vary with other environmental pa-
rameters. Thus manipulative experimentation is required to
determine the fundamental roles of soil biodiversity versus
other co-varying factors in driving soil functionality. Table 5
summarizes management actions affecting the soil biota and
their impacts on ecosystem services.

6 Knowledge gaps and research needs concerning
soil carbon, nutrient, and water cycles, and the
role of soil biodiversity

Soil carbon cycle: Substantial progress has been made in re-
cent years towards more fundamental understanding of the
processes controlling soil C storage and in improving and de-
ploying predictive models of soil C dynamics that can guide
decision makers and inform policy. However, it is equally
true that many new (and some old) gaps in our knowledge
have been identified and research needs articulation. New re-
search on soil C dynamics has been driven in part by increas-
ing awareness of (1) the importance of small-scale variabil-
ity for microbial C turnover (Vogel et al., 2014), (2) inter-
actions between the C cycle with other biogeochemical cy-
cles (Gérdenas et al., 2011), and (3) the importance of soil
C, not only at the field scale but also at regional to global
scales (Todd-Brown et al., 2013). The most cited gaps in
basic knowledge include plant effects on SOM storage and
turnover; controls on microbial efficiency of organic matter
processing, including biodiversity, association/separation of
organic matter, and decomposing microbial communities in
the mineral soil matrix (Bardgett et al., 2008); the role of
soil fauna in controlling carbon storage and cycling, dynam-
ics of dissolved organic carbon, and its role in determining
C storage and decomposition (Moore et al., 2031; Butman et
al., 2014); black C stabilization and interactions of black C
including biochar with native soil C and mineral nutrients;
and the role of soil erosion in the global C cycle (Quinton et
al., 2010). For predictive modelling and assessment, the most
frequently cited knowledge gaps are closer correspondence
of measured and modelled SOM fractions (Zimmermann et
al., 2007), improved modelling of C in subsurface soil layers,
distributed soil C observational and monitoring networks for
model validation, more realistic and spatially resolved repre-
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Table 5. Management actions affecting the soil biota and their impacts on ecosystem services.

Management action or Provisioning service Regulating  service Supporting  service Cultural service
other driver of change impact impact impact impact

Land use change of nat- Changed genetic Decreased C seques- Changed elemental Changed di-
ural vegetation to agricul- resources; changed tration; changed pest transformation versity of soil

tural intensification

production of (pre-

and disease control

organisms (e.g.

677

cursors to) industrial elimination
and pharmaceutical of some soil
products organisms)
Use of organic amendments  Increased genetic  Increased C seques- Increased soil for- Increase in soil
resources, decreased tration mation, increased  organisms
production of (pre- primary  production
cursors to) industrial by phototrophs,
and pharmaceutical changed  elemental
products transformation
Use of broad spectrum Decreased genetic  Possible  decreased Decreased  primary Decreased di-
bioactive agrochemicals resources, decreased waste decomposition production by pho- versity of soil
production of (pre- and detoxification totrophs, changed organisms (e.g.
cursors to) industrial elemental transforma-  elimination
and  pharmaceutical tion of some soil
products organisms)
Pollution by heavy metals Decreased genetic  Possible  decreased Decreased primary Decreased  di-
or xenobiotics resources, decreased waste decomposition production by pho- versity of soil
production of (pre- and detoxification totrophs, changed organisms (e.g.
cursors to) industrial elemental transforma-  elimination
and pharmaceutical tion of some soil
products organisms)
Climate change (global Possible decreased C  Changed elemental
warming) sequestration transformation

sentation of soil C in global-scale models, and the response
to climatic extremes (Reichstein et al., 2013).

Soil nutrient cycles: In the second half of the 20th cen-
tury, higher biomass yields were supported by higher use of
fertilizer (N, P) inputs. Today, at the beginning of the 21st
century, this is not considered sustainable. Alternatives are
needed that will use inherent soil fertility and improved re-
source use efficiencies, and to prevent losses of N and P. Ex-
amples in agriculture include ecological intensification and
new crop varieties with improved ability to extract P and use
from soils. At the food system level, more effective nutri-
ent management would benefit from a focus on a “5R strat-
egy”: (1) realign P and N inputs, (2) reduce P and N losses to
minimize eutrophication impacts, (3) recycle the P and N in
bio-resources, (4) recover P (and N) from wastes into fertil-
izer, and (5) redefine use and use efficiency of N and P in the
food chain including diets and regional and spatial variability
(e.g. Snyder et al., 2014).

Soil water: The soil management practices that maintain
the ecosystem services of food and water provision, flow
regulation, water purification, and aesthetic value within the
soil and water cycle are well known. However, their appli-
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cation is not universal and poor management leads to a loss
of function. Under scenarios of increased climatic variability
with more extremes of precipitation and increased severity
of droughts, soil functions will be stressed and the level of
good soil management will be required to improve (Walthall
et al., 2012). Research into these interactions, as well as fu-
ture proofing of current good practice, is required.

Soil biota: Despite recent advances in knowledge regard-
ing stocks and changes in soil biodiversity, global-scale syn-
theses are still largely absent. Indeed, many of these highly
pertinent issues were raised more than 20 years ago (Fu-
rusaka, 1993), and to date none of these factors have been
unravelled fully. Key barriers to syntheses are the lack of
concerted soil surveys addressing multiple functions with
standardized methodologies. New technologies for soil bio-
diversity assessment generate large data sets of gene se-
quences which are typically archived in publicly accessible
databases. The adoption of such approaches for soil func-
tion measurements alongside deployment of agreed standard
operating procedures (e.g. as developed in the recent, EU-
funded EcoFINDERS project) could serve to address these
gaps. Ultimately, new methods are revealing the high sensi-
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tivity of change in soil biological and genetic resources from
threats such as management, and we now need to recognize
the distinct types of organisms found in different soils glob-
ally and understand their functional roles in order to predict
vulnerability of these resources to future change.

7 Recommendations for management activities to
support the continued delivery of ecosystem
services from soils

Best management practices that support one facet of soil
functioning tend to also support others. Building SOM, for
example, enhances soil C, soil nutrient status, improves water
holding capacity, and supports soil biota (Lal, 2004; Smith,
2012). Similarly, preservation of natural ecosystems, and
prevention of degradation or conversion to intensive agri-
culture, almost always benefits soil C, nutrients, water, and
biota. These synergies, and the fundamental role of soil,
make the goal of supporting soil function more straightfor-
ward than the goal of maximizing multiple ecosystem ser-
vices, which often involves trade-offs (Robinson et al., 2013;
Smith et al., 2013). For example, in terms of the provisioning
service of food, the highest per-area yields are often obtained
under intensive cropping, with large external inputs of min-
eral fertilizer, other agro-chemicals (such a pesticides and
herbicides), and sometimes water through irrigation (West et
al., 2014), with the most intensive forms of agriculture oc-
curring in greenhouses, where external inputs of fertilizers,
water, and energy can be extremely high (Liu et al., 2008).
Though intensive cropping produces high per-area yields,
it is not the best management system for a range of other
ecosystem services, potentially adversely affecting support-
ing services (e.g. soil formation through erosion), regulat-
ing services (e.g. climate regulation through greenhouse gas
emissions; air, water, and soil quality through leaching of
agrochemicals; pollination through adverse impacts on polli-
nators), and cultural services (e.g. reduced aesthetic value of
the landscape through large-scale monoculture; Smith et al.,
2013). Balancing the trade-offs between different ecosystems
services is, therefore, more difficult than designing man-
agement strategies that support soil C, nutrients, water, and
biota. Tables 1, 2, 4, and 5 present some examples of man-
agement activities that affect a range of soil functions, and a
number of beneficial management actions occur in most/all
of the tables. The most important of these beneficial manage-
ment activities are described below.

7.1 Land cover and use change

A number of meta-analyses (Wei et al., 2014; Guo and Gif-
ford, 2002; Don et al., 2011) show that natural systems lose
carbon when converted to agriculture, with the exception of
forest to pasture conversion, where some studies indicate car-
bon gain (Guo and Gifford, 2002) while others indicate car-
bon loss (Don et al., 2011). Given the link between organic
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matter and soil carbon, nutrients, water, and biota, conversion
of natural systems to agriculture is likely to adversely impact
all of these factors. Protection of natural ecosystems, there-
fore, benefits soil carbon, nutrients, water, and biota. Rewild-
ing of surplus agricultural land would be expected to enhance
soil carbon, nutrients, water, and biota, as seen for set-aside
land or reforestation of former cropland (Don et al., 2011).
In the absence of land cover/land use change, improved man-
agement of agricultural soils can improve soil carbon, nutri-
ent, water, and biota (Smith et al., 2015), as described below.

7.2 Improved agricultural management

Reducing soil disturbance (e.g. through reduced or zero-
tillage) is often done to improve soil moisture retention to en-
hance soil function, and can also increase SOC stocks (West
and Post, 2002; Ogle et al., 2005), though the C benefits of
no-till may be limited to the top 30 cm of soil and some au-
thors argue that the C benefits have been overstated (Powlson
et al., 2014). Baker et al. (2006) found similar soil C in con-
ventional and no-till systems, suggesting that C accumulation
is occurring at different depths in the soil profile under dif-
ferent management schemes. Given the tight coupling of soil
C and N, increased organic matter also tends to increase nu-
trient supply, and also enhances water holding capacity (Lal,
2004) which in turn improves the delivery of ecosystem ser-
vices, and can increase soil biota. Zero tillage also gives rise
to greater earthworm and arthropod populations (House and
Parmelee, 1985). Perennial crops also reduce the need for an-
nual tillage, and can provide similar benefits. Cultivation of
perennial plants with improved rooting systems is likely to
increase soil C stocks in C-depleted subsoil horizons (Kell,
2012). Land use change, such as removal of perennial plants
and subsequent cultivation, were found to affect both short-
lived and long-lived C pools (Beniston et al., 2014).

Maintaining ground cover through improved residue man-
agement, and use of cover crops during traditional bare fal-
low periods, helps to improve C returns to the soil, prevent
erosion and surface sealing, maintain soil nutrients and soil
moisture, and support an active level of soil biota (Lal, 1997).
Similar benefits can be achieved through well-designed rota-
tions and use of perennial crops or agroforestry (e.g. Mbow
etal., 2014).

Use of organic amendments increases SOM content (Lal,
2004; Smith, 2012; Gattinger et al., 2012), which, as de-
scribed above, benefits soil C, nutrients, water, and biota.
Organic amendments traditionally include crop residues, an-
imal manures, slurries, and composts. These organic matter
additions were found to improve C storage and other regu-
lating ecosystem services if repeated regularly. Recent de-
velopments, such as the use of biochar or hydrochar from
the pyrolysis or hydrothermal carbonization of crop residues
or other biomass, can increase SOC stocks and can also re-
duce soil N2O emissions and enhance soil fertility (Zhang et
al., 2010), which could be effective over multiple years (Liu
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et al., 2014). However, the properties of these materials and
their net effect on ecosystem services are strongly dependent
on production conditions (Wiedner et al., 2013; Naisse et al.,
2015). Soil amendment with compost and biochar or their
mixture may be particularly useful for increasing the regu-
lating and supporting services of degraded soils (Ngo et al.,
2014). Biochar, in conjunction with bioenergy production,
is at this stage one of the most promising technologies for
achieving the large-scale negative carbon emissions required
by the middle of the century to prevent global mean tempera-
tures from increasing above 2 °C, though this is controversial
(Fuss et al., 2014).

Optimized timing and rate of fertilizer application: Inten-
sification has increased annual global flows of N and P to
more than double natural levels (Matson et al., 1997; Smil,
2000; Tilman et al., 2002). In China, N inputs to agricul-
ture in the 2000s were twice that in 1980s (State Bureau of
Statistics-China, 2005). Optimizing the timing and rate of
fertilizer applications ensures that the nutrients are available
in the soil at a time when the plant is able to take them up,
which limits nutrient loss, hence reducing the risk of water
pollution and downstream eutrophication (Carpenter et al.,
1998). Fertilizer decision support tools can help in imple-
menting optimized nutrient management, as can soil testing
(to establish soil nutrient status before fertilization), and pre-
cision farming, to ensure that nutrient additions are targeted
where needed. Subsurface application of slurries to reduce
ammonia volatilization can increase nitrous oxide emissions,
so there can be trade-offs associated with this practice (Sut-
ton et al., 2007).

Optimized use of agrochemicals: Reduction in use of broad
spectrum bioactive agrochemicals will benefit soil biota. The
under-application of pesticides and herbicides could also
plausibly have net negative environmental impact, if it means
that more land needs to be brought into production (Carlton
et al., 2010, 2012). Optimization of agrochemical applica-
tions will also reduce water pollution through leaching.

Water management: Irrigation of dryland agriculture can
increase productivity and C returns to the soil, with the bene-
fits to soil carbon, nutrients, water, and biota discussed above,
but it can decrease filtration potential and increase the risk of
soil salinization (Ghassemi et al., 1995; Setia et al., 2011). In
waterlogged marginal lands, drainage can increase produc-
tivity and thereby increase carbon returns to the soil while at
the same time decreasing methane and nitrous oxide emis-
sions. If wetland soils are drained, oxidation of organic soils
will lead to large losses of soil C and the nutrients associ-
ated with it, decreasing the ability of these soils to carry out
services like water purification (e.g. through denitrification).
Drainage of peatlands has been associated with increased
runoff and flood risk (Ballard et al., 2012). In terms of biodi-
versity, productivity of drained marginal lands can increase
at the expense of plant genetic diversity.

Improved grazing management (e.g. optimized stocking
density) can reduce soil degradation and thereby maintain
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and enhance organic matter content (McSherry and Ritchie,
2013), benefiting soil C, nutrients, water, and biota as de-
scribed above. Higher productivity and deep-rooted grasses
can similar effects (Kell, 2012), while also modifying water
use efficiency, but potentially at the expense of plant genetic
diversity. Reduction in grazing density can reduce soil com-
paction and therefore increase infiltration and water storage
and reduce the risk of runoff and flooding downstream (Mar-
shall et al., 2009). Fire management can also increase soil C
and nutrient status of soils (e.g. Certini, 2005).

8 Conclusions

Many practices are known to enhance all or most of the func-
tions of soils considered in this review, which is encourag-
ing for our efforts to protect soils into the future. Soils are
complex, there are still knowledge gaps (outlined in Sect. 6),
and fundamental research is still needed to better understand
the relationships between different facets of soils and the ar-
ray of ecosystem services they underpin. There is a tendency
to dwell on the complexity and knowledge gaps rather than
to focus on what we do know and how this knowledge can
be put to use to improve the delivery of ecosystem services.
While more knowledge is required on where specific agri-
cultural systems are best placed to utilize and deliver ecosys-
tem services most efficiently in order to protect and enhance
our soils in the long term, best practices are well character-
ized and many can be implemented immediately. Despite a
growing population and increasing demands for resources,
enough is known to discriminate the extremes of beneficial
and detrimental agricultural practices, as well as their inter-
actions with different types of soils. A significant challenge
is to find effective ways to share this knowledge with soil
managers and policy makers, so that best management can
be implemented. A key element of this knowledge exchange
must be in raising awareness of the ecosystems services un-
derpinned by soils and thus the natural capital they provide
(Robinson et al., 2013). We know enough to start moving
in the right direction, while we conduct research to fill in
our knowledge gaps. Therefore, a challenge to soil scientists
is to better communicate what we do know while we carry
out research to better understand the things that we do not
know. The lasting legacy of the International Year of Soils
in 2015 should be for soil scientists to work together with
policy makers and land managers in order to put soils at the
centre of environmental policy making and land management
decisions.
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