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Abstract

This paper describes a new approach to detect and track
maritime objects in real time. The approach particularly
addresses the highly dynamic maritime environment, pan-
ning cameras, target scale changes, and operates on both
visible and thermal imagery. Object detection is based on
agglomerative clustering of temporally stable features. Ob-
ject extents are first determined based on persistence of de-
tected features and their relative separation and motion at-
tributes. An explicit cluster merging and splitting process
handles object creation and separation. Stable object clus-
ters are tracked frame-to-frame. The effectiveness of the
approach is demonstrated on four challenging real-world
public datasets.

1. Introduction

Ocean-going vessels with valuable or sensitive cargo
are increasingly demanding the capability to detect poten-
tial threats in real time to ensure the security of that cargo
as well as the crew. Threats on the open ocean are expected
to originate from other vessels, especially pirate operated
vessels, which need to be detected and tracked in order to
assess the risk. However, detecting and tracking objects
at sea presents challenges not normally present for land-
based systems. This includes a highly dynamic background
whereby lighting and meteorological conditions severely in-
fluence the motion and appearance of waves, the variety
of objects and their profiles (ranging from skiffs to fishing
boats to oil tankers), varying object dynamics and appear-
ance, and non-stationary sensors. Existing representative
maritime trackers [5, 6, 7, 8, 9, 13, 14, 15] are limited in
that some rely on strong context, such as reliably detecting
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the horizon [6], require substantial training [9, 13], oper-
ate on only a single modality (visible [6, 8, 9, 13], thermal
[5, 14, 15] with the exception of [7]), or are not robust to sig-
nificant camera movement (for example, panning), or scale
changes (including small targets) [7, 16].

This paper addresses the above issues by proposing a
real-time tracker that operates on dual modalities, is ro-
bust to panning and scale changes, and exploits minimal
scene context. The tracker involves clustering of the identi-
fied temporally stable features, and handling cluster merg-
ing and splitting over time to generate tracks. We evaluate
the proposed algorithm on challenging datasets.

2. Related work

Motion-/change-detection-based methods suppress the
background (sea and sky) returning regions most likely
to obtain vessels [5, 8]. However, these methods also
rely on stationary cameras, which cannot be guaranteed
at sea. Other approaches avoid the background suppres-
sion problems by performing horizon detection and lim-
iting the search space to the area immediately above [6].
However, these approaches assume sensing from near to the
sea surface for objects to appear above the horizon which
is not valid for ship installations. Some approaches ap-
ply learning-based detectors (e.g. HOG [9], MACH [13])
to capture general shape and appearance information about
objects. However, the detector would have to be exposed to
a formidable training effort to capture all possible variations
of vessels that might be observed. An observation that sig-
nificant image structure only exists in the region of objects
of interest is exploited while applying a Difference of Gaus-
sians filter to both visible and thermal imagery [7]. How-
ever, it is not clear how large-scale changes of objects can
be easily handled. Motion saliency methods [16] represent
a promising approach to object detection, however the same
scale issue applies. One of the most notable approaches for
detection of maritime objects of interest is temporally sta-
ble image features [15]. This work also focuses on tempo-
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Figure 1. Block diagram presenting different stages of the pro-
posed tracking algorithm.

rally stable features combined with a real-time agglomera-
tive clustering approach to demonstrate the effectiveness on
both visible and thermal imagery.

3. System description
The proposed approach detects features and performs

matching across multiple frames to identify those which are
‘stable’ (Fig. 1). The stable features are then clustered
based on the motion similarity. The clusters are tracked
over a number of frames under the assumption that objects
appear as groups of stable features with similar motion.

3.1. Temporally stable feature detection

This stage involves first detecting keypoints at each
frame n and matching them temporally to identify the stable
features. To detect keypoints in a frame we used the Cen-
SurE feature detector [4] that is computationally faster than
SIFT and SURF. The set of features in the current frame
is Fn = {fn1 . . . fnm . . . fnM}. Matching is performed by
comparing the widely-used SIFT descriptors [10] of the de-
tected keypoints in frame n and the most recent descriptors
for a set of active features, Fnactive = {fl}Ll=1, accumulated
over all previous frames based on the Fast Approximate
Nearest Neighbour search [11]. In principle, other detector-
descriptor combinations can also be used. fnm is consid-
ered correctly matched to its nearest neighbour in Fnactive if
the quality score, Q ≥ 0.4 (chosen empirically), such that
Q = 1 − S1

S2
; where S1 and S2 are the distance scores for

fnm from its nearest neighbour and the second-nearest neigh-
bour, respectively, and Q ∈ [0, 1]. S1

S2
= 1 indicates poor

discrimination between the best and second-best matching,
which in turn indicates that this feature is not distinctive.

Each detected feature, fl, in Fnactive has an associated
confidence score cl that increases by 1 in the case of a cor-
rect match for it and decreases by 1 if it remains unmatched
in the current frame. fl is regarded as temporally stable
if cl ≥ 5 and a list of temporally stable features at frame
n is therefore given as follows: Fnstable = {fl|cl ≥ 5}. If
cl = 0, fl is removed from Fnactive. Allowing at least 1
frame for the clustering step (see next sections), at least 5+1
frames are needed to initially detect an object. Additionally,
we make the assumption that all correctly matched features
contain a common motion component due the motion of the

camera. The mean and standard deviation of velocities of
temporally stable features in the current frame are calcu-
lated and any features whose velocity lies outside 3 standard
deviations of the mean remain unmatched.

3.2. Motion-based feature association

Using the assumption that objects of interest will occupy
regions in the image larger than the minimum resolution of
the feature detector, it follows that a single object will result
in a group (or ‘cluster’) of several features corresponding to
different parts of the object. This provides robustness to
feature detection and matching errors as the position and
extent of the object can still be estimated from a subset of
its features. Furthermore, using the assumption that mar-
itime objects can be modelled as rigid bodies, features that
lie on the same physical object will exhibit similar motion.
We therefore propose an agglomerative feature clustering
method which estimates the location and extent of maritime
objects by clustering features based on the similarity of their
motion in the image.

We define a distance metric, D, to quantify the dissimi-
larity between the tracks of stable features {fi, fj} present
in the current frame (where i ∈ [1, L], j ∈ [1, L] and i 6= j).
Dn
i,j represents the average dissimilarity of the instanta-

neous velocities of fi and fj up to n, computed over the
subset of the frames, k, where fi and fj are both detected.

The dissimilarity in direction, θ̄ki,j , is found by calculat-
ing the normalised absolute difference of the angles, φi and
φj , that the velocity vectors make counterclockwise with
the x-axis:

θ̄ki,j =
θki,j
π
, 0 ≤ θ̄ki,j ≤ 1; (1)

θki,j =

{
||φki − φkj | − 2π| if |φki − φkj | > π,

|φki − φkj | otherwise.
(2)

A single value for the tracks of fi and fj is generated by
summing the values of θ̄ki,j and dividing by the number of
frames where both features are detected, K, thus making
Θn
i,j invariant to the number of detections in the lifetime of

a feature:

Θn
i,j =

∑
{fi,fj}∈Fk

θ̄ki,j

K
, 0 ≤ Θn

i,j ≤ 1. (3)

The magnitude of the velocity of feature i at frame k, mk
i ,

is taken as the Euclidean norm of the vector but taking
the absolute difference yields an unbounded value. A ra-
tio would be more appropriate, but this can penalise slow-
moving features. To overcome this, the ratio of the vector
magnitudes is first subtracted from 1 to yield a value in the
range [0, 1] according to how dissimilar the magnitudes are.
This value is multiplied by a normalisation function, N(m),



that takes as its argument the magnitude of the faster fea-
ture. Thus, the magnitude dissimilarity score, λki,j , is as

follows: λki,j = N(mk
i ) ×

(
1−

mk
j

mk
i

)
, mk

i ≥ mk
j ; where

N(m) = 1
1+e(p−m) such that p is a tunable parameter that

sets the 50% confidence value (N(p) = 0.5). For small
magnitudes, the normalisation function reduces the level of
the ratio-based dissimilarity to account for noise. For large
magnitudes (where the effect of noise is negligible), the nor-
malisation function≈ 1 so has no effect on the dissimilarity
score. In our tests, p = 3.0 pixels was used, meaning that
magnitudes of ≈ 10 pixels were considered large enough to
be unaffected by noise.

As with Θn
i,j , the overall dissimilarity in magnitude, Λni,j ,

is calculated by averaging the values for all frames where
both features are present:

Λni,j =

∑
{fi,fj}∈Fk

λki,j

K
, 0 ≤ Λni,j ≤ 1. (4)

Finally, Dn
i,j is found by taking the magnitude of the Eu-

clidean vector comprised of Θn
i,j and Λni,j :

Dn
i,j =

√(
Θn
i,j

)2
+
(
Λni,j

)2
. (5)

An artificially large value for D (= 1000) is created for fea-
tures that have no frames in common (K = 0).

3.3. Graph-based agglomerative clustering

We propose a cluster analysis technique which belongs
to the class of hierarchical clustering methods known as ag-
glomerative clustering in which a cluster is initially created
for each observation and groups of clusters are subsequently
merged into a hierarchy. Cutting the hierarchy at different
levels will yield a different number of clusters. The aim
is to select the cutting level such that each feature cluster
corresponds to exactly one object in the image.

For each frame, an undirected graph, Gn, is formed by
creating a vertex for each feature and an edge, ei,j , for
each feature pair, fi and fj , in the set of stable features
for the frame, Fnstable. The dissimilarity, Dn

i,j , between
the feature pair is taken as the edge weight, ωi,j , for ei,j .
Edge weights above a certain threshold, Dmax, are not in-
cluded in Gn. The value of Dmax therefore sets the cutting
level of the cluster hierarchy. Edges are also excluded if
they link two features which are greater than a maximum
distance, R = 50 pixels, from each other in the image.
Gn = (Fnstable, E

n), where En is the set of edges of Gn.
En = {ei,j |ωi,j < Dmax & |rnj − rni | < R}, where rni and
rnj are the positions (x-y pixel coordinates) of the ith and
jth feature.

Due to the exclusion of edges, Gn is likely to consist
of several disconnected sub-graphs (clusters), one for each

potential object in the scene. As with individual features,
we are interested in clusters which are temporally stable,
as these are more likely to be true objects. A cluster must
persist even if its features are not always present or linked
with the same weights. At the same time, clusters must be
allowed to grow and shrink to accomodate new feature de-
tections and remove features which are no longer detectable
or were incorrectly associated with a cluster.

To handle this, another graph, A, is used. The vertices
of A represent stable features from previous frames. A sta-
ble feature in Fnstable is added to A if it is not already in
A. Each edge in A has a weight, ani,j , which represents the
affinity between features fi and fj at frame n. A feature’s
affinity with another feature should increase in proportion
to how frequently and recently they have been associated;
the converse is also true. Edge weights increase linearly by
an amount, α, with each subsequent re-association. With-
out re-association, the weights of edges decay at a constant

rate: ani,j =

{
an−1i,j + α if ei,j ∈ Gn,
an−1i,j − 1 otherwise.

Once the edge weight reaches some threshold, Wlink,
the two features are considered linked. If an edge weight
decays completely (ani,j = 0), then the two points are un-
linked (the edge is removed from A). For each frame, the
tracker outputs the set of tracked clusters, Tn, which is
the set of disconnected sub-graphs of A, where ani,j > 0
and ani,j has exceeded Wlink at some point in the past:
Tn = {C|C ⊂ A & ani,j > 0 & ∃k : an−ki,j ≥ Wlink}.
An object cluster contains at least two features; so the res-
olution of the feature detector constrains the smallest de-
tectable object size (CenSurE features can theoretically be
detected at adjacent pixels). The creation and removal of
links cause changes in the cluster structure. Fig. 2 illustrates
this process. When a link is created (ani,j ≥Wlink): if none
of the features belong to an existing cluster, a new cluster is
created; if a feature belongs to an existing cluster, its newly
connected features join the cluster (if they are not already
in a cluster); if two newly-connected features belong to dif-
ferent clusters, the clusters are merged into a new cluster
which is assigned the oldest identifier of the two original
clusters. When a link is removed (ani,j = 0): features that
lose all their links to features within a cluster are removed
from that cluster; features with no links to existing clusters
are removed from A; an A* graph traversal is performed on
every cluster which has lost at least one link to determine
if any disconnected sub-graphs have been formed. If so,
this cluster is split into sub-clusters, one of which keeps its
identifier and the others are given a new identifier.

Clustering is therefore controlled through three param-
eters: Dmax controls the propensity of features to asso-
ciate with each other, α controls how quickly links are
formed and Wlink controls how long links survive without
re-association.
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Figure 2. Illustration showing how the evolution of the cluster
structure is governed by the affinity graph, A.

4. Experimental results
This section presents the experimental results and val-

idation of the proposed tracker on well-known publicly-
available datasets containing visible and thermal imagery.
We first describe the experimental setup (Sec. 4.1) followed
by the evaluation and analysis (Sec. 4.2).

4.1. Experimental setup

We show the effectiveness of the proposed tracking al-
gorithm on 4 challenging sequences from the i-LIDS [1],
MAR [2], PETS05 [3] and SMARTEX [5] datasets. The
MAR sequence is recorded with a visual camera, whereas
the remaining three sequences contain thermal imagery. Ta-
ble 1 presents a summary of the sequences.

For a quantitative performance evaluation of the pro-
posed tracker, we use two recent state-of-the-art evalu-
ation measures: Multiple Extended-target Tracking Er-
ror (METE) and Multiple Extended-target Lost-Track ra-
tio (MELT) [12]. These measures account for the key as-
pects of tracking evaluation including accuracy and cardi-
nality errors, provides positional and size evaluation, and
are parameter independent unlike their existing counterparts
[12]. METE provides a frame-level performance evalua-

Table 1. Summary of the sequences. Key. NF: number of frames;
ST: single target; TM: translatory motion; DB: dynamic back-
ground; CZ: camera zooming; CA: compression artefacts; SC:
scale changes; MT: multiple targets; CP: camera panning.

Sequence Sensor Frame Size NF Challenges

i-LIDS MWTRA2003 Thermal 584 × 511 500 ST, TM, DB
MAR wakes-2 Visible 640 × 480 1997 ST, CZ, CA, DB
PETS05 zod2 Thermal 640 × 480 1000 ST, SC, DB
SMARTEX AIM Thermal 704 × 567 2000 MT, CP, DB

tion while quantifying accuracy and cardinality errors. The
lower METE, the better the tracking performance. We use
mean METE score across the sequence to provide the over-
all performance assessment as done in the original paper
[12]. MELT provides a sequence-level evaluation based on
the use of lost-track-ratio and also helps in analyzing the
application-specific performance over a variation of accu-
racy levels, τ , as described in [12]. The lower MELT, the
better the tracking performance.

The sequences used contain several frames where the ob-
jects are not present. Such frames are included in the eval-
uation as, in real applications, a tracker may need to cope
with such scenarios. Indeed, for these frames the metrics
penalise the performance score in the case of false positives
and improves the score in the case of true negatives.

4.2. Evaluation and analysis

Dmax, α and Wlink are key parameters in the algorithm
and their choice can affect the performance. We study the
effect of the variation of these parameters on tracking per-
formance. For all sequences, we first vary Dmax between
0 and 1 keeping the other two parameters initially fixed at
α = 3 and Wlink = 10 (Fig. 3(a)). We choose Dmax =
0.31 that minimises the combined mean METE score across
all sequences. We use mean METE in this procedure as
it accounts for both accuracy and cardinality errors in the
evaluation. Similarly, we vary α between 1 and 50 for all
sequences, keeping Dmax = 0.31 and Wlink = 10 fixed
(Fig. 3(b)) to choose the value of α = 3 using the same
criteria. Finally, the same procedure is followed for Wlink,
varying it between 1 and 50 (Fig. 3(c)) to choose the value
of Wlink = 1. We therefore choose Dmax = 0.31, α = 3
and Wlink = 1 based on the sensitivity analysis across all
four sequences. We separately performed statistical signif-
icance testing for the mean METE scores obtained over a
variation of the three parameters (Fig. 3(a-c)). We employ
the Welch ANOVA test [17] since we have multiple (four)
samples of data each containing mean METE scores cor-
responding to a dataset. Additionally, unlike the one-way
ANOVA test, Welch ANOVA does not assume equal vari-
ances of samples. Statistical significance is achieved at the
standard 5% significance level for the case of each of the
three parameters.

Using MELT we analyse the performance of the pro-
posed tracking algorithm for varying accuracy levels, τ ,
(Fig. 4) with Dmax = 0.31, α = 3, Wlink = 1. For
example, for a specific application, if the desired accuracy
level is τ = 0.25, then the tracker provides a performance
of MELTτ = 0.568 on i-LIDS, MELTτ = 0.829 on MAR,
MELTτ = 0.362 on PETS05, and MELTτ = 0.430 on
SMARTEX.

We also present the overall quantitative performance of
the tracker on all sequences in the form of mean METE and
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Figure 3. Mean METE scores obtained by the proposed tracker on all sequences for a variation of (a)Dmax, (b)α and (c)Wlink parameters.

MELT (average of MELTτ values computed in Fig. 4) as
listed in Table 2. In terms of mean METE the best perfor-
mance is achieved on i-LIDS followed by MAR, SMAR-
TEX and PETS05. Indeed, a substantially lower (better)
mean METE on i-LIDS and MAR is achieved due to the a
large number of frames in these sequences where no object
is present and the detector interestingly shows the ability
of generally not producing false positives in those frames
(Fig. 5(a,e)). In terms of MELT, the scores in general are
high, which suggests a limited ability of the tracker to track
objects over a longer duration with a higher accuracy.

As given in Table 2 we calculated the computational cost
of the algorithm in terms of frames per second (FPS) on all
sequences with the original frame resolution (Table 1) on
a machine with following specifications: Dual-processors
(Intel R© Xeon R© CPU E5-2687W V2) each containing 8
cores, multi-threaded; 64GB RAM; Kubuntu 14.04. The
algorithm provides an encouraging real-time performance.
The significantly larger FPS for i-LIDS and MAR is be-
cause of several frames with no objects present (Table 2).

We also analysed the robustness of the tracker to two key
challenges in maritime scenarios: camera panning and tar-
get scale changes. The tracker was found to be able to deal
with these two challenges. We present qualitative examples
of results in Fig. 5(i-l) to show the robustness of the tracker
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Figure 4. MELTτ scores obtained by the proposed tracker on all
sequences for a variation of τ

in dealing with scale changes satisfactorily on the PETS05
sequence. Likewise, we show qualitative examples of re-
sults in Fig. 5(m-p) where the tracker tracks stationary (m)
and moving (n-p) targets under substantial panning of the
camera on the SMARTEX sequence.

5. Conclusions and future work
We presented an approach for detecting and tracking

maritime objects in real time, which operates on both visible
and thermal imagery. The effectiveness of the approach was
demonstrated on four challenging real-world public datasets
exhibiting the challenges of a highly dynamic maritime en-
vironment, moving camera, small targets, and compression
artefacts. The proposed algorithm generally shows encour-
aging frame-level tracking performance in terms of accu-
racy and cardinality errors, ability to minimise false posi-
tives particularly in frames where no object is present, and
an encouraging real-time performance. Additionally, the
proposed algorithm shows robustness in dealing with cam-
era panning and scale-change challenges. The algorithm
however shows a limited ability in terms of tracking targets
over a longer duration. Future work will focus on perform-
ing comparisons of the proposed algorithm with existing
ones on a larger sequence set and improve on the long-term
tracking ability.
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