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ORIGINAL ARTICLE

Effects of prenatal and postnatal depression, and maternal
stroking, at the glucocorticoid receptor gene
C Murgatroyd1, JP Quinn2, HM Sharp3, A Pickles4 and J Hill5

In animal models, prenatal and postnatal stress is associated with elevated hypothalamic–pituitary axis (HPA) reactivity mediated
via altered glucocorticoid receptor (GR) gene expression. Postnatal tactile stimulation is associated with reduced HPA reactivity
mediated via increased GR gene expression. In this first study in humans to examine the joint effects of prenatal and postnatal
environmental exposures, we report that GR gene (NR3C1) 1-F promoter methylation in infants is elevated in the presence of
increased maternal postnatal depression following low prenatal depression, and that this effect is reversed by self-reported stroking
of the infants by their mothers over the first weeks of life.

Translational Psychiatry (2015) 5, e560; doi:10.1038/tp.2014.140; published online 5 May 2015

INTRODUCTION
In animal models, prenatal and postnatal stress cause long-term
elevations in hypothalamic–pituitary axis (HPA) reactivity and
anxiety-like behaviors. These effects are mediated via altered
glucocorticoid receptor (GR) gene expression.1 In rodents,
maternal licking and grooming over the first days of life cause
reduced HPA-axis reactivity and anxiety-like behaviors mediated
via increased GR expression accounted for, at least in part, by
demethylation at exon 1–7 promoter of the rat GR gene (Nr3c1) in
the hippocampus of the offspring. These epigenetic changes
emerge over the first week of life and persist into adulthood.2

Epigenetic modifications are thought to link early-life stress to
later susceptibility to behavioral disorders through interference
with the development and functioning of the HPA-axis early in
life.3 The epigenetic process of DNA methylation involves the
addition of methyl groups to CpG dinucleotides in gene regulatory
regions that associate with repression of gene expression.
Translation into humans would have far-reaching consequences
for our understanding of the role of early environmental stressors,
with implications for health and social policy. Findings consistent
with fetal programming of HPA-axis regulation have been
reported in humans. Maternal anxiety and depression during
pregnancy predict childhood behavior problems after controlling
for postnatal environmental exposure,4,5 and prenatal maternal
anxiety predicts persistence of behavior problems from childhood
to adolescence.6 Prenatal maternal depression predicts infant
temperamental negative emotionality7 and maternal cortisol
during pregnancy predicts infant cortisol reactivity to a stressor.8

Animal findings of the epigenetic effects of early-life stress have
been validated in humans in a study reporting elevated NR3C1 1-F
promoter methylation and reduced GR expression in postmortem
hippocampal tissue of suicide completers who were abused during
childhood, when compared with non-abused.9 Other studies using
peripheral DNA, from blood or saliva of infants and adolescents,
have shown increased levels of NR3C1 methylation in response to
perinatal stress10–12 and abuse or neglect during childhood.13,14

Many further report enduring DNA methylation changes in
adulthood following stress or traumatic events such as abuse or
neglect in childhood.9,13–15 Several clinical studies examining
leukocytes have reported elevated methylation of the homologous
human NR3C1 1-F promoter (homologous to the rat 1–7 promoter)
at a specific CpG (CpG unit 22,23, Figure 1) associated with prenatal
maternal depression10,16,17 and childhood stress.14,18

Effects of postnatal maternal behaviors reported in animal
models have not so far been translated into humans. The
postnatal maternal licking and grooming effects on rodent GR
expression, Nr3c1 1–7 promoter region demethylation,19 improved
HPA-axis regulation and reduced anxiety behaviors.20,21 are
caused by tactile stimulation. We therefore asked whether, in
humans, maternal stroking has the effect that would be predicted
from the animal work, that is, does it reverse prenatal stress
effects? Using a self-report measure on two occasions, we asked
mothers participating in the longitudinal Wirral Child Health and
Development Study, how often they stroked their infants when
they were 5 and 9 weeks old. We found that associations of
prenatal depression with vagal reactivity and temperament at
29 weeks of age were both modified by maternal stroking over
the first weeks of life.22 The significant statistical interaction was
that increasing prenatal depression was associated with decreas-
ing vagal reactivity, which is likely to be associated later in life with
poorer emotion regulation, only in the infants of low-stroking
mothers. Similarly the association between prenatal depression
and increasing negative emotionality, as reported by mothers in a
standard measure of temperament, was also seen only in the
infants of low-stroking mothers. Reporting from the same sample, we
have recently shown that maternal stroking interacts with prenatal
anxiety to predict child emotional problems at 2.5 years—the
association between maternal anxiety and child emotional
problems was evident only in the children of low-stroking
mothers.23 These are the first findings in humans of an enduring
effect of maternal stroking on the basis of predictions from animal
models. No previous studies have investigated whether NR3C1
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methylation associated with maternal depression is modified by
maternal stroking.
In the case of maternal depression, prenatal and postnatal levels

are highly correlated, and each has to be accounted for in
predicting DNA methylation. Strikingly, animal studies have not
yet attempted to mimic the human condition by examining the
joint effects of pre- and postnatal stress, and so there is no firm
basis from which to predict in humans. We, therefore, examined
whether each of pre- or postnatal depression have effects on
infant NR3C1 1-F promoter DNA methylation at CpG unit 22 and
23, or that they interact to give distinct outcomes. We also
investigated whether effects of maternal depression are reversed
by maternal stroking.

MATERIALS AND METHODS
Design
The participants were members of the Wirral Child Health and Develop-
ment Study, a prospective epidemiological longitudinal study of prenatal
and infancy origins of conduct disorders. This uses a two stage stratified
design in which a larger general population sample of first-time mothers
was recruited in pregnancy (extensive sample) and from which a
subsample was drawn for more intensive assessment (intensive sample).
All families in the extensive sample follow a brief assessment protocol
while those in the intensive subsample receive more time-consuming
detailed assessments such as the observations of mother-infant interac-
tions described in this paper. The design allows general population
estimates of means and associations to be derived for all extensive or
intensive sample measures.
Approval for the procedures was obtained from the Cheshire North and

West Research Ethics Committee (UK). The extensive sample was identified
from consecutive first-time mothers who booked for antenatal care at
12 weeks gestation between 12/02/2007 and 29/10/2008. The booking
clinic was administered by the Wirral University Teaching Hospital which is
the sole provider of universal prenatal care on the Wirral Peninsula.
Socioeconomic conditions on the Wirral range between the deprived inner
city and affluent suburbs, but with few from ethnic minorities. The study
was introduced to the women by clinic midwives who asked for their
agreement to be approached by study research midwives when they
attended for ultrasound scanning at 20 weeks gestation. After complete
description of the study to the women, written informed consent was
obtained by the study midwives, who then administered questionnaires
and an interview in the clinic.

Participants
Of those approached by study midwives, 68.4% gave consent and
completed the measures, yielding an extensive sample of 1233 mothers
with surviving singleton babies. The sampling flow chart has been
published previously.22 The mean age at recruitment of extensive sample
participants was 26.8 years (s.d.5.8, range 18–51). Using the UK Index of
Multiple Deprivation (IMD)24 based on data collected from the UK Census

in 2001, 41.8% of the extensive sample reported socioeconomic profiles
found in the most deprived UK quintile, consistent with the high levels of
deprivation in some parts of the Wirral. Forty eight women (3.9%)
described themselves as other than white British. Demographic and
antenatal stratification measures were administered at 20 weeks gestation
with all extensive sample participants.
A stratified random subsample of 316 mothers was recruited to the

intensive sample at 32 weeks gestation with the sampling fraction
depending on their prior responses to a measure of partner psychological
abuse on entry into the extensive study at 20 weeks gestation.22 In
addition to assessments of the mothers at 20 and 32 weeks gestation,
mothers and infants generated data at 5, 9, and 29 weeks, and at
14 months. Two hundred and sixty eight mothers and infants came into
the lab at 14 months for detailed observational, interview and
physiological measures. Seven parents declined consent for DNA collec-
tion, 3 samples were spoilt, and 25 assessments were curtailed before
saliva collection because of time constraints. Sufficient DNA for methyla-
tion analyses was obtained from 181 infants.

Measures
Maternal depression. Maternal symptoms of depression were assessed at
20 and 32 weeks’ gestation, and when infants were 5, 9 and 29 weeks, and
14 months, using the Edinburgh Postnatal Depression Scale (EPDS) which
has been used extensively to assess pre- and postnatal depression.25 The
measure was designed specifically to avoid confounding by symptoms
commonly experienced by non-depressed women shortly after childbirth.

Maternal stroking. Maternal stroking was assessed by self report using
The Parent–Infant Caregiving Scale (Sharp et al., 2012) in which mothers
completed four items reporting on how often (1 = never, 2 = rarely,
3 = sometimes, 4 = often, 5 = a lot) they currently stroked their baby’s face,
back, tummy, arms and legs. The four stroking items assess a stroking
construct as evidenced in high loadings of all of the items on a latent
variable22 and test–retest reliability over 4 weeks is acceptable (r= 0.58).
Separate analyses were conducted with stroking at 5 and 9 weeks.

DNA methylation. Methylation status in the NR3C1 1-F promoter was
examined at the same CpGs (CpG unit 22 and 23, see Figure 1) identified
by Oberlander et al.,10 Conradt et al.,16 Hompes et al.,17 Tyrka et al.14 and
Melas et al.18 DNA collected from Oragene saliva samples was extracted,
bisulphite treated, amplified (Forward, 5′-GACCTGGTCTCTCTGGGG-3′;
Reverse, 5′-TGCAACCCCGTAGCCCCTTTC-3′) and run on a Sequenom
EpiTYPER system (Sequenom, San Diego, CA, USA). Data were transformed
to percentage of methylation at CpG unit 22 and 23 to allow for
comparison with previous analysis of differential methylation at this locus.

Stratification variable and confounders. Partner psychological abuse was
assessed using a 20-item questionnaire covering humiliating, demeaning
or threatening utterances in the partner relationship during pregnancy
over the previous year.26 Strata were defined using the highest of the
partner-to-participant and participant-to-partner scores for each family.
The sampling fraction for participation in the intensive sample was higher
in the high-risk stratum than the low-risk stratum and, as described in the

1A 1I 1D 1J 1E 1B 1F 1C 1H 2

Figure 1. Scheme of the human NR3C1 gene analyzed by bisulfite pyrosequencing. The 5′-end of the human NR3C1 gene contains multiple
first exons, with multiple transcriptional start sites and mRNA splice variants. The region analyzed by bisulfite pyrosequencing (primer
sequences are in bold) contains 29 CpGs (CpG unit 22 and 23 are underlined) and encompasses exon 1-F, which is the human homolog of the
rat exon 1–7, previously shown to be differentially methylated.2
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analysis section, stratum weights were used to account for this selection on
our results.
Maternal age (at this first pregnancy) and marital status at 20 weeks’

gestation were included because of their associations with maternal
depression in this sample (Sharp et al., in press). Socioeconomic status was
included because of its established association with adult depression.27

Socioeconomic status was determined using the revised English Index of
Multiple Deprivation (IMD)24 on the basis of the data collected from the UK
Census in 2001. According to this system, postcode areas in England are
ranked from most deprived (that is, IMD of 1) to least deprived (that is, IMD
of 32 482) on the basis of neighborhood deprivation in seven domains:
income, employment, health, education and training, barriers to housing
and services, living environment and crime. All mothers were given IMD
ranks according to the postcode of the area where they lived and assigned
to a quintile on the basis of the UK distribution of deprivation. Information
about drinking alcohol and smoking was obtained at 20 and 32 weeks’
gestation and was included because of published associations with altered
DNA methylation.28,29 Sex differences in the DNA methylation patterns
have been reported,29 and birth records were used to determine the sex of
the infant. Birth weight was also obtained from birth records and birth
weight by gestational age was used as a measure of fetal growth. Low fetal
growth is associated with elevated fetal glucocorticoid exposure and so
might be associated with elevated GR gene methylation.29 Obstetric risk
was rated using a weighted severity scale developed by a collaboration of
American and Danish obstetricians and pediatric neurologists.30,31 The
scale has 32 items, each of which has an assigned score in the range 1–5,
and the highest rated item provides the value for analyses. It has been
used widely in studies of perinatal complications and later development.

Statistical analysis
All analyses were undertaken in Stata 13 (StataCorp, 2012). The two-phase
stratified sample design allows estimates to be reported for the general
population from the stratified subsample by the use of inverse probability
weights. Weights took account not only of the original stratification but
also of the sample attrition that took place up to the assessment and
methylation assay at age 14 months including mothers’ age and years of
education, maternal smoking and depression score in pregnancy, and a
score of the number of items left incomplete at the initial assessment. To
avoid undue influence of some extreme observations of rates of
methylation, the rates were grouped into seven categories of methylation
level with approximately equal frequency (septiles) and association with
other variables analyzed by means of weighted ordinal logistic regression.
Reported effect estimates are thus log-odds coefficients. Stata’s svy option
was used with standard errors and P-values based on the robust estimator

of the parameter covariance matrix. Variation in the weights associated
with the covariates of each model was removed to improve efficiency.
Predictions of methylation levels were examined first including only
variables of interest, and then after adding potential confounders for
obstetric risk index, self-reported maternal smoking at 20 and 32 weeks of
pregnancy, self-reported alcohol consumption at 20 weeks, birth weight by
gestational age, neighborhood deprivation, maternal age, marital status
and 20-week psychological abuse score.
Figures 2 and 3 show locally weighted scatterplot smoothing plots32

fitted to the raw methylation data. These are not based on model-
predicted values but are empirical plots and are unweighted. The locally
weighted scatterplot smoothing plots were fitted to the original raw data;
whereas for the scatter plots, one marked observed methylation value was
recoded from 29 to 14 to improve visualization.

RESULTS
Maternal depression (EPDS) scores at 20 weeks’ gestation were
strongly associated with mean EPDS across the four postnatal
assessment points (r= 0.68). In separate ordinal logistic regression
analyses, elevated methylation in the infants were predicted by
EPDS scores at 20 weeks of pregnancy (log-odds coefficient =
0.348, s.e. = 0.139, P= 0.013) and mean postnatal EPDS scores
(coefficient = 0.574, s.e. = 0.141, Po0.001). When examined jointly,
the interaction between 20 weeks’ prenatal and mean postnatal
depression scores was significant (coefficient =− 0.418, s.e. = 0.207,
P= 0.045). The effect of the interaction on raw methylation
percentage in the infants is illustrated in Figure 2, where groups
below and above the median 20 weeks’ EPDS scores are
contrasted. It can be seen that increasing postnatal depression
was associated with increasing methylation only in infants from
mothers below the median for prenatal depression.
We hypothesized that if maternal stroking reverses the effects

of prenatal and postnatal depression on NR3C1 1-F promoter
methylation, it should be associated with reduced methylation in
the children of mothers with the combination of low prenatal and
high postnatal depression. In view of the evidence that in rodents
the effect of licking and grooming is limited to a short postnatal
critical period, the effects of stroking at 5 and at 9 weeks were
analyzed separately. Because low maternal prenatal depression is
associated with low postnatal depression, the group that we
identified below the median on prenatal depression and above
the median on postnatal depression was relatively small (N= 16).
These children had substantially higher methylation levels than
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Figure 2. Child NR3C1 1-F promoter methylation percent by
standardized maternal postnatal depression scores. The figure gives
the locally weighted scatterplot smoothing (LOWESS) plots showing
how the child’s raw methylation percent increases with increased
maternal postnatal depression for those with low maternal prenatal
depression (dashed line) but not those with high prenatal
depression (solid). To improve visualization, the point marked ‘a’
has been displaced (from methylation 29%) in the scatterplot (but
conservatively retained in the LOWESS).
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weighted scatterplot smoothing plots showing how the child’s raw
methylation percent decreases with maternal stroking for children
with mothers who reported low prenatal but high postnatal
depression scores (solid line). No such decrease is seen for the
remainder of the children (dashed).
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the other 165 (coefficient = 1.688, s.e. = 0.510, P= 0.001). Increased
maternal stroking at 5 weeks specifically reduced methylation in
this group as evidenced in a highly significant statistical
interaction between the membership of this group and maternal
stroking when infants were 5 weeks old (coefficient =− 2.754,
s.d. = 0.573, Po0.001). This interaction was unaltered after the
addition of confounders to the model (coefficient =− 2.634,
s.e. = 0.567, Po0.001). The interaction is illustrated in Figure 3,
where it can be seen that with increasing maternal stroking,
NR3C1 1-F promoter methylation in the children of mothers in the
low prenatal and high postnatal group fell to the level of the
remainder of the sample. By contrast, there was no effect of
maternal stroking at 9 weeks of age (data not shown) highlighting
the importance of the early postnatal period.

DISCUSSION
We report two novel findings, first on the interactive effects of
prenatal and postnatal maternal depression, and second on the
effect of maternal stroking, on NR3C1 1-F promoter methylation, in
young children. The interaction between prenatal and postnatal
depression arose because the association between maternal
depression measured at four postnatal time points and NR3C1
1-F promoter methylation was stronger in infants who had been
exposed to low levels of maternal depression in utero. The effect
of maternal stroking was seen only in those infants exposed to the
combination of low prenatal and high postnatal maternal
depression.
Although the sample size of the study was modest, we reduced

the risks arising from multiple analyses by examining only one
CpG site, prespecified from other studies in the field. Previous
studies in humans had also identified maternal depression as a
predictor of NR3C1 1-F promoter methylation, which we measured
prospectively both pre- and postnatally. The measure of maternal
stroking was by self-report, and it remains to be established
whether observed maternal stroking has the same effect.
However, observational measures are generally limited in the
studies of human development by restricted coverage over place
and time, and we have previously used this measure to show that
maternal stroking reverses the effects of prenatal depression on
physiological and behavioral reactivity at 29 weeks.22 We did not
test duplicate DNA samples, so any instability in methylation levels
may have contributed unmeasured error to the analyses. The
majority of the DNA extracted from whole saliva has been shown
to originate from blood leukocytes33,34 and previous studies on
NR3C1 methylation have generated similar results by utilizing the
DNA from brain2,9 and leukocytes.10,14,16–18 These data further
support that adversities in early life may both be epigenetically
reflected in the central nervous system and in the peripheral
tissues (like leukocytes).
To the best of our knowledge, this is the first study in humans or

in animals to examine the interactive effects of pre- and postnatal
depression on DNA methylation. The findings reported in this
paper that the infants of mothers with low prenatal depression
were vulnerable to the effects of postnatal depression are
consistent with an interplay between prenatal and postnatal
environments seen throughout biology. From the effects of
exposure to chemical traces of a predator on the offspring of
the freshwater crustacean Daphnia, to the long-term effects of
restricted fetal growth in humans, prenatal exposure to a risk can
confer protection from the effects of postnatal experiences.35,36 In
general terms, this is consistent with the fetal origins hypothesis of
human disease that proposes that in utero environmental
exposures lead to modifications in fetal development, which are
adaptive where the subsequent postnatal environment is similar.
Discontinuities between prenatal and postnatal environments
create vulnerability. This effect is best exemplified in the
associations of low fetal growth with diabetes and hypertension

over several decades, that are thought to arise from fetal
adaptations that confer advantage in food-scarce environments
but create risk in western food-rich environments.35 Low birth
weight is also associated with adolescent depression in the
presence of childhood adversities, consistent with the
hypothesis.37 Possible mechanisms for the interplay between
prenatal and postnatal influences include differential gene
expression of the kind shown at the intron microsatellite in the
serotonin transporter.38

Building on our previous work on reversal by maternal stroking
of behavioral outcomes associated with prenatal depression and
anxiety,22 we now show a reduction of NR3C1 gene methylation
associated with maternal stroking. These findings support the role
of epigenetic mechanisms linking early-life stress with long-term
effects,3 and highlight the importance of translational research in
linking the studies in animals to humans, with considerable
implications for our understanding of the earliest origins of
neurobiological and behavioral development, and psychiatric
disorders. Equally they imply new directions for animal models.
In addition to the studies of single pre- or postnatal stressors, the
effects of successive stressors need to be examined, in particular,
to test for modification by prenatal stress of effects of postnatal
stress, and to establish mechanisms. Similarly, not enough is yet
known about the ability of postnatal tactile stimulation to reverse
the effects of pre- and postnatal stressors, and about associated
epigenetic mechanisms. More broadly, human studies, informed
by animal models, have the potential to inform the design of
animal investigations to bring them closer to the human
condition.
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