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Site Trmin (°C) | Tmax (°C) | Evidence® Age (MIS) | Source
Happisburgh Il (Bed E) -3-0 | +16—-18 | Coleoptera 21 or 25 2,10
Pakefield (Bed Cii—Ciii) -6—+4 | +17 - 23 | Coleoptera 17 or 19 2,5
Boxgrove (Unit 4c & -4 —+4 | +15-20 | Ostracods (MOTR) & 13 2,7,8
Freshwater Silt Bed = Herpetofauna (MCR)

Units 4b & 4c)

Happisburgh | (Organic -11--3 | +12-15 | Coleoptera 13/150r17 | 2,5
Mud)

High Lodge (Bed C1) -4—+1 | +15-16 | Coleoptera 13 5
Waverley Wood - | +10-15 | Coleoptera 13 or 15 5,11
(Channel 2, Organic

Mud)

Brooksby (Redland’s -10-+42 | +15-16 | Coleoptera 13 or 15 5
Brooksby Channel)

Barnham (Unit 5c; Holl) - | +17 - 18 | Herpetofauna 11 6
Hoxne (Stratum D5; -10—+6 | +15—-19 | Coleoptera 11 3,4
Hollla®)

Bilzingsleben -0.5—+3 | +20-25 | Mollusca & ostracods’ 11 9

Table 1: Winter and summer temperature estimates for Early and Middle Pleistocene

north-western and north-central European sites. 'Sensitivity tests on coleoptera-

based MCR procedures suggest that winter temperature estimates are usually too

warm (Pettitt and White 2012:35); Ashton and Lewis 2012 (Pakefield listed as -4 —

+6°C); *Ashton et al. 2008a; “Coope 1993; *Coope 2006; *°Holman 1998; "Holman

1999; ®Holmes et al. 2009; *Mania 1995 (the specific source of the palaeo-

temperature estimates is not stated, but the fauna includes molluscs and ostracods);

Oparfitt et al. 2010: **Shotton et al. 1993.




Species Home range! Density’ | Mobility* Site examples
M. martes 3-82km’ 1/0.8-10km?’ | Solitary; not highly Swanscombe (LL)*
territorial; hunting trips
upto 28km
F. sylvestris 0.6-3.5km? | 1/0.7-10km’ | Sedentary; nomadic Boxgrove®
Swanscombe (LG)*
C. fiber 500m-5.5km 1.0-1.8/km? Family movements Boxgrove3
(along river) within territory Bilzingsleben’
Hoxne (Beds C &
E)°
Swanscombe (LL)*
C. lupus 100-10,000km? 1/50-80km’ | Territorial (and Bilzsingsleben’

(food-dependent)

correlating with prey
migrations)

Swanscombe
(LL/LG)*

Table 2: Fur-bearing animals, with modern distribution data for comparison,

documented on northern European Middle Pleistocene sites. Other documented

species include: V. vulpus; M. putorius; M. erminea; M. lutreola; and L. lutra.

'Macdonald and Barrett 1993 (modern European data; it is fully acknowledged that

Early and Middle Pleistocene species’ ecology would not have been identical to their

modern equivalents); ?Mania and Mania 2005; *Parfitt 1999; *Schreve 1996; °Stuart

et al. 1993. Site units: Swanscombe (LL): Lower Loam; Swanscombe (LG): Lower

Gravels.




Species Home range® Density® | Mobility? Site examples
C. capreolus 0.05-1km? 15-25/km” | Reduced territoriality in | Boxgrove®
Solitary/small | winter & congregation Bilzinsleben’
groups in ;'fszg (herds up to 30) Hoxne™®
weodian Swanscombe (LL)®
D. dama® 0.5-2.5km’ 12(?)/km?* | Habitat use shifts Barnham’
Small groups | seasonally (e.g. summer | Bilzingsleben’
(<7/8)in | in open habitats & High Lodge?’
closed/open .. 10
woodlang?? | @utumn - 7sprmg in Hoxne )
woodlands’) Swanscombe (LG)
C. elaphus 0.5-8km? 5-45/km” | Summer = winter Barnham?®
Smaller upper |imit§ Small groups (1- | range migrations up to Bilzingsleben*
also suggested 3)inclosed | gl (e.g. lowland Boxgrove®
woodland woodlands - open High Lodge?’
uplands [UK]) Hoxne™
Schoéningen 13-1 &
13 11-417

Swanscombe (LL)®

Table 3: Modern home range, density and mobility data for selected ungulate

species, documented on Middle Pleistocene sites. *Bello, Parfitt, and Stringer 2009;

’Clutton-Brock, Guinness, and Albon 1982; *Macdonald and Barrett 1993 (modern

European data; it is fully acknowledged that Early and Middle Pleistocene species’

ecology would not have been identical to their modern equivalents); “Mania and

Mania 2005; *Parfitt 1998; ®Parfitt 1999 (notes that the fallow deer’s late rut results in

males’ poor condition during winter); ‘Putman 1988; 8Schreve 1996; °Stuart 1992;

Vstyart et al. 1993; 1 Thieme 2005; 2Voormolen 2008. Site units: Swanscombe

(LL): Lower Loam; Swanscombe (LG): Lower Gravels.




Species Home range’ Density’ | Mobility? Site examples
C. fiber 500m-5.5km 1.0-1.8/km” | Family movements Bilzingsleben’
(along river) within territory Boxgrove’
Hoxne®
Swanscombe (LL)®
S. scrofa 2-20km* ND | Sedentary (if stable Barnham’
env.); Bilzingsleben’
QSmall herds; J'Solitary
U. arctos 150-4000km? 1-190/ | Solitary; Travel 2— Swanscombe
10,000km? | 3.5km/day; Hibernation | (LL/LG)®
(with accumulated fat)! | Barnham*
Hoxne®
D. bicornis Few ha—75 sqg. km ND | Q@+ young; &Solitary; Barnham’
Resident & local (if Bilzingsleben®
resources sufficient) Boxgrove’
Hoxne®
High Lodge’

Swanscombe (LG)®

Table 4: Fat-bearing and/or residential winter animals, with modern distribution data

for comparison, documented on Middle Pleistocene sites. *Jochim 1981; 2Macdonald

and Barrett 1993 (modern European data); *Mania and Mania 2005; *Parfitt 1998;

SParfitt 1999; °Schreve 1996; ‘Stuart 1992; 8Stuart et al. 1993.




Species Butchery evidence Sites
Bos or Bison sp. Marrow extraction & cut-marks (filleting?); Barnham’
Filleting; Boxgrove®

Cut-marks, defleshing and marrow bone breakage;
Dismembering, filleting, defleshing & marrow bone

Happisburgh I°
Schoningen 13 11-4’

breakage
C. capreolus Cut-marks; Boxgrove®
Defleshing Happisburgh I°
C. elaphus Skinning, dismemberment, filleting & marrow bone | Boxgrove®
breakage;
Marrow bone breakage & cut-marks (seasonality Hoxne®
data: late Summer = Spring);
Skinning, dismemberment & filleting; Schoningen 13 11-4’
Cut-mark Westbury'
E. ferus Disarticulation, filleting & marrow bone breakage; Boxgrove®
Marrow bone breakage & cut-marks; Hoxne®

Dismemberment, filleting, boning, defleshing &
marrow bone breakage

Schoningen 13 11-4’

S. hundsheimensis

Disarticulation & filleting;
Disarticulation

Boxgrove®
Happisburgh I

U. deningeri

Skinning

Boxgrove®

Table 5: Butchery by species and technique, from selected Lower Palaeolithic sites.
'Andrews and Ghaleb 1999; ?Ashton et al. 2008b; *Bello, Parfitt, and Stringer 2009;

*Parfitt 1998; *Parfitt and Roberts 1999; °Stopp 1993; "Voormolen 2008.



Family/Species

Modern winter foraging species™

identified at Hoxne® Species Habitat Key Nutrients
Caryophyllaceae Common chickweed Woodland fringe Vitamins A, D, B
(Stellaria media) complex, C, and Rutin
Common mouse-ear Grassland -
chickweed
(Cerastium
holosteoides)
Brassicaceae Garlic mustard or Jack- | Woodland fringe Vitamins A, C& E

(previously Cruciferae)

by-the-hedge

(Alliaria petiolata)
Ericaceae Cowberry Pine forest Vitamins A, B & C
(Vaccinium vitis-idaea)
Apiaceae (or Wild parsnip Grassland Potassium
Umbelliferae) (Pastinaca sativa)
T. latifolia Reed mace/Bulrush Wetland Protein &
(Typha latifolia) carbohydrate
Urticaceae Stinging nettle Woodland & river Protein and vitamin C

(Urtica dioica)

valley

Table 6: Plant families identified at Hoxne, with comparison to modern plant species

available to winter foragers. *Mabey 2012; “Mears and Hillman 2007; *Mullenders

1993, table 6.3 & figs. 6.1-6.3.
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Figure 1: Comparison of winter temperature ranges for Spanish (Early Pleistocene; EP) and British (Early Pleistocene and Middle
Pleistocene; EP & MP) sites. Number of sites calculated according to the temperature ranges for each site (e.g. 7 sites have a Tyn
range which spans -3°C). Spanish site data (AlImenara-Casablanca 3; Cal Guardiola; Cullar Baza 1; Barranca Ledn 5; Fuente
Nueva 3; Trinchera Dolina (TD6); Trinchera Elefante (TERc)) from Agusti et al. (2009); British site data (Boxgrove, Brookshy,
Happisburgh I, Happisburgh 1ll, High Lodge, Hoxne, Pakefield) from Ashton et al. 2008a; Ashton and Lewis 2012; Coope 1993,
2006; Holman 1998, 1999; Holmes et al. 2009; Mania 1995; Parfitt et al. 2010.
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Figure 2: Mean winter air temperature data (°C) from the Stage 3 Project’'s MIS-3 ‘warm’ simulation (Barron, van Andel, and Pollard
2003, fig. 5.7 [Stage 3 Warm Phase DJF]). Dashed white line: Modern European coastline.



Figure 3: Summer/winter contrasts in mean air temperature data (°C) from the Stage 3 Project’s MIS-3 ‘warm’ simulation (Barron,
van Andel, and Pollard 2003, appendix 5.1). Dashed white line: Modern European coastline.



Figure 4: Snow depth (cm) data from the Stage 3 Project’s MIS-3 ‘warm’ simulation (Barron, van Andel, and Pollard 2003, fig. 5.9).
Dashed white line: Modern European coastline.
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Figure 5: Number of days with snow cover data from the Stage 3 Project’'s MIS-3 ‘warm’ simulation (Barron, van Andel, and Pollard
2003, fig. 5.9). Dashed white line: Modern European coastline.
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Figure 6: Wind chill (°F) data from the Stage 3 Project’s MIS-3 ‘warm’ simulation (Barron, van Andel, and Pollard 2003, appendix
5.1). Dashed white line: Modern European coastline.
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Figure 7: Precipitation (mm/day) data from the Stage 3 Project’'s MIS-3 ‘warm’ simulation (Barron, van Andel, and Pollard 2003,
appendix 5.1). Dashed white line: Modern European coastline.
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Figure 8: Relationship between effective temperature and average
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distance/residential move (after Kelly 1995, fig. 4-7). Note the examples (circled) for
groups making relatively short mean residential moves in low effective temperature

environments (see Kelly 1995:128-130 for details). Effective Temperature (ET) is

derived from the mean temperatures (°C) of the warmest and coldest months (W and

C; where ET =
ET values are associated with tropical, non-seasonal environments (in terms of

18W -10C
(w-c)+8

temperature, not precipitation) with long growing seasons. Low ET values are

associated with cold, seasonal environments with short growing seasons (Kelly

1995:66-69).
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Figure 9: Selected sources of vitamins in Arctic hunter-gatherer diets (data from Hidiroglou et al. 2008; Kuhnlein et al. 2006).
Values per 100g of fresh raw caribou liver (e.g. 1.58mg for Riboflavin) compared against alternative food sources (e.g. raw moose
liver [6.51mg] and raw beluga muktuk [0.02mg] for Riboflavin). G&D: growth and development.
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*Reduces mobility challenges &
calorific costs

*Focus on winter residents (fat,
fur/skins, meat) & limited plants;
avoid exploiting residents during
summer?

sl ocation primarily defined by winter

not summer foads (incl. plant foods)

+*Mixed/deciduous preference?

sTemperature/resource benefits

*E.g. Coasts/estuaries: Waterfowl!?
Seaweed? Shellfish?? Seals
(scavenged)??

*Reduce resident resource
exhaustion

*'Drift’ pattern, not a logistical
‘round’

*Sustain fires at ‘sleeping sites’?
*Reduce risk to/calorific needs of
vulnerable members
*Minimises movement of stored
foods?
*Sustained fires (warming & drying) sExploit transitory migrant herds (if
e Artificial drying of ‘wet-wood’ fuel occurring)?
supplies?? *Combination of gorging & external
storage?

Figure 10: A winter residency model.
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Supplementary Materials

H. erectus’ H. sapiens’

Kleiber Elevated Kleiber Elevated

BMR? BMR* BMR® BMR*

Body Mass (kg) 68 68 70 70
Stature (cm) 185 185 177 177
BMR 80.512 92.589 82.282 94.624
Body surface area’ 1.900 1.900 1.862 1.862
Human Conductance A® 5.0 5.0 5.0 5.0
Total Conductance A’ 9.498 9.498 9.312 9.312
Lower Critical Temperature A (°C)® 28.5 27.3 28.2 26.8
Minimum Sustainable Temperature A (°C)° 11.6 7.8 10.5 6.5
Human Conductance B* 4.750 4.750 4.750 4.750
Total Conductance B’ 9.023 9.023 8.846 8.846
Lower Critical Temperature B (°C)® 28.1 26.7 27.7 26.3
Minimum Sustainable Temperature B (°C)° 10.2 6.2 9.1 4.9
Human Conductance C** 2.817 2.817 2.817 2.817
Total Conductance C’ 5.351 5.351 5.246 5.246
Lower Critical Temperature C (°C)® 22.0 19.7 21.3 19.0
Minimum Sustainable Temperature C (°C)° -8.1 -14.9 -10.1 -17.1

Table 1: Lower critical and minimum sustainable ambient temperatures for H.

erectus and H. sapiens (after Aiello and Wheeler 2003, tables 9.1-9.3). *H. erectus
data from KNM-WT 15000 (Ruff 1994); °H. sapiens data from Pfedmost 3 & 9, Skhul
4 and Grotte des Enfants 4 (Ruff 1994); *BMR = 3.4 x mass (kg)®"® (Kleiber 1961);
“Elevated BMR = BMR raised by 15% to account for climatic and dietary-induced
increases (after Aiello and Wheeler 2003:150); °Body surface area (m?) = 0.00718 x

0.425

mass (kg)

x stature (cm)®’%; ®Typical human conductance =5 W.m™2.°C™®; "Total

conductance = typical human conductance x surface area (m?); ®Critical temperature
(°C) = 37°C — (BMR/Total conductance); *Minimum sustainable ambient temperature
(°C) = 37°C — ((3 x BMR)/Total conductance); *°Typical human conductance reduced
by 5% to account for hominin muscularity (after Aiello and Wheeler 2003:150);
“Typical human conductance reduced by c. 44% to account for 1 clo of insulation
(after Aiello and Wheeler 2003:150). 1 clo is roughly equivalent to the insulation

provided by a western business suit.
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Palaeoclimate Measure’

MIS 3 ‘warm’ interval

Modern data

52°N 0°E 45°N 0°E 50°N 10°E 52°N 0°E 45°N 0°E 50°N 10°E
Min. monthly lowest-level air temperature (°C) -4-0 0-+4 -4—-8 4-8 4-8 0-4
Tonax— Tonin (°C) 12-16 12-16 16 -20 9-12 9-12 12-16
Diurnal range of lowest level air temperature (°C) 1-2 2-3 1-2 1-2 3-4 1-2
No. of days/year with snow cover 90-120 10-30 150 -180 <10 <10 30-60
Snow depth, actual (cm) 5-10 0-5 20-50 0-5 0 0-5
Wind chill (°F) 0-10 10-20 0-10 20-50 20-50 10-20
Precipitation (mm/day) 2-3 3-5 2-3 2-3 3-5 15-2
Net primary productivity (gC/m2/year) 200 -300 300 -400 200-300 600 -700 900 - 1000 600 -700
Annual growing days above 5°C (°C.day) 750-1000 | 1000-1500 | 1000-1500 | 1500-2000 | 2000-3000 | 1500-2000
Annual growing days above 0°C (°C.day) 1500 —-2000 | 2000-3000 | 2000-3000 | 3000-4000 | 4000-5000 | 3000-4000

Table 2: Selected palaeoclimate simulation data for three point-specific locations, for an MIS 3 ‘warm’ interval and the present day.
Data from Barron, van Andel, and Pollard (2003). *Descriptions of palaeoclimate measures from Barron, van Andel, and Pollard

(2003:78).
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