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Abstract

An ability to quantify the reliability of probabilistic flood inundation
predictions is a requirement not only for guiding model development but
also for their successful application. Probabilistic flood inundation predic-
tions are usually produced by choosing a method of weighting the model
parameter space, but this choice leads to clear differences in the prediction
and therefore requires evaluation. However, a lack of an adequate number
of observations of flood inundation for a catchment limits the application
of conventional methods of evaluating predictive reliability. Consequently,
attempts have been made to assess the reliability of probabilistic predictions
using multiple observations from a single flood event.

Here, a LISFLOOD-FP hydraulic model of an extreme (>1 in 1000 year)
flood event in Cockermouth, UK is constructed and calibrated using multi-
ple performance measures from both peak flood wrack mark data and aerial
photography captured post-peak. These measures are used in weighting the
parameter space to produce multiple probabilistic predictions for the event.
Two methods of assessing the reliability of these probabilistic predictions
using limited observations are utilised; an existing method assessing the
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binary pattern of flooding, and a method developed in this paper to as-
sess predictions of water surface elevation. This study finds that the water
surface elevation method has both a better diagnostic and discriminatory
ability, but this result is likely to be sensitive to the unknown uncertainties
in the upstream boundary condition.

1 Introduction and Objectives

Broadly speaking, there are two different philosophies to uncertainty estimation
in flood inundation (hydraulic) modelling; these are Bayesian approaches that
use formal likelihood measures, and the Generalized Likelihood Uncertainty Es-
timation (GLUE) methodology, applied to hydrological predictions by Beven and
Binley (1992) which uses pseudo-likelihood functions instead of formal likelihood
functions.

The majority of flood inundation studies have used GLUE-based approaches
(e.g. Romanowicz et al., 1996; Romanowicz and Beven, 1998; Aronica et al., 1998,
2002; Romanowicz and Beven, 2003; Bates et al., 2004; Werner et al., 2005; Horritt,
2006; Pappenberger et al., 2007a,b; Schumann et al., 2008; Di Baldassarre et al.,
2009b), although some studies have adopted Bayesian approaches, (see Romanow-
icz et al., 1996; Hall et al., 2011). These studies have addressed one or more of the
types of the uncertainty in the modelling; model structural choice (e.g. Apel et al.,
2009), model friction and conveyance parameters (e.g. Aronica et al., 1998; Ro-
manowicz and Beven, 2003; Bates et al., 2004; Werner et al., 2005; Pappenberger
et al., 2007a), boundary conditions (e.g. Pappenberger et al., 2006, 2007a), and the
geometry of the floodplain (Werner et al., 2005) and channel (e.g. Pappenberger
et al., 2006, 2007a) (including the representation of natural and man-made flow
control structures such as vegetation and buildings (Beven et al., 2012)), as well as
the observed data used to condition the models (e.g. Pappenberger et al., 2007a;
Di Baldassarre et al., 2009b).

The dominance of GLUE-based approaches perhaps reflects an acceptance of
the ‘effective’ nature of the parameter values used in most inundation models; sub
grid scale processes as well as unrepresented boundary condition and structural
uncertainties are lumped into the parameterisation. It is usual that conditioning of
model parameters on observed inundation data is used to produce uncertain pre-
dictions (e.g. Romanowicz and Beven, 2003; Pappenberger et al., 2007b,a; Mason
et al., 2009, (among others)), with various pseudo-likelihood functions in use to
weight the model parameters based on their agreement with these observed data.

In Stephens et al. (2012) a LISFLOOD-FP hydraulic model of the River Dee,
UK was calibrated and uncertain flood inundation maps were produced using
different performance measures to weight each parameter set. It was shown that
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the choice of performance measure for weighting the parameter space leads to
differences in the final uncertain flood inundation map, with there being clear
differences between a new uncertain measure (that implicitly takes into account the
uncertainty in the observed water surface elevations), the RMSE and the Measure
of Fit (Critical Success Index) used in studies such as that of Aronica et al. (2002).
In this study the Measure of Fit will be referred to as the Critical Success Index
as recommended by Stephens et al. (2014) to keep the terminology consistent with
other disciplines.

Given the clear differences between uncertain flood inundation maps depending
on how they are produced, there is a clear requirement for improving the ability to
assess and quantify their reliability. This paper therefore focusses on the evaluation
of uncertain flood inundation maps. In particular, two different methods are used
to evaluate their reliability; the first method is that of Horritt (2006), and the
second method is developed to account for the reliability of water surface elevation
predictions (rather than the probability of a grid cell being wet / dry). Using these
two different methods the reliability of the uncertain flood inundation maps and
water surface elevation predictions produced using different methods of weighting
the parameter sets is evaluated.

In this study the 2009 Cockermouth flood event on the River Derwent, UK is
used as a case study. This allows for the method developed by Stephens et al.
(2012), and the associated conclusions, to be tested on a different catchment,
and is also a data-rich case study with a high spatial resolution (0.15m) aerial
photography image that shows both the flood extent at the time of the photograph
and enables identification of wrack marks to indicate water levels at peak flood.

1.1 Current methods for probabilistic evaluation of prob-
abilistic flood inundation models

As Horritt (2006) notes, evaluation of a deterministic model prediction using data
from a single event should be relatively straight forward (assuming any observed
data of the flood to be perfect or the error distribution to be well constrained),
but evaluation of uncertain model predictions is more problematic. Probabilistic
evaluation of weather models is commonplace since ensemble forecasts have been
used routinely since 1993 (NRC, 2006). This evaluation is largely enabled by a
wealth of data as, for example, predictions of weather are made and realised on a
daily basis. However, floods are rare events and consequently evaluating uncertain
flood inundation model predictions using a (very) limited number of observations
is problematic (Horritt, 2006).

Despite this, it is important for the applicability of probabilistic predictions to
be able to state their accuracy: does an 80% chance mean that the event occurs
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80% of the time? Therefore, even if the requirements of the formal probabilistic
evaluation methods used in fields such as meteorology cannot be met because of
data limitations, attempts should be made to evaluate probabilistic predictions
using the few data that are available. Accordingly, modellers of extreme events
and climate change, who have similar data limitation issues, have proposed the
use of spatial patterns of predictions and outcomes to build sufficient datasets for
evaluation (Horritt, 2006; Annan and Hargreaves, 2010).

Horritt (2006) proposed a method to validate inundation model predictions us-
ing a single observation of flood extent (hereby referred to as the Horritt method),
in effect, aggregating observations of the flooded state within each grid cell to
produce a large enough sample size. A LISFLOOD-FP model (Bates and De Roo,
2000) of a reach of the River Severn was set-up, and calibration / validation data
were provided by two SAR images of flood events in October 1998 and Novem-
ber 2000. The model was calibrated using one dataset, and validated using the
other, therefore allowing for some independence between model calibration and
evaluation.

Horritt (2006) proposed that uncertain flood maps produced using multiple
simulations that are weighted using different model parameter sets should be clas-
sified into regions of similar probability. By counting the number of observed wet
cells in each of these regions it is possible to calculate reliability and visualise it
using a reliability diagram. A perfectly reliable prediction would be one where,
for a region of cells of similar inundation probability, the percentage of wet cells in
this region is equal (or similar) to that probability. For example, if 15% of cells in
the region characterised by 10-20% inundation probability are observed as flooded
then this prediction could be considered reliable. The reliability can therefore be
calculated as an average of the differences between the average forecast / predicted
probability and the observed probability, and would take a value of 0 for a perfectly
reliable forecast.

Although the Horritt (2006) paper maintains separation between the cali-
bration and validation data, the Horritt method does not account for the co-
dependence between the observations used in the analysis. For example, it is
likely that if one cell on the floodplain has a predicted inundation probability of
50% and it is observed as being flooded, that any adjacent cells will have similar
probabilities and observations. While Horritt (2006) suggests that the issue of
only having single observations has been ‘neatly sidestepped’, it could be argued
that by using observations from the same event on the same model domain leads
to issues of co-dependence that could potentially bias the analysis.

To increase independence of observations it would be necessary to choose a
subset of cells across the domain that are not related, and given a large enough
number of cells this would be possible. However, a perhaps more sensitive and dis-
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criminatory measure might be to evaluate the water surface elevation predictions
themselves, looking at where the observations fall within the predicted distribu-
tion of water depths. Unlike the Horritt method, a method that used observations
of water surface elevations as the evaluation dataset would not require a contin-
uous flood extent to be recorded, and therefore could be applied where there are
discontinuous measurements such as wrack lines, or where the continuity of flood
outlines derived from remote sensing is limited due to dense vegetation disguising
the true flood edge in particular areas.

As well as using more ‘independent’ observations and being applicable for a
larger variety of data sources, it is hypothesised that a method that evaluates
probabilistic water surface elevation predictions will be more sensitive and there-
fore allow for better discrimination between the performance of different uncertain
flood predictions. To judge this, different performance measures are used to weight
water surface elevation predictions and produce predicted water elevation distri-
butions for points across the domain. The objectives of this paper are therefore
as follows:

1. To evaluate, for the 2009 flood event in Cockermouth, what performance
measure / weighting method produces the more reliable probabilistic flood
inundation predictions

2. To confirm the consistency of this conclusion by comparing results for cali-
brating / evaluating at time of peak flood and for the time of aerial photog-
raphy overpass during flood recession, again using the Cockermouth dataset.

3. To compare the method for evaluating probabilistic predictions that is de-
veloped in this paper with the Horritt method, determining whether they
produce the same outcomes, and which is more sensitive and therefore bet-
ter for discriminating between these different weighting methods

4. To determine what can be learnt about the model from the two different
methods for evaluating probabilistic predictions

2 Methodology

2.1 Study site and test data

The study site for this paper is the River Derwent in Cumbria, in the north-west
of England (see Figure 1). The River Derwent flows west from Bassenthwaite Lake
towards Cockermouth, where it meets the River Cocker and then continues on its
westerly path to join the Irish Sea at Workington (see Figure 2).
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An extremely large flood event occurred in the catchment in November 2009
after a prolonged period of rainfall over the mountains of the central Lake District.
At the Seathwaite Farm raingauge in the upper reaches of the Derwent catchment a
new UK record 24-hour rainfall record of 316.4mm was established for the 24-hour
period up to 00:00 on the 20th November, and estimated to have a return period
of 1862 years (Miller et al., 2013). Due to the prolonged period of rainfall (10mm
/ hour average for 36 hours) (Miller et al., 2013), levels of major lakes within the
region reached new recorded maxima and consequently their buffering effect on
downstream flows was reduced (Miller et al., 2013). Using an improved Flood
Estimation Handbook flood frequency analysis Miller et al. (2013) estimate that
the discharge return period on the Derwent at Ouse Bridge was 1386 years, and
769 years on the Cocker at Southwaite Bridge. The combined flow at Camerton,
estimated by the Environment Agency (EA) as 700m3s~! has a return period of
2102 years, with 95% confidence limits of 507 and 17706 years (Miller et al., 2013).

The re-evaluation of return periods following the flood has led to increases in
the estimates of the 1 in 100 year (21% increase) and 1 in 1000 year (38% increase)
flows used to produce deterministic flood inundation maps for the Environment
Agency, and subsequently used for planning purposes.

Gauged flow data (see Figure 3) are available for this flood event from Ouse
Bridge on the Derwent (the outflow from Bassenthwaite lake), Southwaite Bridge
on the Cocker (upstream of Cockermouth), and Camerton which is approximately
6km downstream from the confluence of the Cocker and Derwent as the crow
flies. The flood is modelled from 12:00 on 17th November 2009, before water
levels begin to rise, to 23:45 on 23rd November 2011, where water levels are nearly
back to normal levels. Flow data for the River Marron have been provided by
Professor Sear of Southampton University, by rescaling the flows in the Cocker
using the comparative size of the catchments. For the Ouse Bridge gauge, the EA
has provided metadata to advise that the stage at the peak of the flood has been
edited using estimates of the maximum flood level from a wrack survey, with the
time of peak and the infilled data estimated using correlation techniques. Further,
for the conversion to flow data using a rating curve the Quality flag is given as
‘Estimated’ and ‘Extrapolated Upper Part’. For the Southwaite gauge, the stage
data is assigned a quality of ‘Good’ throughout, with approximately 17 hours at
the peak of the flood where the information has been edited to use the back up
data from the gauge due to float and weight issues that caused slight differences in
the hydrograph. Accordingly, the Quality flag of the flow data is given as ‘Good’
throughout, and within the range of the rating curve for all but the 30 hours
around the peak flood, where the data has been extrapolated.

The Camerton gauge was severely damaged during the event, with ‘Good’
readings only recorded up to 19th November 2009 at 20:30 (68.5 hours into the
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modelled flood). After this, the only available data are through correlation with
the Southwaite gauge. The EA metadata also suggests that the river channel
became 18m wider at the site of the Camerton gauge, thereby rendering useless
the rating curve that existed for the site. For this study we ignore the data from
the Camerton gauge, but make use of the data from the other gauges. Although
the metadata reports show that there are some quality issues with the flow record
for this flood, these are typical for such a large event. Ideally the uncertainty in
the gauged data should be accounted for, however, this was considered as outside
the scope of this paper, which aims to develop methods for assessing reliability,
addressing in particular the different methods of weighting the parameter space
examined in Stephens et al. (2012). Significant further work is required to look
at the data in more detail to examine how to place upper and lower limits on the
uncertainty envelope for the rating curve for an event such as this with a flow of
twice the size of the next largest flood event. The implications of this boundary
condition uncertainty are considered when drawing conclusions from this study.

LiDAR elevation data at 2m resolution are available for the reach from the
Ouse Bridge gauge to a few kilometres downstream of the former Camerton gauge
(see Figure 2). The Digital Elevation Model (DEM) used in this study is an
almagamation of data from flights in 1998 and April / May 2009, with the majority
sourced from a dataset collected in 1998. LiDAR data of this resolution from 1998
have a vertical Root Mean Square Error (RMSE) of approximately 0.25m (personal
communication with Al Duncan, EA). The channel bed elevations have been burnt
into the DEM using ground survey information from a 1D hydraulic model of the
catchment provided by the EA.

Aerial photography of the flood is provided by the EA (see Figure 4 for an area
of the image). According to the metadata provided the flight took place between
13.10 and 14.50 on November 20th, so for the purpose of comparing to model
results the time is taken as 14:00, (86 hours into the flood event as modelled).
These data have a horizontal resolution of 15cm. An outline of a flood extent
derived from the aerial photography was provided by the EA, and this was edited
using the imagery as a reference to improve its precision, and then converted
to points. This dataset of points has then been cut down by removing points
which would likely be erroneous (such as at the boundary of, or underneath, dense
vegetation), as well as next to walls or other vertical features where an accurate
delineation of the elevation at the edge of the flood could not be achieved. This
results in a total of 3724 data points. Well defined wrack marks are visible along
much of the extent of the flood in the aerial photograph (see Figure 5). Manual
digitisation of these marks has provided a total of 177 maximum water elevations,
intersected with the LiDAR topographic data to provide maximum water surface
elevations for further comparison with model results. The aerial photography data
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will provide a stern test for the model on the falling limb of the flood. At the time
of aerial photography overpass, flows still remained out of bank (as can be seen
from the imagery), and so the floodplain is not considered to be draining at this
point. However, it is worth noting that coarse resolution models have been shown
to be poor at draining the floodplain (Bates et al., 2006; Wright et al., 2008; Neal
et al., 2011).

While in many studies aerial photography is used as a benchmark to assess
the accuracy of satellite observed flood extents (Horritt et al., 2001; Mason et al.,
2007), thereby assuming it to be accurate and precise, here this assumption is
not made since these data will contain unknown errors. This is demonstrated
in Figure 6, where there is obvious deviation from a smooth water surface for
what should be an easy 200m stretch of floodplain to delineate the flood extent
from. These deviations from a smooth water surface will be from two sources; the
first being geolocational errors in the (manual or automatic) demarcation of the
outline and the geocorrection of the data, and the second; errors in the LiDAR
data used in the intersection of the flood extent and the topography. While it
could be argued that the deviation would be smaller if the points were better
digitised, these points have already been manually repositioned from the data as
provided by the EA, and consequently any better recorrection of these 2000+
data points would be a significant time burden. Also, and as can be seen in
Figure 6, there is some confusion over whether the edge of the water surface lies
at the edge of the sediment-laden area of water, or whether it lies at the edge of
the surrounding darker area of vegetation which could be the current flood level,
emergent vegetation or simply wet vegetation that has been previously flooded.
Further, the vertical height errors that are incorporated with the intersection with
the LiDAR data could be in the region of 0.25m RMSE, and cannot be removed.

2.2 Model Set-Up and Calibration

A 2D LISFLOOD-FP model was set-up using the inertial formulation of the shal-
low water equations as decribed by Bates et al. (2010). The model incorporates
the LiDAR topographic data outlined above rescaled to 20m resolution to enable
multiple simulations to be run without unreasonable computational cost, and the
gauged data as upstream boundary conditions. The gauged data for Camerton
have not been used as a downstream stage-varying boundary condition due to the
known poor data quality. Instead a free boundary condition has been imposed
using test runs of the model to approximate the water surface slope at this part of
the catchment, which was shown to vary slightly from the local valley slope. The
model is run for 167.75 hours, from 12.00 on 17th November 2009 to 23:45 on the
23rd November 2009, across a domain 100km? in size (including No Data cells).
A simulation of the model run on 4 processors of the University of Bristol’s Blue
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Crystal supercomputer takes between 1.5 and 2 hours depending on the friction
parameters used, and the model runs with very small mass balance error.

The upland nature of the upper Cockermouth catchment means that channel
friction values might be higher than lowland rivers such as the Dee due to a gravel
bed, and consequently, floodplain friction values may possibly be lower than those
for the channel due to the pastural land use which dominates the floodplain across
the catchment. While it is expected that parameter values are effective, physically-
based parameter ranges can be used to define the parameter space. According to
Chow (1959) pasture with short grass would have a minimum Manning’s n of 0.025,
and a gravel bed would have a minimum of 0.030. Some areas of the catchment are
heavily forested or have medium to dense brush, which might be expected to have
a maximum Manning’s n value of 0.12 (Chow, 1959). To ensure that the entire
range of potential friction values are sampled, but also accepting that friction as
specified in LISFLOOD-FP also acts as an ‘effective’ parameterisation (to account
for unrepresented model structures such as sub-grid scale topographic features,
and also unquantified uncertainties such channel topography and input flows), the
parameter space is defined by channel and floodplain friction values of between
0.02 and 0.14. Calibration of the model was carried out by randomly sampling
300 parameter sets from the parameter space.

Four different measures are used to assess the performance of each of the three
hundred parameter sets. The first is the water surface elevation comparison de-
scribed by Mason et al. (2009), which is simply the Root Mean Square Error
(RMSE) between the DEM elevation at each point on the observed flood margin,
and the nearest water surface elevation in the model. If the cell that the observed
point occupies is not flooded in the model, then an algorithm looks around ad-
jacent cells (and then at cells of an increasing distance away) to this point until
the water surface elevation is found. If multiple cells of an equal distance to the
observed data point have a water surface elevation value then the value of the
cell with the closest DEM elevation to the observed data point will be used. The
second performance measure is the binary Critical Success Index (CSI):

B A
- A+B+C

Where A is the number of cells correctly predicted as flooded (wet in both
observed and modelled image), B is the number of overpredicting cells (dry in
observed but wet in modelled) and C is the number of underpredicting cells (wet
in observed but dry in modelled).

The third performance measure, Perc_50 is the percentage as optimum measure
detailed in Stephens et al. (2012), developed to provide an (implicit) representation
of the uncertainty in the observed data into the calibration process. For this
measure, ten thousand subsets of fifty points are taken from the observed dataset,

CSI (2.1)
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and the parameter set which produces the lowest RMSE for each subset is recorded.
The frequency for which each parameter set occurs as the optimum is calculated,
and converted into a percentage of the total number of subsets that have been
evaluated.

The fourth performance measure, Perc_1 is similar to the third, except that it
uses subsets of 1, i.e. just individual data points, and then records the optimum
parameter set for each of the individual points. Again, the frequency for which
each parameter set occurs as the optimum is recorded, and turned into a per-
centage of the total number of subsets that have been evaluated. It was decided
to additionally use this measure (compared to Stephens et al. (2012)), since by
sampling each point it may be possible to implicitly account for the full range of
observed data uncertainty, with no averaging over observation errors. For example,
a single observed water surface elevation, will contain some unknown uncertainty
due to LiDAR data errors and potentially geocorrection errors when intersecting
the observed outline with the topographic data, but provided that enough data
points are used, the LiDAR topographic errors and any geolocational errors will
be accounted for by combining the results from all of these points to look at the
effect of the uncertainty on the modelled parameter space. This assumes that the
errors are random rather than systematic.

The Perc measures allow for areas of the parameter space to be rejected, thereby
acting as a behavioural threshold. One criticism of this measure could be that a
model could be rejected by using this measure even if its performance compared
to an optimal model could not be differentiated from the [estimated] observational
error. There is no averaging of the observation errors in Perc_1, and so it provides
an alternative approach to model rejection. To test whether it is this rejection cri-
teria that influences reliability, or the measure itself, two more weighting methods
are used based on a simple adjustment of the RMSE and CSI weightings. These
RMSE* and CSI* inundation maps are constructed using a simple adjustment of
the RMSE and CSI weightings by setting all weightings for the RMSE and CSI
measures to 0 for parameter sets that are deemed non performing from the Perc_1
measure.

Other studies have represented the uncertainty in observational data more ex-
plicitly; Pappenberger et al. (2007a) use a fuzzy map of flood extent and a global
fuzzy performance measure, and Di Baldassarre et al. (2009b) produced a ‘pos-
sibility of inundation map’ by looking at how the model calibration varies when
different methods of determining the flood outline from two different SAR im-
ages of a flood event are used. However, these existing studies have focussed
on the uncertainty in the pattern of flood extent. Such contingency table based
performance measures have been shown to be problematic for model calibration
given their sensitivity to spatial variations in topographic gradient (Stephens et al.,

10
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2014), as such, research efforts should focus on the use of water surface elevation
observations instead. Some studies have used an explicit representation of the
uncertainty in satellite-derived water surface elevations for predicting flood wave
propogation using a 1D model (Di Baldassarre et al., 2009a) and discharge (Neal
et al., 2009), but this has yet to be addressed for (2D model) predictions of the
pattern of flood inundation.

There is certainly a requirement for future inundation modelling studies to
address explicit representations of uncertainty in water surface elevation observa-
tions, and these should also be tested using assessments of reliability. This was
considered to be outside the scope for this study, as it would require a considerable
amount of discussion on how best to address the multiple sources of error in the
observed data, such as the affect of wind on the deposition of wrack marks or on the
reflectance of the water surface for SAR imagery, error due to LIDAR resampling
or registration errors in remotely sensed imagery. Accordingly, this study focusses
on the behaviour of the Perc measures in comparison to the Critical Success Index
and RMSE.

2.3 Probability of inundation maps

The generalized likelihood uncertainty estimation (GLUE) technique of Beven and
Binley (1992) has been extended to estimate spatially distributed uncertainty in
models that are conditioned using the binary pattern of flooding extracted from
satellite data (e.g. Romanowicz et al., 1996; Aronica et al., 1998, 2002; Romanow-
icz and Beven, 2003). An ensemble of the model is run with each ensemble member
using a different parameter set. These ensemble members are weighted in a prob-
abilistic assessment of flooding based on their ability to match an observed binary
flood extent. While these earlier studies conditioned uncertain predictions based
on the model’s ability to match the binary pattern of flooding, Mason et al. (2009)
detailed how the weighting could also be based on a model’s ability to match a
set of observed water surface elevations, and Stephens et al. (2012), extended this
water surface elevation comparison to use multiple subsets of these observed data.
This percentage as optimum performance measure converts easily to a weighting
because it sums to a percentage.

For the RMSE and CSI measures, parameter sets are weighted based on how
they perform on a sliding scale from the best performing parameter set (weight-
ing=1) to the worst performing parameter set (weighting=0). For example:

RMSE, — RMSE,,
RMSE s — RMSE

Using the GLUE procedure extended by Aronica et al. (2002) it is possible to
calculate and then map the probability (Pf lOOd) that a given pixel is inundated.

Weighting = (2.2)

11



408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

Pflood _ Ej fz’jo (2'3)
l 2 Wi
Where j is the number of model simulations, f is the flooded state of the pixel
(1 = wet, 0 = dry) and W; is the weighting given to each model simulation.

2.4 Methods for evaluation of probabilistic predictions

Stephens et al. (2012) showed how these different methods of calculating the Pif tood
in each cell led to clear differences in the uncertain flood inundation maps pro-
duced. Consequently it is important to be able to evaluate how the use of different
weighting methods influences predictive skill. It is possible to carry out such an
evaluation by assessing the reliability of model predictions. Detailed below are two
different methods of evaluating the reliability of uncertain flood inundation maps
used for this study.

2.4.1 Assessing reliability using the Horritt method

A reliability diagram allows for a visual assessment to be made of whether the
model is over or underestimating probabilities, by plotting the predicted probabil-
ity on the x-axis, and the observed probability on the y-axis. A perfectly reliable
prediction would lie on the 1:1 line. The reliability can be quantified as an average
of the differences between the average forecast / predicted probability and the
observed probability (Stephenson et al., 2008):

Reliability = E > n(fe —ox)’ (2.4)
Ni=

Where f;, is the mean of the probability forecasts of event k occurring (in each
bin), and o, is the observation of event k. N is the total number of observations,
n is the number of events that fall into each bin m. Such an evaluation of reliabil-
ity requires a wealth of event data which is problematic given the (very) limited
number of observations of flood inundation (Horritt, 2006).

Despite this, it is important for the demonstration of the applicability of proba-
bilistic predictions to be able to give some estimate of their reliability. Accordingly,
modellers of extreme events and climate change, who have similar data limita-
tion issues, have proposed the use of spatial patterns of predictions and outcomes
to build sufficient datasets for evaluation (Horritt, 2006; Annan and Hargreaves,
2010). Assuch, Horritt (2006) proposed assessing reliability using the probabilities
of inundation assigned to each cell.

For the Horritt method Equation 2.4 is adjusted such that f; is the mean of
the probability forecasts of a cell being flooded k& (in each bin), and o is the
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observation of flooding k in each bin. N is the total number of observations, n is
the number of events that fall into each bin m. Note that for the Horritt method
model cells where the predicted probability of flooding = 0 are ignored in the
calculation since they account for the vast majority of the domain and therefore
would bias the result.

2.4.2 Assessing reliability of water surface elevation predictions

To achieve an assessment of the reliability using water surface elevation predictions
rather than the probability of inundation in each cell the following methodology
is proposed:

The first step is to calculate a predicted water surface elevation probability
distribution for each cell, based on a weighting using the performance measures
used in Stephens et al. (2012). It is important to sample from a large parameter
space so that the limits of the probability distribution are not predetermined by a
subjective choice of potential parameter sets. For observations where the modelled
water surface elevation is zero an algorithm is used to search, with a increasing
distance away from the observation cell, for the nearest water surface elevation.
Where two cells of equal distance away from the observation contain water, the
water elevation value from the cell with the closest topographic elevation to the
observation cell is used.

The next step is, for each observation, to record where it lies within the pre-
dicted probability distribution. These records of observation location can be rep-
resented in a cumulative frequency plot, where the number of observations that
fall within each bin of predictions is plotted. If the predictions are perfectly re-
liable the gradient of the line should be 1 since 10% of observations would fall
within the first 10% of the probability distribution, 20% within the first 20%, and
so on. Where the gradient is steeper than the 1:1 line then, in general, there has
been an overestimation of the uncertainty in the model. Where the gradient is
less steep than the 1:1 line there has been an underestimation of uncertainty, with
observations having been made that lie outside of the predicted range.

An indication of bias within predictions, or where the full range of uncertainty
has not been adequately captured, can be seen by identifying where the line inter-
cepts with the vertical lines of x=0 (the y axis) and x=100. The intercept with
the y axis is the percentage of observations that fall outside the lower bounds of
the predicted probability distribution of water surface elevations. The intercept
with the line x=100 can be substracted from 100 to give the percentage of obser-
vations that fall outside the upper bounds of the predicted probability distribution
of water surface elevation predictions. The reliability of model predictions using
this method can also be quantified using a calculation similar to Equation 2.4, by
finding the difference between the expected and observed cumulative frequency of
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observations 2.5. For the wse reliability the cumulative reliability is calculated
rather than an isolated comparison of the expected and actual number of observa-
tions in each bin to ensure that no model is penalised for bringing the probabilistic
predictions back towards the expected 1:1 line. For example, if no observations fell
within the first bin (0%-10% decile), then if 20% of observations fell in the (10%-
20% decile), then the first bin should be penalised for a 10% difference, but the
second bin should not be because it brings the overall percentage of observations
in the first two bins back to the expected value. As such, for the WSE method E,,
is the expected number of observations to have fallen up to and including bin m,
and the O,, is the actual number of observations to have fallen up to and including
bin m. If the bins were set as every 10%, then the total number of bins would be
10 and so the expected value for each individual bin inside the distribution would

be 10%.

1 m
Reliability = ¥ > n(En — O0p)° (2.5)

3 Results

3.1 Modelled parameter space using different performance
measures / data sources

Figure 8 shows the parameter space of the LISFLOOD-FP 2D model for different
performance measures using the aerial photography data. The Perc measures
provide well defined (perhaps spuriously precise) optimum friction values, whereas
the drop-off in performance across the parameter space is less defined for RMSE
and CSI. The RMSE measure (Plot a) and CSI (Plot b), show that these parameter
spaces are unexpected or at least unusual compared to those for other catchments
(such as the Dee), in that the model shows no real sensitivity to channel friction,
only floodplain friction. This sensitivity is also seen in the calibration using the
peak flood wrack mark data (Figure 9). This might be explained by putting this
particular flood event into context - the flows during this extreme event are so
large that the channel friction has little effect on the amount of water that flows
out of bank, and also in some areas the floodplain becomes the channel as flood
waters bypass river meanders. In effect, the entire valley floor is acting as a single
channel unit in conveying the large flows; the channel is only a small proportion
of the total flow area, and so floodplain friction is by far the dominant control on
flood extent.

Optimum friction parameter sets for each measure and each dataset are shown
in Table 1. For such an extreme event upstream boundary conditions are unlikely
to be error-free, and as described previously, the friction parameters used in the
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modelling should also be considered as ‘effective’ given that they also compensate
for subgrid scale processes. Accordingly, some deviation from physically realistic
values for friction are to be expected, but a modeller that finds a ‘physically
realistic’ parameterisation may have overconfidence in thinking that the model is
robust with respect to other uncertainties. Here, the RMSE measure gives the most
physically realistic floodplain friction optimum of around 0.03 for short pasture,
the CSI measure finds higher than expected values, and the Perc measure does not
find a well-defined optimum within the areas of the parameter space that might
be considered to be physically realistic. However, it is important to assess whether
these ‘physically realistic’ parameterisations produce reliable predictions.

It might be possible to conclude that there is no significant difference between
the RMSE and CSI measures, given that the RMSE difference is less than the
LiDAR data vertical error of 0.25m. However, care should be taken when drawing
conclusions from averages of data. A histogram of the distribution of the two sets
of model errors paints a more complete picture, giving an indication of the shift
in the distribution of errors rather than just the difference between the means
of each distribution. Figure 6 shows the error structure of two model parameter
sets with RMSEs of 0.5624 (blue) and 0.4015 (red). It demonstrates that while
the difference in RMSE is only 0.16m, a shift of approximately 0.4m would be
required for the distributions to match, and this, backed up by the medians of
each distribution (-0.0335 and 0.450083), is actually greater than the observed data
error. Nevertheless, the observed data RMSE of 0.25m itself masks a distribution
of errors, and therefore firm conclusions can not be drawn.

If a significant difference between the RMSE and CSI measures is assumed,
it could be concluded that the CSI measure gives a much larger optimum value
for floodplain friction than the other performance measures, while the broader
pattern of non-sensitivity to channel friction remains the same. This comparison
between parameter spaces can only be undertaken for the time of aerial photog-
raphy overpass, since the CSI measure cannot be calculated for the discontinuous
wrack marks dataset.

This optimum for higher floodplain friction parameters is investigated using
a visual comparison between the observed dataset and the model output for two
simulations with a fixed channel and different floodplain frictions (respectively of
[0.027,0.026] and [0.027,0.057]). There are several areas across the domain where
the higher floodplain friction simulation better matches a particular area of the
observed extent than the low floodplain friction simulation (such as in the top
right area of the catchment shown in Figure 10), but in doing so the higher flood-
plain friction simulation fails to match the areal pattern in nearby areas. These
areas of unexpected inundation are not relics of observed data error, since there is
strong agreement for multiple data points and they are clearly visible in the aerial
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photography. This suggests that higher floodplain friction simulation is perhaps
correctly matching the observed inundation in specific areas for the wrong reasons.
There are several possible explanations for the inability of the lower floodplain fric-
tion simulation to capture these flooded areas; the model may have a resolution
too coarse to accurately capture bank heights, or processes not represented in the
lower friction model such as bank failure might be important. Consequently, it is
thought that the higher floodplain friction simulation is matching the pattern of
flooding better, but for the wrong reasons.

Stephens et al. (2012) and Stephens et al. (2014) described the CSI measure’s
sensitivity to topographic slope, caused by it being more sensitive to correctly
matching areas of the domain with low slope, where water elevation changes lead
to greater changes in the areal pattern, rather than where gradients are steeper.
Similarly, in this study calibration carried out using the CSI performance measure
is more sensitive to (relatively) small parts of the model domain where there are
large areal changes caused by tipping points (such as a bank being breached),
than capturing the general pattern across the whole model domain. While for
some applications it may be (more) important that the model correctly predicts
these specific areas than the general pattern, caution should be exercised since the
model could be capturing them for the wrong reasons or there could be observed
data errors, therefore leading to a poorly calibrated model. While it is believed that
for this case study the CSI might be showing the model matching the flood extent
better but for the wrong reasons, it will be important to test this by evaluating
the uncertain predictions produced when parameter sets are weighted using this
and other performance measures.

In general there is more agreement in the form of the parameter space where the
same performance measure is used for the two different datasets than between the
measures themselves. This suggests that there is some consistency in parameter
performance for two different times during the flood, but given that the interval
between these datasets is relatively short, this consistency is less likely to occur for
when flows are considerably different either during the same event or for different
events.

The Perc_1 and Perc_50 plots distinguish areas of the parameter space that are
non-performing, where parameter sets never appear as the optimum using multi-
ple realisations of the observed data. Perc_50 shows (as would be expected) larger
non-performing areas than Perc_1, since subsets of 50 act to average the range of
uncertainty that can be represented using each individual point. The Perc mea-
sures hint that the optimum parameter sets sit to the margins of the parameter
space, which suggests that the model (or at least its floodplain) contains too much
water. This could be due to errors in the specification of the upstream flows, which
is quite likely because of the potential errors in the gauged data detailed earlier in
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this paper, or alternatively due to geomorphological changes during the flood event
that increased the capacity of the river channel. Such geomorphological changes
can be identified in a post-flood LiDAR dataset of the event, and consequently
will have some effect, although it is not possible without further modelling to be
confident of whether this or incorrect upstream flows are the cause of the apparent
bias in the model. Ignoring the CSI measure due to its known problems, it is inter-
esting that the RMSE shows a well defined optimum within the parameter space,
and this demonstrates the need for evaluating whether the Perc measures or the
RMSE provides more reliable predictions. As mentioned earlier in this study in
Section 2.4.2; it is important to ensure that the parameter space is large enough so
that the limits of the predicted probability distribution are not predetermined by
a subjective choice of potential parameter sets. The identification of optimum pa-
rameter sets at the margins of the parameter space for the Perc measures suggests
that this may be an issue; however the lower bounds for the roughness parameters
are limited by model stability rather than subjectivity, which is not untypical for
hydraulic models and is not thought to affect the conclusions drawn in this study.

3.2 Uncertain Inundation Maps

The Probability of Inundation maps shown in Figure 11 demonstrate the effect that
the choice of weighting method has on the mapping of flood hazard. Weighting
measures that act to discard areas of the parameter space as non-performing mean
that the flood margin becomes more certain / less blurred. This could lead to
spurious precision, or could be an effective way of determining which parameter
sets should be discarded or given low weighting: this can only be assessed by
looking at the reliability of the predictions.

3.3 Reliability

A reliability plot using the Horritt method is shown in Figure 12, and the associated
quantifications of this reliability can be found in Table 2. Note that the Horritt
method requires a binary flood map of wet / dry areas, so can only be carried
out using the aerial photography evaluation data since the wrack marks do not
provide a continous boundary. Additionally, the reliability calculations for the
Horritt method are strongly influenced by the number of cells predicted as having
a 100% probability of flooding. Figure 12, Panel 2 does not use independent
calibration and validation data, so the analysis here is focussed on Panel 1.
Figure 12, Panel 1 (calibration using wrack marks deposited at the time of
peak flood) clearly demonstrates that the RMSE weighting overpredicts inundation
probabilities, and that the Perc_50 method is an improvement on the RMSE,
showing no bias but still some noise. As would be expected, the RMSE* method
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[0.0087] performs considerably better than RMSE [0.0161] since it uses the Perc_1
method to discard non performing areas of the parameter space (parameter sets
that never appeared as an optimum using multiple realisations of the observed
data). Closest to the 1:1 line is the Perc_1 method [0.0070], which shows little
bias or noise. There is only one non-performing point for the Perc_1 method that
deviates far from the 1:1 line, and this could be due to the small number of data
points in that category. Although drawing conclusions from Plot 2 should be done
with caution because it uses the same dataset for calibration and validation data,
it can clearly be seen that the CSI performance measure produces even less reliable
predictions than RMSE.

The reliability plots using the new water surface elevation method are shown in
Figure 13. In this Figure panels la) and 2b) use the same dataset for calibration
and evaluation and so are not discussed. The WSE reliability plot for the time of
flood peak (1b) reiterates the results of the Horritt method, showing that the CSI
weighting produces the least reliable predictions, with RMSE also quite unreliable.
These show that, on the whole, modelling using these weighting methods produces
an overestimation of flood depths. The plotted line is always above the 1:1 line,
showing that, in the case of CSI, 80% of observations fall within the first 20% of
the predicted distribution of water depths. Discarding areas of the RMSE and CSI
parameter spaces using Perc_1 enables a small improvement in reliability (RMSE*
and CST*), but the overestimation of flood depths remains. The Perc_50 method
appears to have less bias than the RMSE or CSI, but should be penalised for the
number of observations (approximately 20%) that fall outside the upper limit of
the predicted range. The Perc_1 appears to be the best weighting method since
it lies close to the 1:1 line and no observations fall outside the upper limits of
the predicted WSE distribution. This conclusion is solidified by the calculated
reliability shown in Table 2, where Perc_1 has clearly the best WSE reliability
of 0.0133, and the RMSE* (0.1072) and CSI* (0.2120) measures do not perform
better than even Perc_50 (0.0254). Markedly, the CSI measure (0.3028) has a
poorer WSE reliability than an equal weighting (0.2361) would provide.

The WSE reliability plot for the time of aerial photography (2a) in general
shows that the model is less reliable after the flood peak (1b) than before it, and
this is backed up by an approximate halving of the (best) reliability score for
Perc_1. It could also be argued that for the peak flood (1b) the model shows a
tendency towards underpredicting flood depths (certainly for Perc_1), whereas for
the aerial photography (2a) there is definite overprediction. Previous studies such
as Wright et al. (2008) have shown model accuracy to diminish after peak flood,
and this result is repeated for the 2009 Cockermouth event. The reliability plots
used in this study suggest that the (effective) parameters used in LISFLOOD-FP
modelling become less ‘effective’ post flood peak, in that they can no longer account
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for as much of the uncertainty in the modelling post flood peak. Consequently it
will be important to account for these uncertainties explicitly.

It is possible to compare the Horritt and WSE reliability methods by looking
at the evaluation for the time of aerial photography overpass calibrated using the
wrack marks dataset (Plot 1 of Figure 12 and Plot 2a of Figure 13). While it ap-
pears at first that the two plots are ‘switched’ in that the points in the former lie
mostly to the bottom right side of the diagonal, and in the latter the points lie to
the top left, actually the plots show the same pattern. The WSE reliability plots
give an indication as to what percentage of the observations have fallen within
the corresponding cumulative percentile of the predicted distribution. As such,
while (for example) the RMSE calibration is shown for the Horritt reliability to be
overpredicting the probability of inundation, the WSE reliability plot shows that
more observations than expected have occurred for a particular predicted cumu-
lative percentile; e.g. the model has overestimated the likelihood of higher water
surface elevations. The WSE reliability plot also provides additional information
to the Horritt reliability plots; demonstrating the percentage of observations that
fall outside the predicted distribution of water surface elevations.

It is clear that Perc_1 is the most reliable weighting method, but there is
disagreement between the Horritt and WSE reliability methods over the worst
performing weighting method. The WSE method suggests that it is Perc_50, but
the Horritt method identifies RMSE. This is because the Horritt method does not
penalise observations falling outside the range of predictions: the Perc_50 method
for the time of aerial overpass shows only 60% to 70% of observations to fall within
the predicted WSE distribution, and the line has a more shallow gradient than 1:1.
The WSE method therefore makes clear that this Perc_50 method underestimates
the full range of uncertainty, probably because it has discarded too many parameter
sets as non-performing. RMSE is again quite an unreliable measure (note that
there is no CSI measure for this because of the calibration using the discontinuous
wrack marks), but RMSE* shows considerable improvement due to the link with
the Perc_1 measure.

4 Discussion

One of the aims of this paper was to evaluate the most reliable performance mea-
sure for weighting parameter sets to produce uncertain flood inundation maps. As
well as the conventional performance measures of RMSE and CSI, the Perc mea-
sure, developed in Stephens et al. (2012), was also used to address how observed
data errors are accounted for in the calibration process. Unlike the Perc_50 mea-
sure, which uses multiple subsets of 50 data points, the Perc_1 measure records,
using individual observed data points, the number of times that each parameter set
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appears as the optimum. This measure of agreement provides a parameter space
that appears to give the best overall picture of the likelihood of each parameter
set being the optimum.

Both methods of assessing model reliability show that the Perc_1 measure pro-
duces the most reliable predictions, and this result is consistent for the validation
data at the time of peak flood and at the time of the aerial photography over-
pass. This is a surprising result as, up until now, observations are usually grouped
together into a ‘global’ dataset for model calibration. While Pappenberger et al.
(2007b) highlight the importance of a vulnerability-weighted model calibration to
produce an improved local model performance, e.g. with respect to locations of
critical infrastructure, we show that considering observations individually can ac-
tually improve the global performance. But RMSE, as a measure which uses an
average of all the (uncertain) observed data, will be influenced by outliers. As
there is no reason to discard such an outlying point (unlike points that are in
densely vegetated areas), there is still a (perhaps very small) chance that it is
correct, and that all other points are affected by some systematic error. Therefore
with these outliers influencing model calibration, it is important that they are used
proportionately.

In the Perc_1 measure an optimum parameter set that is only agreed upon by
one data point will only be given a small weighting proportionate to the level of
agreement, whereas for RMSE this data point will influence the characteristics
of the entire parameter space. Perc_1 therefore reduces the influence of what
are likely to be erroneous data points, but gives them some weighting based on
their agreement with the rest of the observed dataset, such that if 10 out of 1000
observations point at a particular optimum parameter set, this parameter set will
be given a weighting of 1%.

It could be argued that the Perc_1 measure should incorporate some kind of
limits of acceptability approach so that a model is not rejected on this measure
when its difference from an optimal model is less than the observational error.
However, it is extremely rare to be able to adequately quantify the error in ob-
servations of flood extent, due not only to the availability of suitable validation
datasets, but also because of the complexity of predicting the effect of wind on
the deposition of wrack marks, or on the reflectance of the water surface for SAR
imagery.

The Perc_1 methodology implicitly accounts for the potential uncertainty, ar-
guably providing a different approach to acceptability rather than applying a sub-
jective behavioural threshold based on a simple estimation of observed data un-
certainty for the limit of acceptability. If there were observed data of multiple
flood events on a catchment, and none showed a particular parameter set as an
optimum, then this parameter set would surely be rejected. The Perc_1 measure
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applies this logic (albeit with assumptions) to multiple observations from the same
flood event; in this approach each observation is treated as a separate observation,
such that if a parameter set is never the ‘optimum’ the agreement or lack of in the
Perc_1 measure is used to define acceptability. Ideally, this of course requires that
all sources of uncertainty are accounted for, as potentially areas of the parame-
ter space might be discarded that would otherwise be acceptable, if, for example,
boundary condition uncertainty were taken into account.

Assessing reliability is a good way of testing the methodologies for defining ac-
ceptability and weighting the parameter space. In this study the focus was on the
treatment of observed data for model calibration, and so the boundary condition
uncertainty has not been taken into account. To provide a preliminary assessment
of the sensitivity of the results described in this paper to upstream boundary con-
dition uncertainty, a change in the hydrograph was simulated by taking / adding
different amounts from the water surface elevations produced by the ensemble
modelling Figure 14. These changes are commensurate with the changes seen
when changing the hydrograph by a fixed percentage for a single parameter set,
as indicated on the figure. The Brier reliability was recalculated for each applied
change to give an indication of its sensitivity to boundary condition uncertainty.
Figure 14 therefore demonstrates that if, in reality, the flows were consistently 10%
lower then the choice of optimum weighting method would be different. Given that
the uncertainty in the upstream boundary condition during this flood is unknown,
this sensitivity urges caution when considering the robustness of these results.

Future work should explicitly incorporate boundary condition uncertainty into
the analysis, as well as produce and test a methodology that incorporates a more
detailed and explicit representation of observed data uncertainty, incorporating, for
example, the resampling errors of the LiDAR data. Further studies are needed to
confirm whether the conclusions are robust on different flood events with different
magnitudes. Namely, does the Perc_1 measure produce the most reliable predic-
tions for flood events of smaller magnitude, and can weighting using these smaller
events still provide reliable inundation possibilities for extreme events such as the
1 in 1000 year return period flood? Further, would a more explicit representation
of uncertainty in the observed data produce more reliable predictions?

The other main aim of this study was to develop a new method for evaluating
uncertain flood inundation predictions, and then compare the results from this
with those from the Horritt method. One of the advantages of the WSE method
is that it can be used for discontinuous datasets (such as the wrack marks in this
study), and it therefore has wider applicability. On top of this, and despite both
reliability methods coming to the same overall conclusion, there are differences in
the level of information provided by each that indicates that the WSE method
is more discriminatory, since it produces a wider range of reliability scores, and

21


vk906480
Comment on Text
This is new text.

vk906480
Comment on Text
This was originally:

A secondary aim of this study

vk906480
Comment on Text
This is a rewritten version of this:

"However, future research questions might like to address the number of parameter sets and / or observations required for a reliable prediction. Further, careful consideration should be paid as to whether the conclusions drawn in this study are robust given the uncertainty in the boundary conditions and for flood events of different magnitudes. Namely, does the Perc 1 measure produce the most reliable predictions for flood events of smaller magnitude, and can weighting using these smaller events still provide reliable inundation possibilities for extreme events such as the 1 in 1000 year return period flood? Further, would a more explicit representation of uncertainty in the observed data produce more reliable predictions?"


vk906480
Cross-Out
I've deleted a fair bit in here because I decided I didn't like it, it didn't quite fit in with the narrative I've set up in the discussion:

"The results of the reliability evaluation in this study show that this method of amalgamating results from individual data points to weight model predictions produces probabilities of water surface elevation that are more reliable than the methods previously adopted, and provides a mechanism for discarding areas of the parameter space when observed data error cannot be quantified sufficiently to allow for a robust application of a limits of acceptability approach. This method of assessing model performance across a parameter space can be undertaken for every study where there are a number of distributed measurements of flood extent or water surface elevation."


788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

also has wider diagnostic capabilities since it provides more information than the
Horritt method. For example, the Horritt method does not show any bias when the
Perc_50 measure is used, but the plots of cumulative reliability for the WSE method
clearly show that this measure underestimates the range of uncertainty in the
model. This underestimation is caused by discarding areas of the parameter space
as ‘non-performing’ when they should still be taken into account when producing
the uncertain estimates of flood hazard. Further, the WSE method can show
whether and how many of the water surface elevation observations lie within the
predicted range. If they do not, then this hints at epistemic uncertainty that needs
to be addressed.

The Horritt method is poor at telling the modeller of model underprediction,
and this is especially the case for cells that had a predicted probability of flooding
of 0. Depending on how the domain is set up, large proportions of the cells in
it would have predicted inundation probabilities of 0, including cells that lie well
outside or above the floodplain. If some of these cells did in reality flood then
the flooded percentage would be biased by the sheer number of cells that have
a predicted probability of 0, therefore the Horritt method does not quantify how
wrong these predictions are.

Similar problems can be seen for overprediction of flooding. Cells that have
a probability of inundation of 1 (or perhaps even 0.9 or greater), and that are
observed as flooded, may have considerably greater water surface elevations than
were predicted, but this would not be recognised or penalised. The WSE method
is be able to diagnose whether observations of water surface elevation fall outside
the upper limit of the predicted distribution of water surface elevations. Further,
it makes it possible to understand where the majority of observations lie within
the predicted distribution.

Model evaluation using the WSE method has proved a useful diagnostic tool
that provides more information about model performance than the Horritt method,
giving an indication of the percentage of observations that fall outside the upper
and lower limits of the probability distribution of water surface elevations. In the
case of the Cockermouth flood it can be seen (using the Perc_1 measure which
has been identified as producing the most reliable predictions), that at the time
of the peak flood the model has around 12% of observations that fall below the
lower limits of the range of water surface elevation predictions, which increases to
around 22% at the time of the aerial photography overpass. Despite there being
no other study for comparison, that 88% of peak flood observations fall within the
predicted range could be considered good for a model that only takes into account
parameter and observed data uncertainty, and especially for such an extreme flood
event where the errors in the inflow and wrack mark data are likely to be high.
The drop in model performance only a few hours after peak flood suggests that
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new sources of uncertainty need to be taken into account to produce a similar
reliability to predictions made of the peak flood, and as mentioned previously the
uncertainty in geomorphological change during the flood, or in the gauged flow
data should be investigated.

Despite the apparent improvement in assessing reliability that the WSE method
has over the Horritt method, this method is by no means a perfect test of prob-
abilistic model performance. Such spatially-averaged approaches are problematic
in that reliability is likely to be highly variable in space (Atger, 2003), and so an
averaged estimate of reliability might hide local variations in model bias (Toth
et al., 2003). For example, the spatially-averaged reliability is likely to hide lo-
calised performance, for example, a perfect reliability might be recorded, but half
of the domain might be overestimating probabilities and the other half underesti-
mating them (Ferro, 2012). However, given the limited number of observations of
flood inundation on a single catchment, the best that can be achieved is a careful
analysis that requires a balance between achieving a sample size that is sufficient
for a robust statistic, and being able to dissect localised variations in performance
(Toth et al., 2003).

5 Conclusions

This study aimed to determine which performance measure should be used to
weight model parameter sets to produce reliable assessments of uncertain flood
hazard. It was shown that the most reliable method is one that assesses the
range in model performance across the parameter space by running multiple model
calibrations using each of the observed data points individually. This result is in
contradiction to current approaches used to map flood inundation, which generally
group observed data points. However, an indicative assessment suggests that this
conclusion may be sensitive to boundary condition uncertainty. Consequently it
will be important to understand whether this conclusion is robust for flood events
of different magnitude and in differenct locations.

This study has strong implications for the methodologies used for uncertain
inundation mapping by practitioners; an uncertain treatment of observed data in
the calibration process has been shown for the Cockermouth flood event to provide
more reliable flood probabilities, and within or post-event surveyed water levels
(where in abundance) are the best observed data to do this with because they will
contain less uncertainty than water levels processed from remotely sensed extent
data. In turn, these derived water levels have wider potential for use than binary
maps of flood extent for model calibration and evaluation. It could be argued
that these results reflect the better quality assurance carried out when processing
extents to water levels, and to some extent this is true, but it is perhaps more
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reflective of the ability of water elevation comparisons to make better or broader
use of the available data.

In assessing these weighting methods a new method of evaluating the reliability
of uncertain flood inundation predictions has been developed by recording where
observations lie within predicted probabilistic water surface elevation distributions.
This method not only has the advantage over existing methods of being applicable
for observations that are discontinuous, such as wrack marks or remote sensing
images in vegetated areas, but it is also a more discriminatory technique with
better diagnostic capabilities. It gives an indication of whether uncertainty is being
under or over estimated, whether there is bias in the model, and also calculates the
percentage of water surface elevation observations that fall within the predicted
range.

Consequently, this WSE method has provided useful information about the
LISFLOOD-FP model of the Cockermouth flood event. It demonstrates that, at
peak flood, 88% of water surface elevation observations fall within the predicted
model range, suggesting that the model does not take into account the full range
of uncertainty seen in the observations (assuming the observations to be error-
free), and as the 12% of observations outside the predicted range lie outside the
lower limits of the distribution, the model is clearly biased towards over-predicting
flood depths, and the source of this bias should perhaps be further examined. As
some of the water surface elevation observations will be erroneous (for example the
wrack marks could have been laid down after the peak flood), perhaps this figure
is within the limits of acceptability for these data, and therefore it could be said
that the model is performing well, but it would be interesting to observe how this
figure might change if a higher resolution model were used, or model results were
resampled onto higher resolution topography.

This study also shows model performance decreasing over the course of the
flood, suggesting that the uncertainties that are not accounted for have greater
influence after the flood peak. Further research could aim to improve model reli-
ability by taking into account the uncertainties introduced into the modelling by
gauged flow errors and geomorphological change, and evaluate whether different
model complexities can better represent these uncertainties. It could also address
how the resolution of the topographic data used in the model influences reliabil-
ity, and whether improving the resolution of topographic data limits the number
of observations that fall outside the predicted range of water surface elevations.
Further investigation could also examine the potential for using the Perc measure
as a discriminatory tool to identify subtle differences between the performance of
different model structures and the benefits of including explicit representations of
different sources of uncertainty.
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Table 1: Optimum parameter sets of channel (ch) and floodplain (fp) friction
identified using different performance measures for both aerial photography and
wrack marks

Aerial Photography Wrack Marks
Measure  ch fp Value ch fp Value
CSI 0.026 0.057 83.67% (0.61m) - - -
RMSE  0.038 0.029 0.40m 0.034 0.036 0.28m

Perc 50 0.054 0.022 12.42% (0.41m) 0.034 0.036 29.1% (0.28m)
Perc.1  0.047 0.02 20.76% (0.47m) 0.047 0.02 12.99% (0.48m)

Table 2: Brier Reliability for Different Uncertain Calibrations of the Cockermouth
Model. Numbers in italics indicate where calibration / validation data are the
same.

Aerial Photography =~ Wrack Marks
Weighting Method Horritt WSE Horritt ~WSE

Wrack RMSE 0.0157 0.038 - 0.1304
Wrack RMSE* 0.0079 0.053 - 0.0279
Wrack RMSE** 0.0133 0.128 - 0.0255
Wrack Perc_50 0.0157 0.1106 - 0.0581
Wrack Perc_1 0.0098 0.0221 - 0.0150
AP RMSE 0.0157 0.0991 - 0.1304
AP RMSE* 0.0126 0.0460 - 0.1072
AP RMSE** 0.0115 0.2467 - 0.0235
AP Perc_50 0.0170 0.0435 - 0.0254
AP Perc_1 0.0087 0.0201 - 0.0133
AP CSI 0.0265 0.2467 - 0.3028
AP CSI* 0.0213 0.1998 - 0.2120
Equal 0.0268 0.2262 - 0.2361

29



E Ordnance
=== Survey’

0 200 km
I N

River Derwent
Catchment

© Crown copyright 1999

Figure 1: Location map showing the River Derwent catchment in the north-west
of England. Source: Ordnance Survey

30



Elevation

P High : 202.219
0 1000 2000 Metres
(T

B Low: 1.9931

Camerton

(destroyed 2008 < COC OUTH

® Southwaite Bridge

Figure 2: Topographic map of the River Derwent using LiDAR data at 2m reso-
lution, showing location of gauges (red points). Source: Environment Agency
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Figure 3: Gauged upstream flows for the River Derwent at Ouse Bridge, the River
Cocker at Southwaite Bridge and the River Marron, with gauged downstream flows
for the River Derwent at Camerton. Source: Environment Agency
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Figure 4: Extent of the aerial photography flown during the flood event. Source:
Environment Agency

Figure 5: Example of wrack marks visible in the aerial photography adjacent to
the then-current flood extent. Source: Environment Agency
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Figure 10: Difference in modelled extent compared to aerial photography for a high
and low floodplain friction parameter sets on a subsection of the domain covering
the Cockermouth area.
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Figure 12: Horritt Reliability at the time of aerial photography overpass using
calibrated weightings from 1) peak flood (wrack marks) and 2) aerial photography
extent elevations. Greyed out plot indicates where the calibration / validation
data are the same.
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Figure 13: WSE Reliability for 1) Flood Peak using a) Wrack Marks, b) Aerial
Photography, and 2) Time of Aerial Photography using a) Wrack Marks and b)
Aerial Photography. Greyed out plots indicate where the calibration / validation
data are the same
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Indicative change applied to hydrograph
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Figure 14: Change in Brier Reliability for different weighting methods if water
depths are added / taken from the model results to represent boundary condi-
tion uncertainty. Bar along top gives indication of change in depths for different
percentage change to flows.
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