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Abstract 

Background:  American mink forage on land and in water, with aquatic prey often constituting a large proportion of 
their diet. Their long, thin body shape and relatively poor insulation make them vulnerable to heat loss, particularly 
in water, yet some individuals dive over 100 times a day. At the level of individual dives, previous research found no 
difference in dive depth or duration, or the total number of dives per day between seasons, but mink did appear to 
make more dives per active hour in winter than in summer. There was also no difference in the depth or duration of 
individual dives between the sexes, but there was some evidence that females made more dives per day than males. 
However, because individual mink dives tend to be extremely short in duration, persistence (quantified as the number 
of consecutive dives performed) may be a more appropriate metric with which to compare diving behaviour under 
different scenarios.

Results:  Mink performed up to 28 consecutive dives, and dived continually for up to 36 min. Periods of more loosely 
aggregated diving (termed ‘aquatic activity sessions’) comprised up to 80 dives, carried out over up to 162.8 min. Con-
trary to our predictions, persistence was inversely proportional to body weight, with small animals more persistent 
than large ones, and (for females, but not for males) increased with decreasing temperature. For both sexes, persis-
tence was greater during the day than during the night.

Conclusions:  The observed body weight effect may point to inter-sexual niche partitioning, since in mink the 
smallest animals are females and the largest are males. The results may equally point to individual specialism’s, since 
persistence was also highly variable among individuals. Given the energetic costs involved, the extreme persistence 
of some animals observed in winter suggests that the costs of occasional prolonged activity in cold water are out-
weighed by the energetic gains. Analysing dive persistence can provide information on an animal’s physical capabili-
ties for performing multiple dives and may reveal how such behaviour is affected by different conditions. Further 
development of monitoring and biologging methodology to allow quantification of hunting success, and thus the 
rewards obtained under alternative scenarios, would be insightful.
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Background
The diving behaviour of semi-aquatic species, defined 
here as those that live close to water but obtain only part 
of their food by swimming and diving [1], is still relatively 
poorly understood. Mammals that forage both on land 
and in water have to retain the ability to move efficiently 
in two quite different habitats and therefore, are not as 
well adapted for diving as are fully aquatic species (e.g. 

whales), or those that forage exclusively in water and only 
go on land to breed, moult or rest (e.g. seals) [2, 3]. Semi-
aquatic mammals are usually inefficient swimmers and 
relatively poor divers, as their oxygen stores, oxygen con-
serving mechanisms, insulation, and appendages are not 
as well adapted to aquatic living as fully aquatic animals 
[4–6].

American mink, Neovison vison, are small (~1  kg), 
semi-aquatic mustelids that consume both terrestrial and 
aquatic prey [7]. Mink dives tend to be shallow (average 
0.45  m) and short duration (average 10.9  s), but some 
individuals dive over 100 times per day [10, 27], and div-
ing is clearly an important activity for mink since aquatic 
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prey may constitute up to 89% of their diet, in some 
places, at some times of the year, e.g. [8]. Mink may also 
dive and swim beneath the surface of the water as an 
efficient means of travel [9, 10]. In common with other 
mustelines (e.g. stoats, Mustela ermine, and weasels, 
Mustela nivalis), mink have high rates of heat loss due to 
their long, thin body shape [11, 12], and particularly high 
rates of heat loss when in water, due to the relatively poor 
insulating properties of their fur [13]. Mink are sexually 
dimorphic—the smallest females in a population may 
weigh less than a third of the largest male [14]. Therefore, 
females may be even more vulnerable to heat loss than 
males [15]. Additionally, mink eyes are not well adapted 
to underwater vision [16–18]. Mink are single-prey load-
ing, central place foragers (sensu [19]), that return to land 
to eat each prey item captured [7].

The native range of the American mink extends as far 
north as Alaska [7], so mink are clearly able to cope in 
cold environments. As in other mustelids (e.g. black-
footed ferrets Mustela nigripes [20]; weasels M. nivalis 
[21]; or pine martens Martes martes [22]), mink reduce 
their general activity levels in winter [23], presumably 
to avoid excessive heat loss. Other semi-aquatic species 
such as muskrats Ondatra zibethicus [24] and star-nosed 
moles Condylura cristata [25] dive less frequently and for 
shorter periods of time during winter, but no such sea-
sonal effects have been observed in mink diving behav-
iour [10]. Harrington et  al. [10] analysed mink diving 
behaviour at the level of individual dives and found that 
mink in winter performed the same number of dives as 
in summer, but at a higher rate (i.e. more dives per hour 
of activity [10]). At the level of individual dives, there was 
no difference between the sexes in dive ability (measured 
as the depth and duration of dives), but there was some 
evidence that females spent more time diving and made 
more dives per day, than males [10]. Further, although 
mink are generally presumed to be nocturnal [7], they 
dived predominantly during the day [10]. It is not clear 
whether this is due to a preference for diving in bright 
light to compensate for their relatively poor underwater 
eyesight, or an avoidance of nocturnal competitors (e.g. 
otters, [26]).

Hays et  al. [27] (using a subset of the data analysed 
by [10]) noted that mink dives generally occur in dis-
crete temporal clusters or ‘bouts’, as in many breath-hold 
divers [28–33]. This observation led to the development 
of a new analytical method to describe dive patterns by 
Bagniewska et  al. [34], which allowed quantification of 
dive ‘persistence’ as the number of consecutive dives 
performed within a cluster (or bout) of dives. Given the 
extremely short duration of individual dives, persistence 
may be a more appropriate metric with which to com-
pare diving behaviour under different scenarios, and to 

test the effect of biological and environmental factors. In 
this paper, we use persistence (quantified for periods of 
continual diving, ‘dive clusters’, and for periods of more 
loosely aggregated diving, ‘aquatic activity sessions’, here-
after AAS, see “Methods” and Figure  1 for details) to 
further explore the effect of ambient temperature, body 
weight and daylight, on diving behaviour in American 
mink. We applied methods developed by [34] that use 
hidden Markov models performed on two variables (dive 
depth and inter-dive interval) to identify dive clusters and 
AAS, which is more appropriate for describing the diving 
behaviour of a semi-aquatic animal than simpler thresh-
old-based models commonly used to describe dive bouts. 
Here, we refer to ‘clusters’ and ‘AAS’ rather than ‘bouts’ 
(although ecologically they are analogous) to distinguish 
between these methods; for further discussion see [34]. 
Following on from earlier analyses on the same dataset by 
Harrington et al. [10], we hypothesised that low ambient 
temperatures, relatively poor insulation, and the resultant 
thermoregulatory costs might limit the duration of mink 
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Figure 1  Dive sequence illustrating the differences between dive 
clusters and aquatic activity sessions (AAS). Dives of mink 187a 
(female) from 27 January 2006 were assigned to one of three states 
using a Hidden Markov model algorithm as in [34]: State 1 (white) 
dives represent a period of continual diving, State 2 (red) dives 
represent a period of loosely aggregated diving (an AAS), and State 3 
(black) dives are terminal dives in a cluster or single dives. Note, how-
ever, that an AAS does not necessarily comprise a series of clusters 
and may simply be a short series of loosely aggregated dives. Hours 
of darkness are shown by grey shading. This is a modified version of a 
section of Figure 2 from [34].
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diving in winter, and allometry suggests that smaller ani-
mals might be more vulnerable to any such effects. This 
analysis differs from the earlier analysis in that while the 
earlier analysis was carried out at the level of individual 
dives, this analysis was carried out at the level of dive 
clusters. We predicted that [1] dive persistence would 
be shorter in winter, and [2] smaller mink would be less 
persistent than larger mink. We were unable to predict 
how daylight might affect persistence, but anticipated 
that persistence might differ under different light levels 
reflecting differences in visibility, predatory risk, or moti-
vation for diving.

Results and discussion
Description of dive clusters and aquatic activity sessions 
(AAS)
Most (88.3 and 98.6%, respectively) dives occurred in 
clusters or in AAS (n = 3,714 total dives); only 1.4% dives 
(n = 53) were single isolated dives. Note that, by defini-
tion, all clusters occur within an AAS. For individual 
datasets, between 60.1 and 100% of dives occurred in 
clusters (mean =  84.6%), and between 68 and 100% of 
dives in AAS (mean = 95.4%).

Dive clusters consisted of 2–28 dives (grand 
median  =  4, n  =  633 dive clusters in total across all 
datasets; range of individual medians: 2–7.5, Figure 2a); 
AAS of 2–80 dives (grand median =  7, n =  299; range 
of individual medians: 3–31, Figure  2b). As for total 
number of dives per day, and depth and duration of 
individual dives [10], both dive cluster length and 
AAS length were extremely variable within individu-
als (coefficient of variation [CV]clusters 0.32–0.76; CVAAS 
0.43  −  >1) and differed significantly among individu-
als (ANOVAcluster: F13, 619 =  7.3, P  <  0.001; ANOVAAAS: 
F13, 285 = 10.59, P = < 0.001). The short duration of indi-
vidual dives [10] meant that despite the high numbers 
of dives that could occur in either clusters or AAS, both 
dive clusters and AAS were, on average, also short in 
duration: cluster duration ranged from 9  s to 36.1  min 
(grand median =  2.3  min; range of individual medians: 
57 s to 12.9 min, Figure 2c) and AAS duration 11.0 s to 
162.8 min (grand median = 20.3 min; range of individual 
medians: 11.3–49.6 min, Figure 2d). The overall median 
length of pauses between dives within a cluster was 17 s, 
and individual median pauses ranged between 8 and 
81.1  s (data were very strongly right-skewed, with the 
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Figure 2  Distributions of dive clusters and aquatic activity sessions. a, b show the duration (minutes) and c, d the length (number of dives) of dive 
clusters and aquatic activity sessions from all study animals pooled.
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maximum pause between dives being 249 s; 95% of data 
points were <127  s, 90% <  89s). Bagniewska et  al. [34] 
described an AAS as a period of aquatic activity (diving 
and swimming) that may include brief terrestrial peri-
ods and events such as jumping out onto the bank (when 
aquatic prey items may be consumed) or runs to the bur-
row, whereas a dive cluster represents continuous diving. 
However, we cannot rule out the possibility that small 
prey items are taken to the riverbank and consumed dur-
ing the occasional long inter-dive intervals within a dive 
cluster (small prey items, e.g. aquatic beetles Dytisci-
dae may even be consumed during short intervals at the 
water’s surface). Therefore, a dive cluster does not neces-
sarily represent an attempt to obtain a single prey item.

Effect of ambient temperature, body size and light
For the number of dives in both clusters and AAS, there 
was a significant interaction between ambient tempera-
ture and sex (LMEcluster: F 1,609 = 5.06, P = 0.025; LMEAAS: 
F1,273 = 6.90, P = 0.009), indicating that the response of 
males and females to ambient temperature differed. The 
main effect for ambient temperature was also significant, 
and highly significant for AAS (LMEcluster: F1,609 =  8.92, 
P  =  0.003; LMEAAS: F1,273  =  15.03, P  <  0.001). There 
was no significant effect of sex (LMEcluster: F1,12 =  0.35, 
P  =  0.568; LMEAAS: F1,12  =  0.01, P  =  0.91), but the 
effect of animal weight was significant (highly significant 
for AAS; LMEcluster: F1,609  =  8.79, P  =  0.003; LMEAAS: 

F1,273  =  18.33, P  <  0.001), with the number of dives 
decreasing with increasing weight (Figure  3). The effect 
of light was also significant (LMEcluster: F1,609  =  9.11, 
P =  0.003; LMEAAS: F1,273 =  8.16, P =  0.005), with the 
number of dives greater during the day than during the 
night (Figure 4).

To compare effects on average and maximal persis-
tence, the analyses were repeated on summary statistics 
for each individual, using median and maximum values 
for the number of dives in a cluster, and the number of 
dives in an AAS (Table 1). The effect of animal weight was 
significant for both median and maximum values of clus-
ter and AAS length (Figure 3). The main effect for ambi-
ent temperature was not statistically significant for either 
median or maximum persistence; however, the interac-
tion between temperature and sex was (for maximum 
cluster length, and maximum AAS length, but not for 
median cluster length or AAS length). Plotting maximum 
persistence against ambient temperature for both sexes 
separately revealed that for females the maximum num-
ber of dives increased with decreasing temperature, but 
for males there was no evidence of a similar relationship 
(Figure 5). No other effects were statistically significant.

Contrary to our predictions based on allometry and 
thermoregulation, small mink were more persistent 
divers than large mink (Figure 3), and (maximum) persis-
tence was greater when it was colder; but the latter was 
only true for females (Figure  5). Although the effect of 

Figure 3  Effect of mink weight on persistence. a shows the relationship between animal weight and the median and maximum number of dives 
per cluster, and b—per AAS. The dashed vertical line indicates the break in body weight between males (>1 kg) and females (<1 kg). Data points are 
one deployment on one individual; in some cases, there were two or three deployments on the same individual (see Additional file 1 for deploy-
ment details). Solid lines show the model fit with individual included as a random effect.
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body size was apparent for both median and maximum 
persistence, it was greatest for maximum cluster length 
and maximum AAS length, with the result that, on aver-
age, maximum cluster length for females (<1  kg body 
weight) was approximately twice that of males (>1  kg 
body weight). Maximal female cluster lengths ranged 
between 11 and 28 dives (grand median = 17), whereas 
maximal male cluster lengths ranged between 4 and 
18 dives in a cluster (grand median =  9), although the 
apparent difference between sexes was due to differences 
in overall body size, rather than in sex per se.

That the smallest females, with the highest rates of 
heat loss, showed the greatest persistence, and that this 
observation occurred during the coldest ambient tem-
peratures experienced during the study, demonstrate that 
persistence, or ‘time spent diving’ by mink, was not lim-
ited by body size or cold temperatures at least within the 
seasonal temperature range of southern England (mean 
daily ambient temperature did not drop below 0°C during 
our study). It is possible that, in colder climates, there is a 
lower critical temperature beyond which foraging activi-
ties are temporarily prohibited. It is also possible that 
temperature affects diving behaviour differently on differ-
ent temporal scales (e.g. within a day, or within a period 
of days).

Several authors have referred to the possibility of 
inter-sexual niche partitioning in mink with females tak-
ing relatively more aquatic prey (fish and amphibians) 
and males more large terrestrial prey (e.g. lagomorphs 
in the UK [35]; see also [36, 37]). These data provide 
some support for that suggestion in that the smallest 
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Table 1  LME model summary

The table shows four LME models on summary parameter values per animal for 
the effect of animal weight, ambient temperature, sex, light and the interaction 
between sex and temperature on maximum and median cluster length, and 
maximum and median aquatic activity session (AAS) length, where length is 
number of dives.

Response Predictor F ratio df F value p value

Maximum cluster 
length

Intercept 1,11 294.9011 <0.0001

Mean weight 1,11 36.3691 0.0001

Mean temperature 1,11 1.39828 0.2619

Sex 1,11 1.32136 0.2747

Light 1,11 0.00464 0.9469

Temperature × Sex 1,11 12.83014 0.0043

Median cluster 
length

Intercept 1,11 200.2025 <.0001

Mean weight 1,11 12.63525 0.0045

Mean temp 1,11 3.17932 0.1022

Sex 1,11 0.24014 0.6337

Light 1,11 0.58045 0.4622

Temperature × sex 1,11 1.38669 0.2638

Maximum AAS 
length

Intercept 1,11 117.3066 <.0001

Mean weight 1,11 27.87173 0.0003

Mean temp 1,11 1.88131 0.1975

Sex 1,11 2.30636 0.1571

Light 1,11 0.00724 0.9337

Temperature × sex 1,11 5.12295 0.0448

Median AAS length Intercept 1,11 30.0293 0.0002

Mean weight 1,11 5.128919 0.0447

Mean temp 1,11 1.354321 0.2691

Sex 1,11 0.002102 0.9642

Light 1,11 1.80858 0.2058

Temperature × sex 1,11 1.104925 0.3157
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individuals (the females) exhibited the longest duration 
aquatic activity, and thus could be inferred to spend the 
most time pursuing aquatic prey, whereas the largest 
individuals (the males) performed fewer dives per day 
[10], the shortest dive clusters, and the shortest aquatic 
activity sessions, which suggests more time spent in ter-
restrial habitats, and, accordingly, might reflect greater 
use of terrestrial prey. However, short monitoring peri-
ods and small sample size mean that we cannot dismiss 
short-term exploitation of a patchy resource (as opposed 
to consistent, long-term differences), or the possibility 
of individual specialisation (as opposed to inter-sexual 
differences; discussed in [10, 14], see also [38]). Further, 
because we were unable to monitor diving males during 
the coldest winter temperatures (only 1 male was tagged 
in winter when ambient temperatures were below 7°C, 
but this individual dived fewer than five times during the 
5- to 6-day monitoring period, and thus was excluded 
from analysis) we could not determine whether males, 
the larger individuals, also sometimes performed long 
dive clusters (or AAS), only that females, the smallest 
individuals, could.

An alternative explanation of short dive clusters in 
males might be that males are more efficient at catch-
ing aquatic prey (i.e. perhaps they can catch fish quicker, 
can catch larger fish, and therefore need to spend less 
time foraging in the water). However, because we cannot 

identify successful dives, and cannot assume that a sin-
gle dive cluster relates to an attempt to catch a single fish 
(or other aquatic prey) it is not possible, given the cur-
rent data, to draw conclusions regarding either efficiency 
or success. Further, the number of dive clusters recorded 
over the 5- to 6-day monitoring period was hugely vari-
able for both males (5–82) and females (8–96), which is 
inconsistent with clear inter-sexual differences in for-
aging strategy but perhaps consistent with individual 
differences.

That the largest effect sizes were seen for maximal per-
sistence rather than median persistence, shows that, on 
average, there was little difference in persistence between 
female and male mink (or small and large mink), and 
no difference in ‘average’ behaviour between winter and 
summer (i.e. even the small ‘high diving’ females did not 
perform very long clusters or AAS all the time). Never-
theless, there was clearly no reduction in persistence in 
winter. Eurasian otters also maintain consistent activity 
time in the water, regardless of water temperature [39], 
despite the energetic costs of swimming in 2°C water 
(approximate minimum British river temperature [40]) 
being 2.7 times higher than in 20°C water (approxi-
mate maximum British river temperature [40]) [41]. The 
increased thermoregulatory costs of swimming in win-
ter relative to swimming in summer are likely to be even 
higher for mink due to their smaller body size, relatively 
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greater surface area, and thus greater heat loss rate, com-
pared with otters [15]. Given the energetic costs involved, 
the extreme persistence observed in winter suggests that 
the costs of occasional prolonged diving in cold water 
are outweighed by the energetic gains. Harrington et al. 
[10] suggest that the relatively high diving rates observed 
in winter probably reflect the behaviour of some mink 
capitalising on the increased susceptibility to capture 
of ectothermic fish in cold water [8, 13]. However, our 
prediction that these high winter diving rates would be 
achieved in shorter clusters of dives to minimise pro-
longed periods of heat loss was not upheld: cluster length 
(for females) was longer in winter. Unfortunately, the data 
do not allow us to determine whether long clusters reflect 
an attempt to catch a single fish (if the chance of catching 
a large fish in torpor is high, it might be worth pursuing 
the opportunity for longer) or reflect an extended period 
of catching several smaller fish (that were consumed in 
the brief inter-dive intervals). Nor can we distinguish 
between successful and unsuccessful dives.

From a thermoregulation perspective, Williams [13] 
estimates that mink, swimming in water at 20°C, are only 
able to maintain their body temperature for ca. 5  min. 
Although we did not measure body temperature, and we 
cannot quantify total time spent swimming, our results 
show that mink were able to remain active (diving) in the 
water for much longer than 5 min although they did not 
often do so. Mink were recorded continuously diving for 
36 min with brief inter-dive intervals of only a few min-
utes at most, at ambient temperatures of between 2.5 and 
5.5°C (water temperature recorded at our study site in 
winter, [27]).

Both males and females performed longer dive clus-
ters and AAS during the day than during the night 
(Figure  4a), although, in general, male mink were more 
nocturnal in their diving than females (Figure 4b). Three 
possible explanations for increased persistence during 
the daylight are: (1) hunting underwater is more profit-
able in daylight for an animal with relatively poor under-
water vision in daylight, and thus worth greater time 
investment; (2) hunting is more risky at night due to the 
presence of larger, nocturnal competitors (e.g. otters [26], 
and thus restricted to shorter periods; (3) day and night 
dives have different functions (e.g. hunting and travel-
ling), that might be characterised by different temporal 
structures. As surface swimming may be interrupted by 
periods of underwater swimming to reduce drag, or as 
an evasive manoeuvre [42], clusters of dives might also 
represent periods of travelling in the water. Presumably, 
underwater visual acuity is not as crucial for travelling as 
for hunting, and so travelling dives might be more likely 
to take place at night; however, it is not obvious why clus-
ters of travelling dives would be shorter than clusters of 

hunting dives. Further study of the diving behaviour of 
mink, in the absence of otters, is required to distinguish 
between the first two possibilities. Harrington et al. [26] 
suggest that male mink may be less affected by competi-
tion with otters, which may explain the apparent diurnal 
difference between the sexes in diving behaviour, if mink 
dive during the day to avoid otters. Alternatively, males 
may spend more time travelling than females, partly 
because they have larger home ranges [14, 43], and so 
may dive more during the night, if mink dive during the 
night predominantly for travel.

Conclusions
Analysing dive persistence can provide information on 
an animal’s physical capabilities for performing multiple 
dives and may reveal how such behaviour is affected by 
different conditions. Our results show that mink were 
continually active in water in winter for much longer 
than might have been predicted on the basis of earlier 
laboratory experiments and estimated rates of heat loss. 
However, it is still not clear how dive patterns relate to 
hunting success, are influenced by inter-sexual and/or 
individual variation, or by competitor interactions, and 
these questions are further complicated by the fact that 
diving in a semi-aquatic species may have multiple func-
tions. Mink are known to dive in much colder aquatic 
environments than southern England (e.g. Alaska and 
Iceland) and presumably the rewards associated with 
aquatic activity in these potentially challenging environ-
ments are high. Further development of monitoring and 
biologging methodology to allow quantification of hunt-
ing success, and thus of rewards obtained under alterna-
tive scenarios, would be insightful.

Methods
Data collection
The dataset used in this study has previously been 
described in [10] in a study of the diving ability and 
behaviour of American mink at the individual dive level. 
CEFAS G5 TDRs (31 ×  8 mm; CEFAS Technology Ltd, 
Lowestoft, UK, http://www.cefastechnology.co.uk; [27], 
Figure 6) were deployed on 24 free-living American mink 
on the rivers Thames and Cherwell in the Upper Thames 
valley in Oxfordshire, UK (approximate latitude, longi-
tude: 51.62°N, 1.08°W) between January 2006 and Janu-
ary 2008. Site details are described in [10]. Mink were 
caught in wire traps placed on floating rafts (Figure  7) 
secured to the riverbank [44], anaesthetised (methods 
in [27]), weighed (kg), and fitted with collars to which 
a TDR had been attached (details in [10]), see Figures 8 
and 9. Animal handling was completed within 10–30 min 
and mink recovered from anaesthesia within 10–25 min. 
TDRs were recovered a week after deployment (or as 

http://www.cefastechnology.co.uk
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soon as possible thereafter), and collars were removed 
using the same procedures; there were no cases of inju-
ries due to the collars.

Research on live animals followed ASM guidelines; 
all procedures were carried out under United Kingdom 
Home Office licences PPL30/1826, PIL30/6530, and 
PIL30/6917 and were approved by Oxford University 
Zoology Department Ethical Review Committee. Mink 

were re-released for monitoring under Section  16 of 
the Wildlife and Countryside Act 1981, Department for 
Environment, Food and Rural Affairs licence WCA/06/4 
and Natural England licences NNR/2007/0024, 
NNR/2007/0022.

Twenty TDRs were retrieved from 16 individual ani-
mals (6 males and 10 females), containing temperature 
and pressure data recorded every 5 and 1 s, respectively, 
for a period of up to 7 days. One data-logger failed pre-
maturely and only recorded for 2  days. Two individuals 
for which we recorded fewer than 20 dives were excluded 
from further analysis [10].

Ambient air temperature measurements (daily means) 
were obtained from the Radcliffe Meteorological Sta-
tion (http://www.geog.ox.ac.uk/research/climate/rms/
intro.html), within 40  km of the study sites. Dawn and 
dusk times for Oxford were taken from timeanddate.com 
(http://www.timeanddate.com/worldclock/sunrise.html).

Data analysis
Individual dive data were extracted from the raw time 
series using MULTITRACE (Jensen Software Systems, 
Laboe, Germany, http://www.jensen-software.com), 
using a dive threshold of 0.2  m (precision of TDRs 
0.05  m [27]), as in [10]. A Hidden Markov model algo-
rithm was applied to individual dive data in MATLAB 7.8 
(The MathWorks™, http://www.themathworks.com), as 
described in [34]. This method identified dives in three 
behavioural states, where dives in State 1 occur in a tem-
poral cluster of dives, characterised by continual diving; 
dives in State 2 occur in a period of more loosely aggre-
gated diving, and dives in State 3 are the terminal dive of 
a cluster or AAS or a single, isolated dive (i.e. they rep-
resent a state change). For analysis, dives were grouped 
into ‘dive clusters’—a series of State 1 dives ending with a 
State 2 or 3 dive—and ‘aquatic activity sessions (AAS)’—
a series of State 2, or State 1 and 2, dives ending with a 
State 3 dive (Figure  1). Persistence was defined as the 
length in number of dives of a cluster or AAS. Since the 
data were right-skewed, we used the median as the meas-
ure of central tendency. All individual dives were cat-
egorised as occurring during daylight or in darkness on 
the basis of dawn and dusk times, we did not attempt to 
include dawn and dusk light levels in the analysis due to 
the relatively limited number of dives occurring during 
these periods.

Statistical analysis was carried out in R (version 3.0.1, 
R Core Team 2013). We used linear mixed effects mod-
els (lme function in nlme package [45]) to investigate 
the relationship between persistence and ambient tem-
perature, animal weight, and light (daylight/darkness). 
Sex was also included in the model, and individual was 

Figure 6  A CEFAS G5 Time–Depth recorder. Photo: Joanna M. 
Bagniewska.

Figure 7  A floating raft. Instead of a wire trap, this raft contains a 
clay plate used to detect the presence of a mink before placing a trap 
inside [44]. Photo: Lauren A. Harrington.

http://www.geog.ox.ac.uk/research/climate/rms/intro.html
http://www.geog.ox.ac.uk/research/climate/rms/intro.html
http://www.timeanddate.com/worldclock/sunrise.html
http://www.jensen-software.com
http://www.themathworks.com
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included as a random effect to avoid bias due to pseu-
doreplication due to multiple datasets from a few indi-
viduals. We used LME with a weighted variance, with 
cluster length or AAS length as a response, and ambient 
temperature, animal weight and light as predictors. We 
used ANOVA to test for differences in cluster length and 
AAS length among individuals. In all tests, p = 0.05 was 
accepted as significant. Example LME code is:

lme(length  ~  ambtemp+weight+light+sex+sex*
ambtemp, data  =  clusters, random  =  ~1|individual, 
na.action = na.exclude, weights = varIdent(form = ~1|w
eight)).

Cluster lengths were treated as independent. This was 
verified by autocorrelation on clusters, which showed no 
significance.
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